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The purpose of this note is to give a complete and detailed proof of the fundamental Yamada-Watanabe The-
orem on infinite dimensional spaces, more precisely in the framework of the variational approach to stochastic
partial differential equations.

Key words: integration by parts, stochastic dynamics

PACS: 02.03.Sa, 02.50.Ey

1. Framework and definitions

Let H be a separable Hilbert space, with inner product (-, )y and norm |-||g. Let V, E be
separable Banach spaces with norms |||y and ||-|| g, such that

VCcCHCE

continuously and densely. For a topological space X let B(X) denote its Borel o-algebra. By
Kuratowski’s theorem we have that V € B(H), H € B(E) and B(V) = B(H)NV,B(H) = B(E)NH.

Setting ||z|ly := oo if € H\ V, we extend |||y to a function on H. We recall that this
extension is B(H)-measurable and lower semicontinuous (cf. e.g. [4, Exercise 4.2.3]). Hence the
following path space is well-defined:

T
B:= {w € C(R+;H)’/ lw(t)||vdt < oo for all T € [0,00)},
0

equipped with the metric

p(uwr,wn) = gz[( / s () = wa () vt + sup fun®) ~walt)lan ) ma).

te(0,k]

Obviously, (B, p) is a complete separable metric space. Let B;(B) denote the o-algebra generated
by all maps 75 : B — H, s € [0,¢], where ms(w) := w(s), w € B. For t > 0 and w € B define the
stopped path w? by

w'(s) =w(sAt), s=0.

Below we shall use the following elementary, but useful measure theoretic facts.
Lemma 1.1. The map w — w' is B;(B)/B(B) measurable.

Proof. Tt suffices to show that m,(w') is B;(B)/B(H) measurable for ¢ > 0. But 7,(w') = m,(w) if
q < t, and 7, (w') = m(w) otherwise. In either case, we get a B;(B)/B(H) measurable map. O
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Lemma 1.2. For every set A € B;(B) we have 14(w) = 14(w?).

Proof. By definition, 14(w) = 14(w") for sets of the form
A={w:m, (w) € By,...,ms, (w) € By}

forn > 1,s; <t, and B; € B(H). Since these sets generate B;(B), the monotone class theorem
finishes the proof. O

Corollary 1.3. Let (E, &) be a measurable space and [ : B — E a B(B)/E measurable map. Then
f is Bi(B)/E measurable if and only if f(w) = f(w?) for all w € B.

Let (U, (, )u) be another separable Hilbert space and let Lo(U, H) denote the space of all
Hilbert-Schmidt operators from U to H equipped with the usual Hilbert-Schmidt norm || ||z, .

Let b : Ry xB — Eand 0 : Ry xB — Lo(U,H) be B(Ry) ® B(B)/B(E) and B(R;) ®
B(B)/B(L2(U, H))-measurable respectively such that for each t € Ry

b(t,) is B;(B)/B(E)-measurable

and
o(t,-) is B:(B)/B(L2(U, H))-measurable.

As usual we call (Q,F, P, (F;)) a stochastic basis if (Q2, F, P) is a complete probability space
and (F;) is a right continuous filtration on © augmented by the P-zero sets. Let Ok, k € N, be
independent (F;)-Brownian motions on a stochastic basis (2, F, P, (F;)) and define the sequence

W(t) == (Bk(t))ren, t € [0,00).
Below we refer to such a process W on R*> as standard R>°-Wiener process. We fix an or-

thonormal basis {ex, k € N} of U and consider W as a cylindrical Wiener process on U, that is,
we informally have

W(t)=> Br(tler, te0,00).
k=1
We consider the following stochastic evolution equation:
dX(t) =b(t, X)dt + o(t, X)dW(t), t€]0,00). (1.1)
Definition 1.4. A pair (X, W), where X = (X(t))te[0,00) is an (F;)-adapted process with paths

in B and W is a standard R*°-Wiener process on a stochastic basis (Q, F, P, (F)) is called a weak
solution of (1.1) if

(i) For any T € [0, 00)
T T
/0 16(s, X)||pds +/0 ||0(s7X)||%2(U’H)ds < oo P-ae.

