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The purpose of this note is to give a complete and detailed proof of the fundamental Yamada-Watanabe The-
orem on infinite dimensional spaces, more precisely in the framework of the variational approach to stochastic
partial differential equations.
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1. Framework and definitions

Let H be a separable Hilbert space, with inner product 〈·, ·〉H and norm ‖·‖H. Let V,E be
separable Banach spaces with norms ‖·‖V and ‖·‖E , such that

V ⊂ H ⊂ E

continuously and densely. For a topological space X let B(X) denote its Borel σ-algebra. By
Kuratowski’s theorem we have that V ∈ B(H), H ∈ B(E) and B(V ) = B(H)∩V , B(H) = B(E)∩H.

Setting ‖x‖V := ∞ if x ∈ H \ V , we extend ‖·‖V to a function on H. We recall that this
extension is B(H)-measurable and lower semicontinuous (cf. e.g. [4, Exercise 4.2.3]). Hence the
following path space is well-defined:

B :=

{

w ∈ C(R+;H)

∣

∣

∣

∣

∫ T

0

‖w(t)‖V dt < ∞ for all T ∈ [0,∞)

}

,

equipped with the metric

ρ(w1, w2) :=
∞
∑

k=1

2−k

[(
∫ k

0

‖w1(t) − w2(t)‖V dt + sup
t∈[0,k]

‖w1(t) − w2(t)‖H

)

∧1

]

.

Obviously, (B, ρ) is a complete separable metric space. Let Bt(B) denote the σ-algebra generated
by all maps πs : B → H, s ∈ [0, t], where πs(w) := w(s), w ∈ B. For t > 0 and w ∈ B define the
stopped path wt by

wt(s) = w(s ∧ t), s > 0.

Below we shall use the following elementary, but useful measure theoretic facts.

Lemma 1.1. The map w 7→ wt is Bt(B)/B(B) measurable.

Proof. It suffices to show that πq(w
t) is Bt(B)/B(H) measurable for q > 0. But πq(w

t) = πq(w) if
q 6 t, and πq(w

t) = πt(w) otherwise. In either case, we get a Bt(B)/B(H) measurable map.
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Lemma 1.2. For every set A ∈ Bt(B) we have 1A(w) = 1A(wt).

Proof. By definition, 1A(w) = 1A(wt) for sets of the form

A = {w : πs1
(w) ∈ B1, . . . , πsn

(w) ∈ Bn}

for n > 1, si 6 t, and Bi ∈ B(H). Since these sets generate Bt(B), the monotone class theorem
finishes the proof.

Corollary 1.3. Let (E, E) be a measurable space and f : B → E a B(B)/E measurable map. Then
f is Bt(B)/E measurable if and only if f(w) = f(wt) for all w ∈ B.

Let (U, 〈 , 〉U ) be another separable Hilbert space and let L2(U,H) denote the space of all
Hilbert-Schmidt operators from U to H equipped with the usual Hilbert-Schmidt norm ‖ ‖L2

.

Let b : R+ × B → E and σ : R+ × B → L2(U,H) be B(R+) ⊗ B(B)/B(E) and B(R+) ⊗
B(B)/B(L2(U,H))-measurable respectively such that for each t ∈ R+

b(t, ·) is Bt(B)/B(E)-measurable

and

σ(t, ·) is Bt(B)/B(L2(U,H))-measurable.

As usual we call (Ω,F , P, (Ft)) a stochastic basis if (Ω,F , P ) is a complete probability space
and (Ft) is a right continuous filtration on Ω augmented by the P -zero sets. Let βk, k ∈ N, be
independent (Ft)-Brownian motions on a stochastic basis (Ω,F , P, (Ft)) and define the sequence

W (t) := (βk(t))k∈N, t ∈ [0,∞).

Below we refer to such a process W on R∞ as standard R∞-Wiener process. We fix an or-
thonormal basis {ek, k ∈ N} of U and consider W as a cylindrical Wiener process on U , that is,
we informally have

W (t) =

∞
∑

k=1

βk(t)ek, t ∈ [0,∞).

We consider the following stochastic evolution equation:

dX(t) = b(t,X)dt + σ(t,X)dW (t), t ∈ [0,∞). (1.1)

Definition 1.4. A pair (X,W ), where X = (X(t))t∈[0,∞) is an (Ft)-adapted process with paths
in B and W is a standard R∞-Wiener process on a stochastic basis (Ω,F , P, (Ft)) is called a weak
solution of (1.1) if

(i) For any T ∈ [0,∞)

∫ T

0

‖b(s,X)‖Eds +

∫ T

0

‖σ(s,X)‖2
L2(U,H)ds < ∞ P -a.e.

(ii) As a stochastic equation on E we have

X(t) = X(0) +

∫ t

0

b(s,X)ds +

∫ t

0

σ(s,X)dW (s), t ∈ [0,∞) P -a.e.

