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The paper deals with the parallel structure of ultra-low frequency waves. To obtain the function describing the
wave field we use the quasi-perpendicular approximation (k⊥ À k||). Different regions of the wave propagation are
studied.

Key words: MHD waves and instabilities; planetary magnetospheres; waves in plasma

introduction

The paper is devoted to the parallel structure of
the geomagnetic pulsations. The geomagnetic pul-
sations are hydro-magnetic waves in the terrestrial
magnetosphere. They are divided into nine types.
The type depends on the character and the period
of a pulsation. In the present paper we consider the
Pc1 range of geomagnetic pulsations. These oscil-
lations are called “the pearls” because their oscillo-
gram looks like a pearl necklace. The wave frequency
is supposed to be of the same order as the gyrofre-
quency of heavy ions. For a long time the common
model describing the pearl forming was the bounc-
ing wave packet model [1, 3]. According this model
the Pc1-pulsation is an Alfvén wave which propa-
gates along the magnetic field line and reflects from
the conjugate ionospheres [1, 3]. But, some recent
studies have thrown doubt on this interpretation [6].

In the present paper the parallel structure of Pc1
pearls at the different parts of the magnetic field
line is considered and the possibility of excitation of
the eigenmodes in the near-ionospheric transparent
regions is studied.

coordinate system

We use the axial-symmetric model of magneto-
sphere. We introduce the orthogonal field-aligned
coordinate system {x1, x2, x3} in which x1 and x2

coordinates are the radial and the azimuthal coor-
dinates, respectively, and x3 is directed along the
ambient magnetic field lines. The length element in
this system is given by the expression:

dl2 = g1(dx1)2 + g2(dx2)2 + g3(dx3)2, (1)

where gi = gii(x1, x3) are diagonal elements of the
metric tensor, g = g1g2g3 is the determinant of the
metric tensor. The summation over the repeated in-
dex is not implied here.

ulf-waves at the equator
We consider the ULF-waves (ultra-low frequency

waves) in the space plasma. Plasma consists of elec-
trons, protons and heavy ions. We should take into
account the admixture of heavy ions, because the
density of oxygen ions in the Earth’s magnetosphere
may be as much as the proton density [8]. The
plasma is described by the permittivity tensor

ε̂ =

(
ε⊥ −iη 0
iη ε⊥ 0
0 0 ε||

)
,

whose elements are given by:

ε|| = −∞, ε⊥ =
Ω2

pp

Ω2
cp − ω2

+
Ω2

ph

Ω2
ch − ω2

,

η =
Ω2

pe

ωΩce
− Ωcp

ω

Ω2
pp

Ω2
cp − ω2

− Ωch

ω

Ω2
ph

Ω2
ch − ω2

,

where Ωp and Ωc denote the local plasma and the
local cyclotron frequencies, respectively, and the sec-
ond index designates corresponding particle: proton
(p), heavy ion (h) and electron (e).

Taking into account the finitness of the ratio ω/ωc
one can get the dispersion relation of the cold plasma
in a form [7]:

(
ω2

c2
ε⊥ − k2

||

) (
ω2

c2
ε⊥ − k2

|| − k2
⊥

)
=

ω4

c4
η2, (2)
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where ω is the frequency, c is the speed of light, k||
and k⊥ are the wave vector components parallel and
transverse to the ambient magnetic field.

To study the parallel structure of the wave we use
the quasi-perpendicular approximation (k⊥ >> k||).
Hence the relation (2) takes a form [4]:

ω2

c2
ε⊥ − k2

|| = −ω4

c4

η2

k2
⊥

. (3)

Thus, we obtain the parallel component of the
wave vector [4, 5]:

k2
|| =

ω2

A2
p

(
1− ω2

Ω2
cp

) +
ω2

A2
h

(
1− ω2

Ω2
ch

) , (4)

where Ap and Ah are the Alfvén velocities deter-
mined for protons and the ions, respectively. We
suppose that Ωcp À Ωch. There is a point on the
magnetic field line where the wave frequency equals
the heavy ion gyrofrequency and the parallel wave
vector tends to infinity. At the equator the mag-
netic field is minimum, thus at the equator k2

|| > 0,
and approaching the parallel singular point along the
field line from the equator, one gets the point where
k2
|| →∞. So, we conclude, that somewhere between

the equator and the singular point there must be a
point where k2

|| = 0. This point is called a turn point.
Thus, in the case of the quasi-perpendicular approx-
imation we have a resonator at the equatorial part
of the magnetic field line (Fig. 1). The resonator
serves as a wave energy reservoir. Its eigenfrequen-
cies determine the wave frequency. Due to (4) we can
use a parabolic approximation for the k2

||(l) depen-
dence. Using the parabolic approximation and the
Bohr-Sommerfeld quantization condition we obtain
the wave frequency [4, 5]:

ω2
n =

(
1 +

ρh

ρp

)
Ω2

ch + (2n + 1)
ρh

ρp

AhΩch

req
, (5)

here ρh and ρp are the densities of heavy ions and
protons, respectively, and req is the equatorial radius
of the magnetic field line curvature.