(ii) As a stochastic equation on E we have

t t
X(t) = X(0) + / b(s, X)ds + / (s, X)AW(s), te[0,00) P-ac.
0 0
Remark 1.5. (i) By the measurability assumptions on b and o, it follows that if X is as in
Definition 1.4 then both processes b(-, X) and o(-, X) are (F:)-adapted.
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(i) We recall that by definition of the H-valued stochastic integral in (ii) we have

/ o(s, X)dW (s) ::/ o(s,X)o J 1dW(s), te€]0,00),
0 0

where J is any one-to-one Hilbert-Schmidt operator from U into another Hilbert space (U{, ))
and

W(t) := iﬁk(t)Jek, t € [0,00). (1.2)
k=1

This definition of the stochastic integral is independent of the choice of J and (U,{, )g). We
refer e.g. to [4, Section 2.5] for details, and only mention here that for s € [0,00), w € B

o(s,w) o J e Ly(QY*(U), H)
with ||o(s,w) o J | 1,012,y = llo(s,w)| Lo,y
where Q := JJ*, and that W is a Q- Wiener process on U.

Below we shall fix one such J and (U, (, )7) as in Remark 1.5(ii) and set
G(s,w) :=o(s,w)oJ !, s€[0,00),wEB,

and for any standard R>-Wiener process W we define W as in (1.2) for the fixed J. Furthermore,
we define

Wy :={w € C(R,U)w(0) =0}
equipped with the supremum norm and Borel o-algebra B(Wy). For t € Ry let B;(Wo) be the
o-algebra generated by 75 : Wy — U, 0 < s < ¢, ws(w) := w(s).

Definition 1.6. We say that weak uniqueness holds for (1.1) if whenever (X, W) and (X', W)
are two weak solutions with stochastic bases (2, F, P, (F;)) and (€', F', P',(F})) such that

PoX(0)'=PoX'(0)",
(as measures on (H,B(H))), then
PoX '=Po(X")!
(as measures on (B, B(B))).

Definition 1.7. We say that pathwise uniqueness holds for (1.1), if whenever (X, W), (X', W)
are two weak solutions on the same stochastic basis (Q, F, P, (F;)) and with the same standard-
R*>-Wiener process W on (€2, F, P) such that X(0) = X’(0) P-a.e., then P-a.e.

X(t) = X'(¢), t € [0, 00).

To define strong solutions we need to introduce the following class & of maps:
Let £ denote the set of all maps F' : H x Wy — B such that for every probability measure p on
- pe
(H,B(H)) there exists a B(H) ® B(Wo)u® /B(B)-measurable map F), : H x Wy — B such that
for p-a.e. x € H
F(z,w) = F,(z,w) for P%a.e. w € W,.

_ _ep@
Here B(H) @ B(W,)' ®P7 denotes the completion of B(H)®B(W) with respect to p®P%, and P
denotes the distribution of the Q-Wiener process on U on (Wy, B(Wy)). Of course, F), is uniquely
determined p ® P%-a.e.
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Definition 1.8. A weak solution (X, W) to (1.1) on (Q,F, P,(F:)) is called a strong solution if

~ ____ p@
there exists F' € &€ such that for x € H, w — F(z,w) is Bt(WO)P/Bt(IB)—measurable for every
t € [0,00) and
X :Fpox(o)—l(X(O),W) P—a.e.,

—___ p@
where B;(Wy)  denotes the completion with respect to P9 in B(Wp).

Definition 1.9. Equation (1.1) is said to have a unique strong solution, if there exists F € &
satisfying the adaptiveness condition in Definition 1.8 and such that:

1. For every standard R*°-Wiener process on a stochastic basis (Q, F, P, (F;)) and any Fo/B(H )-
measurable £ : Q@ — H the continuous process

X = Fpog—l (g, W)

is (F;)-adapted and satisfies (i), (ii) in Definition 1.4, i.e. (F(&, W), W) is a weak solution to
(1.1), and X(0) = ¢ P-a.e.

2. For any weak solution (X, W) to (1.1) we have

X = Fpox(o)—l(X(O),W) P-a.e.

Remark 1.10. Since X(0) of a weak solution is P-independent of W, thus
Po(X(0),W) ' =u® P9,

we have that the existence of a unique strong solution for (1.1) implies that also weak uniqueness
holds.