Remark 1.5. (i) By the measurability assumptions on b and σ, it follows that if X is as in
Definition 1.4 then both processes b(·,X) and σ(·,X) are (Ft)-adapted.
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(ii) We recall that by definition of the H-valued stochastic integral in (ii) we have

∫ t

0

σ(s,X)dW (s) :=

∫ t

0

σ(s,X) ◦ J−1dW̄ (s), t ∈ [0,∞),

where J is any one-to-one Hilbert-Schmidt operator from U into another Hilbert space (Ū〈 , 〉Ū )
and

W̄ (t) :=

∞
∑

k=1

βk(t)Jek, t ∈ [0,∞). (1.2)

This definition of the stochastic integral is independent of the choice of J and (Ū , 〈 , 〉Ū ). We
refer e.g. to [4, Section 2.5] for details, and only mention here that for s ∈ [0,∞), w ∈ B

σ(s, w) ◦ J−1 ∈ L2(Q
1/2(Ū),H)

with ‖σ(s, w) ◦ J−1‖L2(Q1/2(Ū),H) = ‖σ(s, w)‖L2(U,H),

where Q := JJ∗, and that W̄ is a Q-Wiener process on Ū .

Below we shall fix one such J and (Ū , 〈 , 〉Ū ) as in Remark 1.5(ii) and set

σ̄(s, w) := σ(s, w) ◦ J−1, s ∈ [0,∞), w ∈ B,

and for any standard R∞-Wiener process W we define W̄ as in (1.2) for the fixed J . Furthermore,
we define

W0 := {w ∈ C(R+, Ū)|w(0) = 0}

equipped with the supremum norm and Borel σ-algebra B(W0). For t ∈ R+ let Bt(W0) be the
σ-algebra generated by πs : W0 → Ū , 0 6 s 6 t, πs(w) := w(s).

Definition 1.6. We say that weak uniqueness holds for (1.1) if whenever (X,W ) and (X ′,W ′)
are two weak solutions with stochastic bases (Ω,F , P, (Ft)) and (Ω′,F ′, P ′, (F ′

t)) such that

P ◦ X(0)−1 = P ′ ◦ X ′(0)−1,

(as measures on (H,B(H))), then

P ◦ X−1 = P ′ ◦ (X ′)−1

(as measures on (B,B(B))).

Definition 1.7. We say that pathwise uniqueness holds for (1.1), if whenever (X,W ), (X ′,W ′)
are two weak solutions on the same stochastic basis (Ω,F , P, (Ft)) and with the same standard-
R∞-Wiener process W on (Ω,F , P ) such that X(0) = X ′(0) P -a.e., then P -a.e.

X(t) = X ′(t), t ∈ [0,∞).

To define strong solutions we need to introduce the following class Ê of maps:
Let Ê denote the set of all maps F : H × W0 → B such that for every probability measure µ on

(H,B(H)) there exists a B(H) ⊗ B(W0)
µ⊗P Q

/B(B)-measurable map Fµ : H × W0 → B such that
for µ-a.e. x ∈ H

F (x,w) = Fµ(x,w) for PQ-a.e. w ∈ W0.

Here B(H) ⊗ B(W0)
µ⊗P Q

denotes the completion of B(H)⊗B(W0) with respect to µ⊗PQ, and PQ

denotes the distribution of the Q-Wiener process on Ū on (W0,B(W0)). Of course, Fµ is uniquely
determined µ ⊗ PQ-a.e.
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M.Röckner, B.Schmuland, X.Zhang

Definition 1.8. A weak solution (X,W ) to (1.1) on (Ω,F , P, (Ft)) is called a strong solution if

there exists F ∈ Ê such that for x ∈ H, w 7→ F (x,w) is Bt(W0)
P Q

/Bt(B)-measurable for every
t ∈ [0,∞) and

X = FP◦X(0)−1(X(0), W̄ ) P -a.e.,

where Bt(W0)
P Q

denotes the completion with respect to PQ in B(W0).

Definition 1.9. Equation (1.1) is said to have a unique strong solution, if there exists F ∈ Ê
satisfying the adaptiveness condition in Definition 1.8 and such that:

1. For every standard R∞-Wiener process on a stochastic basis (Ω,F , P, (Ft)) and any F0/B(H)-
measurable ξ : Ω → H the continuous process

X := FP◦ξ−1(ξ, W̄ )

is (Ft)-adapted and satisfies (i), (ii) in Definition 1.4, i.e. (F (ξ, W̄ ),W ) is a weak solution to
(1.1), and X(0) = ξ P -a.e.

2. For any weak solution (X,W ) to (1.1) we have

X = FP◦X(0)−1(X(0), W̄ ) P -a.e.

Remark 1.10. Since X(0) of a weak solution is P -independent of W̄ , thus

P ◦ (X(0), W̄ )−1 = µ ⊗ PQ,

we have that the existence of a unique strong solution for (1.1) implies that also weak uniqueness
holds.

2. The main result and its proof

Let us now formulate the main result (see e.g. [2] for the finite dimensional case).

