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The second order phase transition in Sn2P2S6 crystals:
anharmonic oscillator model

R.M.Yevych, Yu.M.Vysochanskii
Institute for Solid State Physics and Chemistry, Uzhgorod National University, Pidgirna Str., 46, Uzhgorod,
88000, Ukraine

Received June 2, 2008

Statistical theory for ferroelectrics based on triple well anharmonic potential was used for the case of structural
second order phase transition in Sn2P2S6 crystals. Parameters of effective Hamiltonian of the model were
estimated using available experimental data. These findings confirm the assumption that the phase transition
in these crystals is located in crossover region between order-disorder and displacive type, and very closely
to tricritical point.
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1. Introduction

Sn2P2S6 crystals are well known ferroelectrics with a variety of different interesting physical
properties [1]. One of the open questions concerning this material is the nature of continuous
structural phase transition (PT) at Curie point TC ≈ 337 K. Analysis of a set of experimental
data lets us make an assumption that this PT is located in a crossover region between PT of
order-disorder and displacive type [2]. Moreover, the temperature anomalies of thermodynamic
functions and their concentration behavior along the phase diagram of Sn2P2(SexS1−x)6 mixed
crystals indicate that PT in pure Sn2P2S6 crystals is very close to tricritical point [3,4]. There are
a lot of experimental and theoretical works concerning the study of the origin of the PT in crystals
under consideration. A part of them refers to lattice dynamics calculations. Rigid ion model was
used firstly [5,6]. However, it was impossible to obtain correct symmetry assignment of soft optic
mode in this model at lattice instability modelling. Then the polarizable ion models in different
variations were applied [7,8]. The results of the latter calculations were found to be in good agree-
ment with experimental and theoretical description of PT in Sn2P2S6 crystals. Lattice dynamical
instability of the paraelectric phase was modeled by charge transfer between tin and sulfur ions,
and by changing the polarizabilities of the latter. The ferroelectric phase was stabilized by tin
atom displacement from centrosymmetric positions and a partial reversal recharging. Analyzing
the vector of displacement of a soft optic transverse mode (Bu-symmetry mode) and low-energy
full symmetric modes (Ag-symmetry modes) the following results were noted. The best description
of experimentally observed ions displacement at PT from paraelectric to ferroelectric phase was
found using not only soft mode eigenvector but also eigenvectors of a few Ag-modes. It follows
that there is a more complex soft vibration responsible for PT. The recent ab initio calculations [9]
confirm this. The potential energy has a minimum at nonzero displacement (with coexistence of
zero-displacement minimum) by taking into account not only polar but also full symmetric vibrati-
ons. These facts let us assume that Hamiltonian as a function of order parameter can be described
by a triple well potential function.

On the other hand, there are experimental data that confirm this assumption. NMR spec-
troscopy [10] showed the existence of resonances of paraelectric phase in the ferroelectric phase
which are related to centrosymmetrical elementary cells. They are placed in the middle of domain
walls in the ferroelectric phase of Sn2P2S6. According to dielectric investigations [11] a relaxational
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“freezing” process occurs at low temperatures (near 60 K), which is related to the rearrangement
of the domain walls at cooling and is described by molecular-dynamic simulations based on the
triple well potential.

One of the most well-known statistical theories for ferroelectrics which deals with a triple
well potential was developed and applied for LiTaO3 and LiNbO3 crystals by Lines in a series of
papers [12–15]. The effective Hamiltonian in this model depends on six temperature independent
parameters. The relation between these parameters determines the order and type of PT, and,
consequently, the temperature behavior of different physical properties. Following this theory lets
us try to analyze the PT in Sn2P2S6 crystals.

2. Short description of the model

A “single-mode” approximation is applied in the model. In this approximation we consider
a system which has only one strongly temperature-dependent mode. In such a case the effective
Hamiltonian can be written as follows:

vHeff =
1

2

(

π2 + ω2
0ξ

2
)

+ Aξ4 + Bξ6 − ηSξ (E + γ〈Pion〉) , (1)

where v is the volume of unit cell; π and ξ are the conjugate coordinates; ω0, A, B, η, γ, S are the
model parameters; E is the external electric field; 〈Pion〉 is the ionic polarization. The statistical
estimates of different values can be calculated using (1). For example, Curie temperature and ionic
polarization as a function of temperature have the following form [12–15]:
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where k is the Boltzmann constant, T is the temperature and

U =
1

2
ω2

0ξ
2 + Aξ4 + Bξ6, (4)

V = U − ηSξ(E + γ〈Pion〉). (5)

The A–parameter in potential (1) can be positive as well as negative. It should be noted that
a negative value for the coefficient A does not necessarily lead to a first order PT as it was shown
in [12]. Below, we will deal only with the negative-A case. In such a case the system is most
conveniently described in terms of temperature independent ratios β ′/α′ = ω2