2. The main result and its proof
Let us now formulate the main result (see e.g. [2] for the finite dimensional case).

Theorem 2.1. Let o and b be as above. Then equation (1.1) has a unique strong solution if and
only if both of the following properties hold:

(i) For every probability measure u on (H,B(H)) there exists a weak solution (X,W) of (1.1)
such that p is the distribution of X (0).

(i) Pathwise uniqueness holds for (1.1).

Proof. Suppose (1.1) has a unique strong solution. Then (ii) obviously holds. To show (i) one only
" ep@
has to take the probability space (Wo, B(Wy), P¢) and consider (H x Wy, B(H) ® B<W0)u®P7 ®
P?) with filtration
() o (B(H) ® Brae(Wo), N), £ >0,

e>0

— _uQP°
where N denotes all u ® P%-zero sets in B(H) ®B(W0);® . Let £ : Hx Wy, — H and
W : H x Wy — Wy be the canonical projections. Then X := Fp,e-1(§, W) is the desired weak
solution in (i).

Now let us suppose that (i) and (ii) hold. The proof that then there exists a unique strong
solution for (1.1) is quite technical. We structure it through a series of lemmas.
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Lemma 2.2. Let (0, F) be a measurable space such that {w} € F for all w €  and such that
D ={(w,w)|weN}teFF

(which is e.g. the case if Q is a Polish space and F its Borel o-algebra). Let Py, Py be probability
measures on (0, F) such that Py @ Po(D) = 1. Then Py = Py = 4, for some wy € Q.

Proof. Let f:Q — [0,00) be F-measurable. Then
[ tennitden = [[ renPide)Paden) = [[ 1pnon) 1) Prdon Pa(don)
://1D<w1,w2)f(w2)P1(dw1)P2(dw2):/f(w2>P2(dw2>,

so P, = P,. Furthermore,

1 :// 1p (w1, w2)Pr(dwy) Py (dws) :/Pl({wz})&(d@),

hence 1 = Py ({wz}) for Py-a.e. wy € Q. Therefore, P; = §,,, for some wy € .
O

Fix a probability measure p on (H,B(H)) and let (X, W) with stochastic basis (2, F, P, (F3))
be a weak solution to (1.1) with initial distribution p. Define a probability measure P, on (H x
B x Wo, B(H) & B(B) © B(Wq)), by

P, :=Po(X(0),X,W)".

Lemma 2.3. There exists a family K,((xz,w),dw),xz € H,w € Wy, of probability measures on
(B, B(B)) having the following properties:

(i) For every A € B(B) the map
HxWqy3 (z,w) — K,((z,w), A)
is B(H) ® B(Wq)-measurable.
(i1) For every B(H) @ B(B) ® B(Wy)-measurable map f: H x B x Wy — [0, 00) we have

/ f(z, w1, w)P,(dz, dw, dw) 2/ / /f(ac,wl,w)KH((J:,w),dwl)PQ(dw)u(daz).
HxBxW, HJw, JB
(i1i) If t € [0,00) and f : B — [0,00) is B¢(B)-measurable, then

H x Wo 5 (z,w) /]Ef(wl)KH((m,w),dwl)

®PQ ®PQ
)# )# denotes  the

is  B(H)® B:(Wq -measurable,  where  B(H) ® B,(Wq
completion with respect to p @ P in B(H) @ B(W,).

Proof. Let 1I1: H x B x Wy — H x Wy be the canonical projection. Since X (0) is Fo-measurable,
hence P-independent of W, it follows that
P,oll ' =Po(X(0),W) ! =pux PY.

Hence by the existence result on regular conditional distributions (cf. e.g. [2, Corollary to Theorem
3.3 on p. 15]), the existence of the family K, ((z,w),dw), x € H, w € Wy, satisfying (i) and (ii)
follows.
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To prove (iii) it suffices to show that for ¢ € [0,00) and for all Ay € B(H), A1 € Bi(B),
A € B,(Wp) and

A= {71',.1 — 7 € B1, Ty, —Tpy € Bayoo Ty, — Ty, € Bk} (C Wy),

tgrl<...<rk,Bl,...,Bk€B(U),

[ ] st ), 4 PR
o (2.1)
:/A /W 1AmA’(w)Eﬂ®PQ(KH(~7A1)\B(H)®Bt(wo))pQ(dw)M(dw)’

since the system of all AN A’, A€ B, (W), A" as above generates B(Wy). But by part (ii) above,
the left-hand side of (2.1) is equal to