Theorem 2.1. Let σ and b be as above. Then equation (1.1) has a unique strong solution if and
only if both of the following properties hold:

(i) For every probability measure µ on (H,B(H)) there exists a weak solution (X,W ) of (1.1)
such that µ is the distribution of X(0).

(ii) Pathwise uniqueness holds for (1.1).

Proof. Suppose (1.1) has a unique strong solution. Then (ii) obviously holds. To show (i) one only

has to take the probability space (W0,B(W0), P
Q) and consider (H ×W0,B(H) ⊗ B(W0)

µ⊗P Q

, µ⊗
PQ) with filtration

⋂

ε>0

σ(B(H) ⊗ Bt+ε(W0),N ), t > 0,

where N denotes all µ ⊗ PQ-zero sets in B(H) ⊗ B(W0)
µ⊗P Q

. Let ξ : H × W0 → H and
W : H × W0 → W0 be the canonical projections. Then X := FP◦ξ−1(ξ,W ) is the desired weak
solution in (i).

Now let us suppose that (i) and (ii) hold. The proof that then there exists a unique strong
solution for (1.1) is quite technical. We structure it through a series of lemmas.
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Lemma 2.2. Let (Ω,F) be a measurable space such that {ω} ∈ F for all ω ∈ Ω and such that

D := {(ω, ω)|ω ∈ Ω} ∈ F ⊗ F

(which is e.g. the case if Ω is a Polish space and F its Borel σ-algebra). Let P1, P2 be probability
measures on (Ω,F) such that P1 ⊗ P2(D) = 1. Then P1 = P2 = δω0

for some ω0 ∈ Ω.

Proof. Let f : Ω → [0,∞) be F-measurable. Then

∫

f(ω1)P1(dω1) =

∫∫

f(ω1)P1(dω1)P2(dω2) =

∫∫

1D(ω1, ω2)f(ω1)P1(dω1)P2(dω2)

=

∫∫

1D(ω1, ω2)f(ω2)P1(dω1)P2(dω2) =

∫

f(ω2)P2(dω2),

so P1 = P2. Furthermore,

1 =

∫∫

1D(ω1, ω2)P1(dω1)P2(dω2) =

∫

P1({ω2})P2(dω2),

hence 1 = P1({ω2}) for P2-a.e. ω2 ∈ Ω. Therefore, P1 = δω0
for some ω0 ∈ Ω.

Fix a probability measure µ on (H,B(H)) and let (X,W ) with stochastic basis (Ω,F , P, (Ft))
be a weak solution to (1.1) with initial distribution µ. Define a probability measure Pµ on (H ×
B × W0,B(H) ⊗ B(B) ⊗ B(W0)), by

Pµ := P ◦ (X(0),X, W̄ )−1.

Lemma 2.3. There exists a family Kµ((x,w),dw1), x ∈ H,w ∈ W0, of probability measures on
(B,B(B)) having the following properties:

(i) For every A ∈ B(B) the map

H × W0 3 (x,w) 7→ Kµ((x,w), A)

is B(H) ⊗ B(W0)-measurable.

(ii) For every B(H) ⊗ B(B) ⊗ B(W0)-measurable map f : H × B × W0 → [0,∞) we have

∫

H×B×W0

f(x,w1, w)Pµ(dx,dw1,dw) =

∫

H

∫

W0

∫

B

f(x,w1, w)Kµ((x,w),dw1)P
Q(dw)µ(dx).

(iii) If t ∈ [0,∞) and f : B → [0,∞) is Bt(B)-measurable, then

H × W0 3 (x,w) 7→

∫

B

f(w1)Kµ((x,w),dw1)

is B(H) ⊗ Bt(W0)
µ⊗P Q

-measurable, where B(H) ⊗ Bt(W0)
µ⊗P Q

denotes the
completion with respect to µ ⊗ PQ in B(H) ⊗ B(W0).

Proof. Let Π : H × B × W0 → H × W0 be the canonical projection. Since X(0) is F0-measurable,
hence P -independent of W̄ , it follows that

Pµ ◦ Π−1 = P ◦ (X(0), W̄ )−1 = µ ⊗ PQ.

Hence by the existence result on regular conditional distributions (cf. e.g. [2, Corollary to Theorem
3.3 on p. 15]), the existence of the family Kµ((x,w),dw1), x ∈ H, w ∈ W0, satisfying (i) and (ii)
follows.
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To prove (iii) it suffices to show that for t ∈ [0,∞) and for all A0 ∈ B(H), A1 ∈ Bt(B),
A ∈ Bt(W0) and

A′ :=
{

πr1
− πt ∈ B1, πr2

− πr1
∈ B2, . . . , πrk

− πrk−1
∈ Bk

}

(⊂ W0) ,

t 6 r1 < . . . < rk, B1, . . . , Bk ∈ B(Ū),
∫

A0

∫

W0

1A∩A′(w)Kµ((x,w), A1)P
Q(dw)µ(dx)

=

∫

A0

∫

W0

1A∩A′(w) Eµ⊗P Q(Kµ(·, A1)|B(H) ⊗ Bt(W0))P
Q(dw)µ(dx),

(2.1)

since the system of all A ∩ A′, A ∈ Bt(W0), A′ as above generates B(W0). But by part (ii) above,
the left-hand side of (2.1) is equal to

∫

H×B×W0

1A0
(x)1A∩A′(w)1A1

(w1)Pµ(dx,dw1,dw) =

∫

Ω

1A0
(X(0))1A1

(X)1A(W̄ )1A′(W̄ )dP.