There are two opaque regions (k2
|| < 0) and

two near-ionospheric transparent regions (k2
|| > 0)

(Fig. 1).

Fig. 1: The wave vector parallel component squared as
a function of the longitudinal coordinate.

Fig. 2: The parallel structure of the ULF-wave when dif-
ferent boundary conditions take place. Solid line presents
the case of the ideal conductive ionosphere, dotted line
presents the case of the nonideal conductive ionosphere.

parallel structure of ulf-wave

in opaque region

Some part of the wave energy can tunnel through
the opaque region to the near-ionospheric transpar-
ent region where a standing wave is formed. At the
opaque region near the equatorial resonator there
is one dumped oscillation mode, so we can con-
clude, that the penetration of the wave to the near-
ionospheric region is possible. That is why the ques-
tion about the existence of such mode near the near-
ionospheric transparent region arises. In the opaque
region the wave structure is given by

Φ =
√

ξ − ξs

[(
a2e

i 3π

2 − a1

)
I1×

×
(
2
√

α(ξ − ξs)
) 2

π
a2K1

(
2
√

α(ξ − ξs)
)]

, (6)

where ξ =
√

g1

g2
l||, a1 and a2 are some coefficients

describing the wave amplitude, ξs is the coordinate
of the singular point in the new notation, α is a pos-
itive constant, I1 and K1 are the modified Bessel
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functions. By finding the relation between the coef-
ficients a1 and a2, we obtain in the case of the ideal
conductive ionosphere:

a1 = −a2

[
1− ei 3π

2 e−i4
√

α
√

ξi−ξs

1 + ei 3π

2 e−i4
√

α
√

ξi−ξs

]
, (7)

where ξi is the coordinate of the ionosphere, and in
the case of the nonideal conductive ionosphere we
have:

a1 = −a2

[
1− ei 3π

2 e−i4
√

α
√

ξi−ξsΘ

1 + ei 3π

2 e−i4
√

α
√

ξi−ξsΘ

]
, (8)

where

Θ =
1− 4i

√
α(ξi − ξs)1/4

1 + 4i
√

α(ξi − ξs)1/4
.

It is seen that one coefficient is expressed via an-
other. So, neither the ideal conduction of the iono-
sphere (7) nor the nonideal conduction (8) allow
the appearance of the only one wave mode, which
can become the cause of the near-ionospheric eigen-
modes. There are two modes always. One of them
is dumped, another one increases.

parallel structure

in the near-ionospheric region
In the near-ionospheric transparent region the

structure of the ULF-wave is obtained by using the
WKB-approximation:

Φ =
A1(ξ − ξs)

α1/4
ei2
√

α(ξ−ξs)+

+
A2(ξ − ξs)

α1/4
e−i2

√
α(ξ−ξs), (9)

where A1 and A2 are the coefficients which may be
obtained from boundary conditions.

But near the singular point this WKB-
approximation is not available, so we have to obtain
the wave structure as a sum of linear-independent
Bessel functions. Then in the vicinity of singular
point the ULF-wave structure takes the form:

Φ = (ξ − ξs)1/2
[
a1J1(2

√
α(ξ − ξs))+

+a2Y1(2
√

α(ξ − ξs))
]
, (10)

here J1 and Y1 are Bessel functions.
In the very vicinity of the singularity the solution

takes the form

Φ =
√

α [a1(ξ − ξs)+

+
a2

π
√

α

√
ξ − ξs lnα(ξ − ξs)

]
. (11)

It is seen that the wave amplitude near the singular
point is finite. The relation between a1 and a2 also
may be obtained from the boundary conditions. In
the Fig. 2 the obtained parallel structure is shown.

summary and discussion
If we use the quasi-parallel approximation (k|| À

k⊥) to consider the dispersion relation then the equa-
tion (2) has the form [2]

k2
||± =

ω2

c2
(ε⊥ ± η). (12)

In this case a transverse resonator occurs between
the magnetic shells. The resonator also has two
turn points which separate the resonator from the
opaque regions. The conditions of the resonator oc-
currence differ from the conditions of the parallel
resonator occurrence. So, we can see that the equa-
torial resonator occurs in both the quasi-parallel and
the quasi-perpendicular approximations. It was ob-
tained that in the near-ionospheric region the excita-
tion of the eigenmodes is impossible, because there
are two modes in the opaque region. So, the ULF-
waves occur only in the resonator and propagate in-
side between the turn points. Since the resonator
eigenfrequencies are very close to each other, simul-
taneous excitation of many harmonics can result in
formation of beating, which resembles the character-
istic structure of the Pc1 pearls. Some part of the
wave energy leaks out from the resonator and pene-
trates to the atmosphere, where many ground-based
satellites observe it.
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