/ 1Ao(sc)1AmA/(w)1A1(wl)PM(dm,dwl,dw):/ 14, (X(0)1a, (X)1a(W)1a (W)dP.
HXBxWy

Q
) (2.2)
But 14/(W) is P-independent of F;, since W is a standard R*°-Wiener process on (2, F, P, F),
so the right-hand side of (2.2) is equal to

/Q La(W)dP - A Lo (X(0))14,(X)1a(W)1 4 (W)dP

=P [ (e La L, ()Pl du)

= PO [ Kl w, 40 PO

= PO [ [ By, ADIBUH) © B (W) (1) PR (e
-/ 0 /W a0 o (K ADIBCH) © Bu(Wo)) (&) PO () (),

since A’ is P@-independent of B;(Wy). O
For x € H define a measure @), on
(HxBxBxW,,B(H)®BB)®B(B)®B(W))

by
Qu(A) :/H/B/B/W La (2, w1, wo, w) Ko (2, w), dwt ) K (2, w), dews) P2 (dw)d, (d2).

Define the stochastic basis

Q:ZHXBXBXWO,

F*:=B(H)® B(B) ® B(B) ® B(Wo)Qz

.ﬁtaj = m O'(B(H) ® Bt+5(B) ® Bt+5(W0) & Bt+5(W0),Nz),

e>0

)

where

N = {N € F*|Q.(N) = 0},

252



Yamada-Watanabe theorem for stochastic evolution equations

and define maps
Iy : Q — H, (z,w1,ws,w) — x,
I; : O — B, (z,wy,wo,w) —w; €B, =12
s : Q — Wy, (2, w1, ws,w) — w € Wy.

Then, obviously,
Q. oMyt =46, (2.3)

and -
Quollz' = Pe(=PoW™1). (2.4)

Lemma 2.4. There exists No € B(H) with j1(No) = 0 such that for all x € N§ we have that II3
is an (F7)-Wiener process on (0, F*, Q) taking values in U.

Proof. By definition Il3 is (ff)—adapted for every z € H. Furthermore, for 0 < s < ¢,y € H, and
Ag € B(H), A; € BS<B), i=1,2, Az € BS(W()),

/H Eo, (exp(i(y. Ta(t) — T()))Lags s e nx s ()
- /H /W exp(i{y, (1) — w(5))) 1 ag (@) Lty () K (2, 0), A1) K (2, w), A2) PR(dw)p(da)

= /exp(i(y,w(t) - w(s)))PQ(dw)/Qa:(Ao x Ay x Ag x Az)u(dz),
Wo H

where we used Lemma 2.3(iii) in the last step. Now the assertion follows by (2.4), a monotone class
argument and the same reasoning as in the proof of [4, Proposition 2.1.13]. O

Over the next few lemmas we carefully develop a pathwise definition of the stochastic integral.
Some care is required as we need to consider the integral simultaneously with respect to several
different stochastic bases. The definition of the stochastic integral uses the notions of predictabi-
lity and stopping times, both of which depend on the underlying filtration. We start with an
approximation to the integrand that is predictable with respect to the raw filtration.

Lemma 2.5. Let Z be a separable Hilbert space valued, adapted, measurable process on a stochastic
basis (Q, F, (F), P). IfEfOT | Z(s,w)||* ds < oo, then there exist elementary predictable processes
Pn SO that
T
E/ 1Z(s,w) — pp(s,w)||*ds — 0 as n — oo.
0
We do not assume that the filtration is normal.

Proof. Define a normal filtration G; := (.., 0(Fiye, V), where N is the collection of P-null sets
in 7' General theory tells us that there is a (G;)-predictable process p(s,w) with

Z(s,w) =p(s,w), ds® P —a.e. on[0,T] x Q.

This result uses the optional projection theorem; see [1]. Then Proposition 2.3.8 of [4] shows that
p(s,w) can be approximated in L2([0,7] x Q,Pr,ds x P) by elementary processes, i.e., those of
the form 71 @ (W)Lt tmsa](8) Where 0 =t < t; < --- < t; <T and ®,, is G;,, measurable
for each j. Here Pr is the o-algebra generated by such elementary processes.