(2.2)
But 1A′(W̄ ) is P -independent of Ft, since W is a standard R∞-Wiener process on (Ω,F , P,Ft),
so the right-hand side of (2.2) is equal to

∫

Ω

1A′(W̄ )dP ·

∫

Ω

1A0
(X(0))1A1

(X)1A(W̄ )1A′(W̄ )dP

= PQ(A′)

∫

H×B×W0

1A0
(x)1A(w)1A1

(w1)Pµ(dx,dw1,dw)

= PQ(A′)

∫

A0

∫

A

Kµ((x,w), A1)P
Q(dw)µ(dx)

= PQ(A′)

∫

A0

∫

A

Eµ⊗P Q(Kµ(·, A1)|B(H) ⊗ Bt(W0))((x,w))PQ(dw)µ(dx)

=

∫

A0

∫

W0

1A∩A′(w) Eµ⊗P Q(Kµ(·, A1)|B(H) ⊗ Bt(W0))((x,w))PQ(dw)µ(dx),

since A′ is PQ-independent of Bt(W0).

For x ∈ H define a measure Qx on

(H × B × B × W0,B(H) ⊗ B(B) ⊗ B(B) ⊗ B(W0))

by

Qx(A) :=

∫

H

∫

B

∫

B

∫

W0

1A(z, w1, w2, w)Kµ((z, w),dw1)Kµ((z, w),dw2)P
Q(dw)δx(dz).

Define the stochastic basis

Ω̃ := H × B × B × W0 ,

F̃x := B(H) ⊗ B(B) ⊗ B(B) ⊗ B(W0)
Qx

,

F̃x
t :=

⋂

ε>0

σ(B(H) ⊗ Bt+ε(B) ⊗ Bt+ε(W0) ⊗ Bt+ε(W0),Nx),

where
Nx := {N ∈ F̃x|Qx(N) = 0},
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and define maps

Π0 : Ω̃ → H, (x,w1, w2, w) 7→ x,

Πi : Ω̃ → B, (x,w1, w2, w) 7→ wi ∈ B, i = 1, 2,

Π3 : Ω̃ → W0, (x,w1, w2, w) 7→ w ∈ W0.

Then, obviously,
Qx ◦ Π−1

0 = δx (2.3)

and
Qx ◦ Π−1

3 = PQ(= P ◦ W̄−1). (2.4)

Lemma 2.4. There exists N0 ∈ B(H) with µ(N0) = 0 such that for all x ∈ N c
0 we have that Π3

is an (F̃x
t )-Wiener process on (Ω̃, F̃x, Qx) taking values in Ū .

Proof. By definition Π3 is (F̃x
t )-adapted for every x ∈ H. Furthermore, for 0 6 s < t, y ∈ H, and

A0 ∈ B(H), Ai ∈ Bs(B), i = 1, 2, A3 ∈ Bs(W0),

∫

H

EQx
(exp(i〈y,Π3(t) − Π3(s)〉)1A0×A1×A2×A3

)µ(dx)

=

∫

H

∫

W0

exp(i〈y, w(t) − w(s)〉)1A0
(x)1A3

(w)Kµ((x,w), A1)Kµ((x,w), A2)P
Q(dw)µ(dx)

=

∫

W0

exp(i〈y, w(t) − w(s)〉)PQ(dw)

∫

H

Qx(A0 × A1 × A2 × A3)µ(dx),

where we used Lemma 2.3(iii) in the last step. Now the assertion follows by (2.4), a monotone class
argument and the same reasoning as in the proof of [4, Proposition 2.1.13].

Over the next few lemmas we carefully develop a pathwise definition of the stochastic integral.
Some care is required as we need to consider the integral simultaneously with respect to several
different stochastic bases. The definition of the stochastic integral uses the notions of predictabi-
lity and stopping times, both of which depend on the underlying filtration. We start with an
approximation to the integrand that is predictable with respect to the raw filtration.

Lemma 2.5. Let Z be a separable Hilbert space valued, adapted, measurable process on a stochastic

basis (Ω,F , (Ft), P ). If E
∫ T

0
‖Z(s, ω)‖2 ds < ∞, then there exist elementary predictable processes

pn so that

E

∫ T

0

‖Z(s, ω) − pn(s, ω)‖2 ds → 0 as n → ∞.

We do not assume that the filtration is normal.