0/(ηγS2/v), and
(β′)1/2/δ = −A/(BηγS2/v)1/2, where dimensionless parameters α′, β′ and δ are defined by

α′ =
(Bk2T 2)1/3

ω2
0

, β′ =
(Bk2T 2)1/3

(ηγS2/v)
, δ =

(B2kT )1/3

−A
. (6)

The boundary lines that indicate the changes in the ferroelectric properties of the systems in terms
of the mentioned parameters are as follows:

β′

α′
= 1 +

2

3

β′

δ2
— ferroelectric vs non-ferroelectric boundary,

β′

α′
= 1 +

2

5

β′

δ2
— first order vs second order boundary,

β′

α′
=

1

2

β′

δ2
— order-disorder vs displacive type boundary,

β′

α′
=

2

3

β′

δ2
— ω(TC) = 0 vs ω(TC) 6= 0 for displacive type region boundary, (7)

where ω(TC) is the soft mode frequency at Curie temperature.
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3. Determination of the model parameters for Sn2P2S6 crystals

3.1. Spontaneous polarization as a function of temperature

The direct measurements of spontaneous polarization as a function of temperature using pyro-
electric and hysteresis loop technique have been reported [1]. However, the observed temperature
dependence of spontaneous polarization does not represent the order parameter behavior correctly.
The reason is that part of the domain cannot be switched by external field. The temperature
dependence of the order parameter can be more accurately determined from optical experiments,
particularly, from birefringence studies [16]. So, we use these data in our calculations (see figure 1).

Figure 1. The temperature dependence of anomalous part of birefringence in Sn2P2S6 crys-
tals [16].

In terms of dimensionless variable (6), equations (2) and (3) transform to
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y2exp
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where Γ′ = (v/S)(B/kT )1/6〈Pion〉, and index C refers to the case T = TC.
In figure 2 we present the results of calculations of reduced polarization P/P0 (P0 is the po-

larization at T = 0) as a function of reduced temperature T/TC. This curve was calculated for
the particular case β′/α′ = 1 and (β′)1/2/δ ≈ 0.87 as a best fit for experimental data. The same
good agreement has been obtained at different values of β ′/α′ ratio. So we can draw a set of curves
P/P0 versus T/TC which corresponds to the set of β′/α′ and (β′)1/2/δ ratios and which satisfies
the experiments at the same time. A corresponding curve for β ′/α′ and (β′)1/2/δ ratios are shown
in figure 3.

In the same manner, the line which corresponds to the Curie temperature was obtained using
(8), as well as it was drawn in figure 3.
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Figure 2. The calculated temperature dependence of reduced polarization as a function of re-
duced temperature in Sn2P2S6 crystals (lines) compared with experimental data (circles).

Figure 3. A number of curves (dotted lines) that correspond to the behavior of different physical
quantities are compared on β′/α′–(β′)1/2/δ phase diagram: (1) — temperature dependence of
spontaneous polarization; (2) — Curie temperature; (3) - soft mode frequency at T → 0; the
filled circle — soft mode frequency at T → TC. Shaded area contains the region of β′/α′ and
(β′)1/2/δ ratios where their values can be placed. The solid lines separate the regions which are
determined by conditions (7).
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3.2. Dielectric constant

The dielectric properties of Sn2P2S6 crystals were investigated in a series of works [17,18]. Using
a representation of dielectric constant by means of damping oscillators, one can find its frequency
dependence as follows:

ε = ε∞ +
∑

j

fjΩ
2
j

Ω2
j − ω2 + iωγj

, (10)

where fj , Ωj , γj are the strength, frequency and linewidth of the jth infrared-active mode, respecti-
vely. In [1] we have find that the oscillator strength of soft mode is about 100 at room temperature.
Approaching the Curie point, the Curie-Weiss law is satisfied. Since Curie-Weiss constant varies
significantly in the ferroelectric phase, we use its value only in paraelectric phase. So, we can write

εpara =
0.67 · 105 K

T − TC

. (11)

From the theory we have

εpara =
4πη′

γ

TC

T − TC

1

Φp
, (12)

where η′ = 〈P 〉/〈Pion〉 is the ratio that controls the part of ionic polarization in the total polariza-
tion, Φp = (2/3− µ′), and µ′ is defined as a function of β′

C at T → TC as follows:

〈y2〉0 = β′

C [1 + µ′(T − TC)/TC] ,
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Using (11) and (12) one can deduce:

η′

γ
= 15.8

(

2

3
− µ′

)

. (14)

3.3. Soft mode frequency

The theory [13] gives a rather complex relation for determination of ω = ω(T ) dependency of
soft mode. However, we have two special cases, where an immense simplification can be reached.
It is a low-temperature limit (T → 0) and the vicinity of the Curie point (T → TC).