Suppose r < t and ® is G, measurable, and consider the elementary (G;)-predictable process
®(w)1(y4(s). This process can be approximated in L? by the sequence ®(w)1(,41/n.4(s) for large
n. Since @ is o(F,4q /n,/\/ ) measurable for each n, the approximants are o(F;, N)-predictable
processes.
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But if ®(w)1(,.4(s) is o(F;, N)-predictable, then @ is o(F,,N') measurable, so there is a F,
measurable function ¥ and a F, measurable set N so that (w: ®(w) # ¥(w)) C N, and P(N) = 0.
Then the process W(w)1(.(s) is an (F;)-predictable version of ®(w)1(,(s). Combining these
results shows that every elementary (G;)-predictable process can be approximated in L? by ele-
mentary (F;)-predictable processes. This gives the result. O

Suppose that o(s,w) is Lo(U, H)-valued, measurable, and adapted on (B, B(B), (B:(B))), and
consider the B(B)\B(]0, oc]) measurable map w fot lo(s,w)||? ds. Since o is adapted, for s < t
we have o(s,w) = o(s,w?). Therefore

t t
[ ot wpds = [ fots,w)| as,
0 0

and Corollary 1.3 shows that this map is B;(B)\B(L2 (U, H)) measurable.

For k > 1 define 7 (w) = inf(t > 0 : nga(s,w)Hst > k). Since t — fg llo(s,w)||?ds is
continuous into [0, 0] for ¢t > 0, we see that (w : 7x(w) < t) € By(B) for ¢ > 0. Also note that
Tr(w) T 7(w) :=1inf(t > 0 : fg lo(s,w)||* ds = oo) pointwise on B, where the infimum of the empty
set is taken to be infinity.

For any probability measure v on B(B), and every k > 1, 1(g 7, (w)](s) o(s,w) is a measurable,
adapted, Lo (U, H)-valued process with

T
/B/ 110,75 () (8) (5, w)||* ds v(dw) < k < oco.
0

Therefore, from Lemma 2.5 and by taking a subsquence, we can find elementary predictable pro-
cesses pF so that

o0 T
;/]8/0 110,74 (w)] (8) o (s,0) — Pk (s,w)||* ds v(dw) < oc. (2.5)

Fix a probability measure p on (H, B(H)) and let (X, W) with stochastic basis (Q, F, P, (F)) be
a weak solution to (1.1) with initial distribution x. In particular we assume that fg llo(s, X)|?ds <
oo P-a.e. for all t € (0, 00). Recall that P, = P o (X (0),X,W)~!, and that K,,((z,w),dw;) is the
regular conditional distribution of X given X (0) = z and W = w.

We aim to give a pointwise definition for the stochastic integral fOT o(s,X)dW(s) at the fixed
time T. Fix k > 1 and let p¥ be the elementary predictable processes above (for v = PX), and
define the stochastic integral as usual. That is, if p% (s, w) = Zf;:lo @ (W)Lt 4,0011(8), then

I (w1, w) = / P (5, 01) du(s) = 3 B (1) w0ty 1) — w(tw)]

Because of the isometry for stochastic integrals, and the summation condition in (2.5) we see that
lim,, o0 I (w1, w) exists in L?(P,) and P,-almost everywhere. Define

I ) lim,, I (wy,w) if the limit exists
w1, W) = .
' 0 otherwise

and then put

I(wh w) = Z 1(7.,%1(w1)<T<Tk(w1))Ik(w1, w). (2.6)
k=1

If we map back onto the (normal) stochastic basis (2, F, P, (F;)), we find that 7,(X) is a
sequence of (F;)-stopping times with 7, (X) T oo P-a.e. Also pk(X) are (F;)-predictable processes
that converge in L%([0,T] x ©,ds X P) to 1(g,-,(x)0(s, X), so that I¥(X, W) converge in L?(Q, P)
to the stochastic integral fOT Lo,7o(x)10 (8, X) dW(s). Putting these pieces together shows that
I(X,W) is a version of the stochastic integral fOT o(s, X)dW(s).
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Lemma 2.6. There exists N € B(H) with u(N) =0 so that for x ¢ N, I(I;,II3) is a Qz-version
of the stochastic integral fOTU(s,Hl) dlls(s) on the stochastic basis (2, F7,Qq, (FF)).