Proof. Define a normal filtration Gt :=
⋂

ε>0 σ(Ft+ε,N ), where N is the collection of P -null sets

in F
P

. General theory tells us that there is a (Gt)-predictable process p(s, ω) with

Z(s, ω) = p(s, ω), ds ⊗ P − a.e. on [0, T ] × Ω.

This result uses the optional projection theorem; see [1]. Then Proposition 2.3.8 of [4] shows that
p(s, w) can be approximated in L2([0, T ] × Ω,PT ,ds × P ) by elementary processes, i.e., those of

the form
∑j−1

m=0 Φm(ω)1(tm,tm+1](s) where 0 = t0 < t1 < · · · < tj 6 T and Φm is Gtm
measurable

for each j. Here PT is the σ-algebra generated by such elementary processes.
Suppose r < t and Φ is Gr measurable, and consider the elementary (Gt)-predictable process

Φ(ω)1(r,t](s). This process can be approximated in L2 by the sequence Φ(ω)1(r+1/n,t](s) for large
n. Since Φ is σ(Fr+1/n,N ) measurable for each n, the approximants are σ(Ft,N )-predictable
processes.
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But if Φ(ω)1(r,t](s) is σ(Ft,N )-predictable, then Φ is σ(Fr,N ) measurable, so there is a Fr

measurable function Ψ and a Fr measurable set N so that (ω : Φ(ω) 6= Ψ(ω)) ⊆ N , and P (N) = 0.
Then the process Ψ(ω)1(r,t](s) is an (Ft)-predictable version of Φ(ω)1(r,t](s). Combining these
results shows that every elementary (Gt)-predictable process can be approximated in L2 by ele-
mentary (Ft)-predictable processes. This gives the result.

Suppose that σ(s, w) is L2(U,H)-valued, measurable, and adapted on (B,B(B), (Bt(B))), and

consider the B(B)\B([0,∞]) measurable map w 7→
∫ t

0
‖σ(s, w)‖2 ds. Since σ is adapted, for s 6 t

we have σ(s, w) = σ(s, wt). Therefore
∫ t

0

‖σ(s, w)‖2 ds =

∫ t

0

‖σ(s, wt)‖2 ds,

and Corollary 1.3 shows that this map is Bt(B)\B(L2(U,H)) measurable.

For k > 1 define τk(w) = inf(t > 0 :
∫ t

0
‖σ(s, w)‖2 ds > k). Since t 7→

∫ t

0
‖σ(s, w)‖2 ds is

continuous into [0,∞] for t > 0, we see that (w : τk(w) 6 t) ∈ Bt(B) for t > 0. Also note that

τk(w) ↑ τ(w) := inf(t > 0 :
∫ t

0
‖σ(s, w)‖2 ds = ∞) pointwise on B, where the infimum of the empty

set is taken to be infinity.
For any probability measure ν on B(B), and every k > 1, 1(0,τk(w)](s)σ(s, w) is a measurable,

adapted, L2(U,H)-valued process with

∫

B

∫ T

0

‖1(0,τk(w)](s)σ(s, w)‖2 ds ν(dw) 6 k < ∞.

Therefore, from Lemma 2.5 and by taking a subsquence, we can find elementary predictable pro-
cesses pk

n so that

∞
∑

n=1

∫

B

∫ T

0

‖1(0,τk(w)](s)σ(s, w) − pk
n(s, w)‖2 ds ν(dw) < ∞. (2.5)

Fix a probability measure µ on (H,B(H)) and let (X,W ) with stochastic basis (Ω,F , P, (Ft)) be

a weak solution to (1.1) with initial distribution µ. In particular we assume that
∫ t

0
‖σ(s,X)‖2 ds <

∞ P -a.e. for all t ∈ (0,∞). Recall that Pµ = P ◦ (X(0),X,W )−1, and that Kµ((x,w),dw1) is the
regular conditional distribution of X given X(0) = x and W = w.

We aim to give a pointwise definition for the stochastic integral
∫ T

0
σ(s,X) dW (s) at the fixed

time T . Fix k > 1 and let pk
n be the elementary predictable processes above (for ν = PX), and

define the stochastic integral as usual. That is, if pk
n(s, w) =

∑j−1
m=0 Φm(w)1(tm,tm+1](s), then

Ik
n(w1, w) :=

∫ T

0

pk
n(s, w1) dw(s) =

j−1
∑

m=0

Φm(w1)[w(tm+1) − w(tm)].