3.3.1. Low-temperature limit

The temperature dependence of soft mode frequency in ferroelectric phase of Sn2P2S6 crystals
was investigated using Raman spectroscopy method in [19,20]. According to these data, the soft
mode has a frequency of about 42 cm−1 at T → 0, and decreases to 27 cm−1 at T = 300 K. Using
these data one can obtain the following relation [14]

ω2(0)

ω2
0

=
ω2(0)

ω2(300)

4π

f

η′

γ

α′

β′
, (15)

where f is the oscillator strength of the soft mode at T = 300 K, and the ratio η′/γ was defined in
(14). On the other hand, it can be shown that there is another relation concerning ω(0) frequency

ω2(0) = ω2
0 + 12Aξ2

0 + 30Bξ4
0 − (ηγS2/v), (16)

where ξ2
0 = 1/(6B)(−2A +

√

4A2 + 6B[(ηγS2/v) − ω2
0 ]). The equations (15) and (16) make it

possible to obtain another relation between β′/α′ and (β′)1/2/δ ratios. This curve is also present
in figure 3. The left side of equation (15) can be expressed in the terms of these ratios using (16).
The ratio ω2(0)/ω2(300) in the right side of equation (15) can be calculated directly using the
experimental values of corresponding frequencies.
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3.3.2. Near the Curie point

For temperatures T → TC the theory [13] gives the following relation between soft mode
frequency ω and temperature T

k(T − TC)Φ

(ηγS2/v)
≈ ∆ +

∫ ∞
∑

n=1

2ω2

n2ω2
H − ω2

feq|ξn|
2dH, (17)

where

feq = exp

(

−Heq

kT

)/

∞
∫

−∞

∞
∫

−∞

exp

(

−Heq

kT

)

dπdξ, (18)

and Heq is the equilibrium value of Hamiltonian (1); Φ takes on values (2/3−µ′) and −2(2/3−µ′)
in the paraelectric and ferroelectric phases, respectively; ∆ is the paraelectric value of

∫

feq|ξ0|
2dH ;

ξ0 and ξ1 are the coefficient of ξ expansion as a periodic function of the angle variable θ (θ and H
are the new canonical variables against ξ and π);

ξ =
∑

n

exp(−inωHθ). (19)

So, the soft mode frequency behavior at T → TC, reduces to determination of ξ0(H), ξ1(H) and
ωH . These values can be calculated by solving a classical mechanical problem of motion in a
potential U(ξ) (4). The exact solutions of such an equation of motion turn out to be Weierstrass’s
functions [21].

It should be noted that there are two types of ω = ω(T ) dependency at T → TC. If ∆ = 0 in
(17) we find ω(TC) = 0 (small anharmonicity range) against the case of ∆ 6= 0, where ω(TC) 6= 0
(strong anharmonicity). The latter occurred in Sn2P2S6 crystals (ω(TC) ≈ 10 cm−1) [19]. Using all
these facts we numerically calculate the equation (17) and find that it is satisfied at β ′/α′ ≈ 2.38
and (β′)1/2/δ ≈ 1.92 (point in figure 3).

Let us return to figure 3. In this figure, we select some region where we believe the parameters
for Sn2P2S6 crystals can be really found. This region was formed due to an inaccuracy of the ex-
perimental data, errors in numerical calculations and in some model approximations. On the other
hand, the region is restricted by lines which determine the type and order of PT (experimentally
we know that PT in Sn2P2S6 crystals is second order). Our findings together with some other
experimental data allow us to determine all the parameters of the effective Hamiltonian (1) and to
analyze more qualitatively the origin of PT which will be the aim of a next paper.

4. Conclusion

Following the model developed in [12–14] it was shown that the PT of second order in Sn2P2S6

ferroelectric crystals can be described using the triple well anharmonic potential function for an
order parameter. The absolute values of the model parameters indicate that this PT is located in
crossover region on the phase diagramme between order-disorder and displacive type of PT, and
very close to the line of tricritical points.
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Фазовий перехiд другого роду в кристалах Sn2P2S6: модель
ангармонiчного осцилятора

Р.М.Євич, Ю.М.Височанський

Iнститут фiзики i хiмiї твердого тiла, Ужгородський нацiональний унiверситет, Ужгород 88000,
вул. Пiдгiрна, 46

Отримано 2 червня 2008 р.

Статистична теорiя для сеґнетоелектрикiв, що базується на трьохямному ангармонiчному потенцiа-
лi, використана для випадку структурного фазового переходу другого роду в кристалах Sn2P2S6.
Параметри ефективного гамiльтонiану моделi оцiненi використовуючи наявнi експериментальнi да-
нi. Встановлено, що фазовий перехiд в цих кристалах розташований в кроссовернiй областi мiж
фазовими переходами типу “лад-безлад” та типу змiщення, а також близько до трикритичної точки.

Ключовi слова: статистична теорiя, ангармонiчний осцилятор, трьохямний потенцiал,
сеґнетоелектричний фазовий перехiд
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