Proof. Since (F¥) is a right continuous filtration, it is easy to see that 74(IT;) is a sequence of
(F7)-stopping times. If we define A = (w € B : limy, 7 (w) = 00), then

1:P(X6A):/HQJC(H1€A)M(dx),

so there exists Ny € B(H) with pu(N1) = 0 so that for = ¢ Ny, we have Q. (I; € A) = 1.
Also if we define p* as in Lemma 2.5 using v = PX, then p%(s,II;) are (FF)-predictable
processes with

T
/ /~/ ||1(0,Tk(H1)](5)0(57H1)*pﬁ(s,nl)Hstdeu(dx)
HJQJO
T
:// // 110072 (o)) (8) (5, w1) = P (5, w1) |2 ds K (2, w), duwy ) PY (dw) p(dz)
HJWy JB JO

T
:/B/o ||1(07m(w1)](5)‘7(5»w1) *pﬁ(s,wl)Hsty(dwl)_

From the summability in (2.5) we see there is Ny € B(H) with p(N3) = 0 so that for = ¢ Na,

T
/Q / Loy 11 (8) o5, T11) — p (s, TL)|2 ds dQy — 0.
0

As in Lemma 2.4, let N3 € B(H) with u(N3) = 0 so that for x ¢ N3, I3 is an (F¥)-Wiener
process on (2, F*,Q,). Now the summability in (2.5) and the isometry for stochastic integrals
means that

/H /Q D (I, TTg) — 1%(TT, ) | dQ, p(d) < oo,
n=1

so that there is Ny € B(H) with u(N;) = 0so that for z ¢ Ny, we have I*(I1;, [I3) = lim,, I¥(I1;, TI3)
Q.-a.e. o

Now set N = N; U No U N3 U Ny and take 2 ¢ N. Then on the stochastic basis (2, F*, Q),
I3 is a Wiener process, pX (s, I1;) are predictable processes that converge to the adapted process
L(o,r () (8)o (s, 1) in L2([0,T] x €,ds x Qu; H). So, on the one hand,

T
15 (11, T13) —>/ L(o,7 1y (8) (s, T1) dT3(s) in L*(Q, Qu; H),
0

while, on the other hand,
IE (1, TI3) — I%(11,T13) Q,-ae.

We conclude that I*(II,II3) is a version of the stochastic integral fOT Lo, 7 () (8) (s, 111 ) dIT3(s).
Adding these up as in (2.6), we find that I(II;,II3) is a version of the stochastic integral

fOT o(s, ;) dIT3(s). 0

Lemma 2.7. There exists N' € B(H) with u(N') = 0 such that for all x ¢ N', (II},1I3) and
(I1g, I13) with stochastic basis (2, F*, Qu, (F¥)) are weak solutions of (1.1) such that

IM;(0) =T (0) =2 Q-a.e.,

therefore, 111 = Iy @, -a.e.
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Proof. Let It denote the function defined in (2.6). Now define a subset of B x Wy as follows
A= <(w1,w) : / |b(s,wr)|ds < oo for n > 1,
0
T
and w1 (T) = w1(0) +/ b(s,wy)ds + Ir(wy,w) for T € QN (O,oo)> .
0

Since (X, W) is a solution of the equation, we have

1= P W) € 4) = [ Qul(N T € (o) = [ Qu((T12,TT5) € 4) lao).
H H
So there exists N5 € B(H) with u(N5) = 0 so that for z ¢ N5, we have

Qx((H17H3) € A) = Qx((HQ,HS) € A) =1

Finally,
1 = By(wy (0) = 2) = /H Qo (111(0) = ) ju(dz) = /H Qu(T13(0) = ) ju(dz),

so there is Ng € B(H) with u(Ng) = 0 so that for ¢ Ng, we have Q. (I1;(0) = I1(0) = z) = 1.
Take N’ := N U N5 U Ng, where N is the null set defined in Lemma 2.6.