Because of the isometry for stochastic integrals, and the summation condition in (2.5) we see that
limn→∞ Ik

n(w1, w) exists in L2(Pµ) and Pµ-almost everywhere. Define

Ik(w1, w) :=

{

limn Ik
n(w1, w) if the limit exists

0 otherwise

and then put

I(w1, w) :=

∞
∑

k=1

1(τk−1(w1)<T6τk(w1))I
k(w1, w). (2.6)

If we map back onto the (normal) stochastic basis (Ω,F , P, (Ft)), we find that τk(X) is a
sequence of (Ft)-stopping times with τk(X) ↑ ∞ P -a.e. Also pk

n(X) are (Ft)-predictable processes
that converge in L2([0, T ]×Ω,ds×P ) to 1(0,τk(X)]σ(s,X), so that Ik

n(X,W ) converge in L2(Ω, P )

to the stochastic integral
∫ T

0
1(0,τk(X)]σ(s,X) dW (s). Putting these pieces together shows that

I(X,W ) is a version of the stochastic integral
∫ T

0
σ(s,X) dW (s).
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Lemma 2.6. There exists N ∈ B(H) with µ(N) = 0 so that for x 6∈ N , I(Π1,Π3) is a Qx-version

of the stochastic integral
∫ T

0
σ(s,Π1) dΠ3(s) on the stochastic basis (Ω̃, F̃x, Qx, (F̃x

t )).

Proof. Since (F̃x
t ) is a right continuous filtration, it is easy to see that τk(Π1) is a sequence of

(F̃x
t )-stopping times. If we define A = (w ∈ B : limk τk(w) = ∞), then

1 = P (X ∈ A) =

∫

H

Qx(Π1 ∈ A)µ(dx),

so there exists N1 ∈ B(H) with µ(N1) = 0 so that for x /∈ N1, we have Qx(Π1 ∈ A) = 1.
Also if we define pk

n as in Lemma 2.5 using ν = PX , then pk
n(s,Π1) are (F̃x

t )-predictable
processes with

∫

H

∫

Ω̃

∫ T

0

‖1(0,τk(Π1)](s)σ(s,Π1) − pk
n(s,Π1)‖

2 ds dQx µ(dx)

=

∫

H

∫

W0

∫

B

∫ T

0

‖1(0,τk(w1)](s)σ(s, w1) − pk
n(s, w1)‖

2 dsKµ((x,w),dw1)P
W (dw)µ(dx)

=

∫

B

∫ T

0

‖1(0,τk(w1)](s)σ(s, w1) − pk
n(s, w1)‖

2 ds ν(dw1).

From the summability in (2.5) we see there is N2 ∈ B(H) with µ(N2) = 0 so that for x /∈ N2,

∫

Ω̃

∫ T

0

‖1(0,τk(Π1)](s)σ(s,Π1) − pk
n(s,Π1)‖

2 dsdQx → 0.

As in Lemma 2.4, let N3 ∈ B(H) with µ(N3) = 0 so that for x /∈ N3, Π3 is an (F̃x
t )-Wiener

process on (Ω̃, F̃x, Qx). Now the summability in (2.5) and the isometry for stochastic integrals
means that

∫

H

∫

Ω̃

∞
∑

n=1

‖Ik
n(Π1,Π3) − Ik(Π1,Π3)‖

2 dQx µ(dx) < ∞,

so that there is N4 ∈ B(H) with µ(N4) = 0 so that for x /∈ N4, we have Ik(Π1,Π3) = limn Ik
n(Π1,Π3)

Qx-a.e.
Now set N = N1 ∪ N2 ∪ N3 ∪ N4 and take x /∈ N . Then on the stochastic basis (Ω̃, F̃x, Qx),

Π3 is a Wiener process, pk
n(s,Π1) are predictable processes that converge to the adapted process

1(0,τk(Π1)](s)σ(s,Π1) in L2([0, T ] × Ω̃,ds × Qx;H). So, on the one hand,

Ik
n(Π1,Π3) →

∫ T

0

1(0,τk(Π1)](s)σ(s,Π1) dΠ3(s) in L2(Ω̃, Qx;H),

while, on the other hand,
Ik
n(Π1,Π3) → Ik(Π1,Π3) Qx-a.e.

We conclude that Ik(Π1,Π3) is a version of the stochastic integral
∫ T

0
1(0,τk(Π1)](s)σ(s,Π1) dΠ3(s).

Adding these up as in (2.6), we find that I(Π1,Π3) is a version of the stochastic integral
∫ T

0
σ(s,Π1) dΠ3(s).

Lemma 2.7. There exists N ′ ∈ B(H) with µ(N ′) = 0 such that for all x 6∈ N ′, (Π1,Π3) and
(Π2,Π3) with stochastic basis (Ω̃, F̃x, Qx, (F̃x

t )) are weak solutions of (1.1) such that

Π1(0) = Π2(0) = x Qx-a.e.,

therefore, Π1 = Π2 Qx-a.e.
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Proof. Let IT denote the function defined in (2.6). Now define a subset of B × W0 as follows

A :=

(

(w1, w) :

∫ n

0

|b(s, w1)|ds < ∞ for n > 1,

and w1(T ) = w1(0) +

∫ T

0

b(s, w1) ds + IT (w1, w) for T ∈ Q ∩ (0,∞)

)

.

Since (X,W ) is a solution of the equation, we have

1 = Pµ((X,W ) ∈ A) =

∫

H

Qx((Π1,Π3) ∈ A)µ(dx) =

∫

H

Qx((Π2,Π3) ∈ A)µ(dx).