Hence, the first assertion follows. The second then follows by the pathwise uniqueness assump-
tion in condition (ii) of the theorem. O

_____ _ep@
Lemma 2.8. There exists a B(H) ® B(Wo)#@)P/B(B)-measumble map
FIJ« H x W() — B
such that
Kﬂ((x, w), ) = 5FH(w,w)
(= Dirac measure on B(B) with mass in F,(x,w))

Q
“®P/Bt (B)-measurable for all

Q
denotes the completion with respect to u® P in B(H) ®

for u@ P@-a.e. (x,w) € HxWy. Furthermore, F,, is B(H) @ B;(Wp)

t € [0,00), where B(H) ® Bt(WO)H(@P

B(Wo).

Proof. By Lemma 2.7 for all z € Ny, we have
1= Qo =10)) = [ [ [ Lp(wnwa) (o, 0) dun) Ko, 0), duz) P2,
Wo JB JB

where D := {(wy,w1) € B xBJw; € B}. Hence by Lemma 2.2 there exists N € B(H) ® B(Wy) such
that u ® P?(N) = 0 and for all (z,w) € N¢ there exists F,(z,w) € B such that

K, ((z,w),dw1) = 0, (2,0) (dwr).
Set F,(z,w) :=0, if (x,w) € N. Let A € B(B). Then
{Fy € A} = ({F, € A} N) U({K, (- A) = 1} 1 N9
and the measurability properties of F), follow from Lemma 2.3. O

Having defined the mapping F), let us check the conditions of Definition 1.8 and Definition 1.9.
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Lemma 2.9. We have B
X =F,(X(0),W) P-a.e.

Proof. By Lemmas 2.3 and 2.8 we have
P({X = Fu(X(0),W)}) = / / / L = ()} (T3 W01, W)k, (3,00 (dwr ) PO (dw) p(da) = 1.
H W, B
O

Let W’ be another standard R°°-Wiener process on a stochastic basis
(Y, F', P (F])) and € : @ — H an F}/B(H)-measurable map and p := P’ o {71, Let F, be as
above and set -
X' = F,(&,W).

Lemma 2.10. (X', W') is a weak solution to (1.1) with X'(0) =& P’-a.s..

Proof. By the measurability properties of F,, (cf. Lemma 2.8) it follows that X’ is adapted. We
have

P'({¢ = X'(0)}) = P'({& = Fu(&, W)(0)}) = p® P({(z,w) € H x Wolz = Fy(z,w)(0)})
= P({X(0) = F.(X(0), W)(0)}) = 1,

where we used Lemma 2.9 in the last step.
To see that (X', W') is a weak solution we consider the set A € B(H) ® B(B) ® B(Wy) defined
in the proof of Lemma 2.7. We have to show that

P{(X'(0), X'\ W) € A}) = 1.

But since X’(0) = ¢ is P’-independent of W', we have
/ LA(X/(0), E, (X'(0), W), W')dP' = / / La(, Fy(r,w), w) PO (dw)p(de)
H JWq
_ / / / La(z, w1, )85, (2 0y (duwy ) PR (duw)p(dr) = / 14z, w1, w) Py (dz, duwy, dw)
H JWqy JB

= P({(X(0), X, W) € A}) =1,
where we used Lemmas 2.3 and 2.8 in the second to last step. O

To complete the proof we still have to construct F' € £ and to check the adaptiveness conditions
on it. Below we shall apply what we have obtained above now also to §, replacing u. So, for each
x € H we have a function Fs, . Now define

F(z,w) = Fs5 (z,w), v € H, w € W,. (2.7)
The proof of Theorem 2.1 is then completed by the following lemma.

Lemma 2.11. Let pu be a probability measure on (H,B(H)) and F), : H x Wy — B as constructed
in Lemma 2.8. Then for p-a.e. v € H

Q Q
Furthermore, F(x,-) is Bt(WO)P/Bt(B)-measumble for all x € H, t € [0,00), where Bt(Wo)P

denotes the completion of B;(Wy) with respect to P9 in B(Wy).
In particular, Conditions 1 and 2 in Definition 1.9 hold.
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Proof. Let
Q:=HxBxW,,

F :=B(H)® B(B) ® B(W)
and fix € H. Define a measure @, on (Q,F) by

) = Z, W1, W 2, w),dw; )PP (dw)d, (dz
Q)= [ [ [ 14w ) K. ) POy

with K, as in Lemma 2.3. Consider the stochastic basis (Q, 7%, Q., (F¥)) where

77 .— B(H) @ B(B) @ BWo)~"