So there exists N5 ∈ B(H) with µ(N5) = 0 so that for x /∈ N5, we have

Qx((Π1,Π3) ∈ A) = Qx((Π2,Π3) ∈ A) = 1.

Finally,

1 = Pµ(w1(0) = x) =

∫

H

Qx(Π1(0) = x)µ(dx) =

∫

H

Qx(Π2(0) = x)µ(dx),

so there is N6 ∈ B(H) with µ(N6) = 0 so that for x /∈ N6, we have Qx(Π1(0) = Π2(0) = x) = 1.
Take N ′ := N ∪ N5 ∪ N6, where N is the null set defined in Lemma 2.6.

Hence, the first assertion follows. The second then follows by the pathwise uniqueness assump-
tion in condition (ii) of the theorem.

Lemma 2.8. There exists a B(H) ⊗ B(W0)
µ⊗P Q

/B(B)-measurable map

Fµ : H × W0 → B

such that
Kµ((x,w), ·) = δFµ(x,w)

(= Dirac measure on B(B) with mass in Fµ(x,w))

for µ⊗PQ-a.e. (x,w) ∈ H×W0. Furthermore, Fµ is B(H) ⊗ Bt(W0)
µ⊗P Q

/Bt(B)-measurable for all

t ∈ [0,∞), where B(H) ⊗ Bt(W0)
µ⊗P Q

denotes the completion with respect to µ ⊗ PQ in B(H) ⊗
B(W0).

Proof. By Lemma 2.7 for all x ∈ N c
1 , we have

1 = Qx({Π1 = Π2}) =

∫

W0

∫

B

∫

B

1D(w1, w2)Kµ((x,w),dw1)Kµ((x,w),dw2)P
Q(dw),

where D := {(w1, w1) ∈ B×B|w1 ∈ B}. Hence by Lemma 2.2 there exists N ∈ B(H)⊗B(W0) such
that µ ⊗ PQ(N) = 0 and for all (x,w) ∈ N c there exists Fµ(x,w) ∈ B such that

Kµ((x,w),dw1) = δFµ(x,w)(dw1).

Set Fµ(x,w) := 0, if (x,w) ∈ N . Let A ∈ B(B). Then

{Fµ ∈ A} = ({Fµ ∈ A} ∩ N) ∪ ({Kµ(·, A) = 1} ∩ N c)

and the measurability properties of Fµ follow from Lemma 2.3.

Having defined the mapping Fµ let us check the conditions of Definition 1.8 and Definition 1.9.
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Lemma 2.9. We have
X = Fµ(X(0), W̄ ) P -a.e.

Proof. By Lemmas 2.3 and 2.8 we have

P ({X = Fµ(X(0), W̄ )}) =

∫

H

∫

W0

∫

B

1{w1=Fµ(x,w)}(x,w1, w)δFµ(x,w)(dw1)P
Q(dw)µ(dx) = 1.

Let W ′ be another standard R∞-Wiener process on a stochastic basis
(Ω′,F ′, P ′, (F ′

t)) and ξ : Ω′ → H an F ′
0/B(H)-measurable map and µ := P ′ ◦ ξ−1. Let Fµ be as

above and set
X ′ := Fµ(ξ, W̄ ′).

Lemma 2.10. (X ′,W ′) is a weak solution to (1.1) with X ′(0) = ξ P ′-a.s..

Proof. By the measurability properties of Fµ (cf. Lemma 2.8) it follows that X ′ is adapted. We
have

P ′({ξ = X ′(0)}) = P ′({ξ = Fµ(ξ, W̄ ′)(0)}) = µ ⊗ PQ({(x,w) ∈ H × W0|x = Fµ(x,w)(0)})

= P ({X(0) = Fµ(X(0), W̄ )(0)}) = 1,

where we used Lemma 2.9 in the last step.
To see that (X ′,W ′) is a weak solution we consider the set A ∈ B(H)⊗B(B)⊗B(W0) defined

in the proof of Lemma 2.7. We have to show that

P ′({(X ′(0),X ′, W̄ ′) ∈ A}) = 1.

But since X ′(0) = ξ is P ′-independent of W̄ ′, we have

∫

1A(X ′(0), Fµ(X ′(0), W̄ ′), W̄ ′)dP ′ =

∫

H

∫

W0

1A(x, Fµ(x,w), w)PQ(dw)µ(dx)

=

∫

H

∫

W0

∫

B

1A(x,w1, w)δFµ(x,w)(dw1)P
Q(dw)µ(dx) =

∫

1A(x,w1, w)Pµ(dx,dw1,dw)

= P ({(X(0),X, W̄ ) ∈ A}) = 1,

where we used Lemmas 2.3 and 2.8 in the second to last step.

To complete the proof we still have to construct F ∈ Ê and to check the adaptiveness conditions
on it. Below we shall apply what we have obtained above now also to δx replacing µ. So, for each
x ∈ H we have a function Fδx

. Now define

F (x,w) := Fδx
(x,w), x ∈ H, w ∈ W0. (2.7)

The proof of Theorem 2.1 is then completed by the following lemma.