)

Fi =) o(B(H) & Bi1e(B) @ Brye(Wo), N,,),
e>0

where N, := {N € F*|Q.(N) = 0}. As in the proof of Lemma 2.7 one shows that (IL,II3) on
(Q,F*, Qu, (FF)) is a weak solution to (1.1) with II(0) = x Q,-a.e. Here

IIy: HxBx Wy — H, (z,w;,w) — x,
II: HxBxWy— B, (z,w,w) — wy,
I3 : Hx B x Wog — W, (z,w;,w) — w.
By Lemma 2.10 (Fjs, (x,1I3),113) on the stochastic basis (Q, F%,Q., (F¥)) is a weak solution to

(1.1) with
Fs, (z,115)(0) = .

Hence, by our pathwise uniqueness assumption (ii), it follows that
Fs (x,1I3) =11 Q.-a.s. (2.8)
Hence, for all A € B(H) ® B(B) @ B(W;) by Lemma 2.8 and (2.8)
L[] tatwen )i, (@) PP = [ Qu(us).
HJW, JB H
But for each x € H

Qu(4) = /QlA(Ho,F5m($,H3),H3)de:/W La(z, Fs, (z,w),w)P?(dw)

/ / LA (2, w1, )85, (o) (dwn) PO(duw). (2.9)
Wo /B

Since z — Qu(A) = [y, f5 1a(@, w1, w) K, ((z, w), dw) PO (dw) is B(H)"-measurable, so is the
right hand side of (2.9). Therefore, we can integrate with respect to p and obtain

/H/WO/]B1A(x’w1’w)éF“'(“*“’)(dwl)PQ(dw)M(dx)

- /H /W 0 /B La (@, w1, w)0p, (z,w)(dwr) PO (dw)p(d),

which implies the assertion.
Let z € H,t € [0,00), A € B;(B), and define

F(;m = 1{93}><W0F5m .
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Then )
Fs, = F5, 6,®P9 —ae.,
hence
— —_— 5,®P%
{F5, € A} € B(H) ® B,(Wo) : (2.10)
But

{Fs, € Ay ={a} x {Fs,(z,-) € AYU (H\{=}) x {0 € A},

so by (2.10) it follows that
—___p@

{Fs,(2,) € A} € Bi(Wo)
O

Remark 2.12. For a detailed proof of the Yamada-Watanabe Theorem in infinite dimensions in
the framework of mild solutions to stochastic partial differential equations we refer to the substantial
work of Martin Ondrejat (see [3]).
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Teopema fimagu-BataHabe ana HeCKiH4€HHO-BUMIiPHUX
CTOXAaCTUYHUX €BOJIIOLi MHMX PiBHAHb

M.PbokHep®?, B.LUmynsanas, L. Kanr?

1 dakynbTeT MaTeEMaTUKN Ta LEHTP BiBoS, YHiBepcuTeT Binedenvaa, Binedpenba, HimewumHa
2 dakynbTeT MaTEMATUKN Ta CTAaTUCTUKK, YHiBepcuTeT Mypay, 3axionuin JlagaeT, CLLUA
3 dakynbTeT MaTeEMaTUKN Ta CTAaTUCTUYHKX HaykK, YHiBepcuteT AnbbepTta, EqMoHTOH, KaHaga

4 dakynbTeT cTaTUcTUkK, LLIkona matemaTtmkm Ta cTaTucTukn, YHisepcutet Hoeoro lMiBaeHHOro
Bency,CigHein, ABcTpanis

OtpumaHo 31 ciyHg 2008 p.

MeTot0 LbOro NOBIAOMJIEHHS € MOAATU NOBHE | AeTanbHe A0BeAeHHS dyHAAMEHTaNnbHOI TeopemMu AMaam-
BataHabe y HeckiH4eHHO-BMMIPHMX NMPOCTOPax, TOYHille, B pamMkax BapiauiiiHOro niaxony OO CTOXacTu-
YHUX andepeHLianbHUX PiBHSAHb Y YACTUHHUX NOXIOHUX.

Knou4oBi cnoea: iHTerpyBaHHsI YacTuHaMu, CTOXacTUYHA ANHAMIKa

PACS: 02.03.Sa, 02.50.Ey
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