Lemma 2.11. Let µ be a probability measure on (H,B(H)) and Fµ : H ×W0 → B as constructed
in Lemma 2.8. Then for µ-a.e. x ∈ H

F (x, ·) = Fµ(x, ·) PQ − a.e.

Furthermore, F (x, ·) is Bt(W0)
P Q

/Bt(B)-measurable for all x ∈ H, t ∈ [0,∞), where Bt(W0)
P Q

denotes the completion of Bt(W0) with respect to PQ in B(W0).
In particular, Conditions 1 and 2 in Definition 1.9 hold.
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Proof. Let
Ω̄ := H × B × W0 ,

F̄ := B(H) ⊗ B(B) ⊗ B(W0)

and fix x ∈ H. Define a measure Q̄x on (Ω̄, F̄) by

Q̄x(A) :=

∫

H

∫

W0

∫

B

1A(z, w1, w)Kµ((z, w),dw1)P
Q(dw)δx(dz)

with Kµ as in Lemma 2.3. Consider the stochastic basis (Ω̄, F̄x, Q̄x, (F̄x
t )) where

F̄x := B(H) ⊗ B(B) ⊗ B(W0)
Q̄x

,

F̄x
t :=

⋂

ε>0

σ(B(H) ⊗ Bt+ε(B) ⊗ Bt+ε(W0), N̄x),

where N̄x := {N ∈ F̄x|Q̄x(N) = 0}. As in the proof of Lemma 2.7 one shows that (Π,Π3) on
(Ω̄, F̄x, Q̄x, (F̄x

t )) is a weak solution to (1.1) with Π(0) = x Q̄x-a.e. Here

Π0 : H × B × W0 → H, (x,w1, w) 7→ x,

Π : H × B × W0 → B, (x,w1, w) 7→ w1,

Π3 : H × B × W0 → W0, (x,w1, w) 7→ w.

By Lemma 2.10 (Fδx
(x,Π3),Π3) on the stochastic basis (Ω̄, F̄x, Q̄x, (F̄x

t )) is a weak solution to
(1.1) with

Fδx
(x,Π3)(0) = x.

Hence, by our pathwise uniqueness assumption (ii), it follows that

Fδx
(x,Π3) = Π Q̄x-a.s. (2.8)

Hence, for all A ∈ B(H) ⊗ B(B) ⊗ B(W0) by Lemma 2.8 and (2.8)

∫

H

∫

W0

∫

B

1A(x,w1, w)δFµ(x,w)(dw1)P
Q(dw)µ(dx) =

∫

H

Q̄x(A)µ(dx).

But for each x ∈ H

Q̄x(A) =

∫

Ω̄

1A(Π0, Fδx
(x,Π3),Π3)dQ̄x =

∫

W0

1A(x, Fδx
(x,w), w)PQ(dw)

=

∫

W0

∫

B

1A(x,w1, w)δFδx (x,w)(dw1)P
Q(dw). (2.9)

Since x 7→ Q̄x(A) =
∫

W0

∫

B
1A(x,w1, w)Kµ((x,w),dw1)P

Q(dw) is B(H)
µ
-measurable, so is the

right hand side of (2.9). Therefore, we can integrate with respect to µ and obtain

∫

H

∫

W0

∫

B

1A(x,w1, w)δFµ(x,w)(dw1)P
Q(dw)µ(dx)

=

∫

H

∫

W0

∫

B

1A(x,w1, w)δFδx (x,w)(dw1)P
Q(dw)µ(dx),

which implies the assertion.
Let x ∈ H, t ∈ [0,∞), A ∈ Bt(B), and define

F̄δx
:= 1{x}×W0

Fδx
.
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Then
F̄δx

= Fδx
δx ⊗ PQ − a.e.,

hence

{F̄δx
∈ A} ∈ B(H) ⊗ Bt(W0)

δx⊗P Q

. (2.10)

But
{F̄δx

∈ A} = {x} × {Fδx
(x, ·) ∈ A} ∪ (H\{x}) × {0 ∈ A},

so by (2.10) it follows that

{Fδx
(x, ·) ∈ A} ∈ Bt(W0)

P Q

.

Remark 2.12. For a detailed proof of the Yamada-Watanabe Theorem in infinite dimensions in
the framework of mild solutions to stochastic partial differential equations we refer to the substantial
work of Martin Ondreját (see [3]).
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Теорема Ямади-Ватанабе для нескiнченно-вимiрних
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Отримано 31 сiчня 2008 р.

Метою цього повiдомлення є подати повне i детальне доведення фундаментальної теореми Ямади-
Ватанабе у нескiнченно-вимiрних просторах, точнiше, в рамках варiацiйного пiдходу до стохасти-
чних диференцiальних рiвнянь у частинних похiдних.

Ключовi слова: iнтегрування частинами, стохастична динамiка

PACS: 02.03.Sa, 02.50.Ey
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