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Abstract. We present experimental investigations of the effect of rapid thermal treatment with
incoherent IR radiation, as well as electric-spark and electron-beam treatments, on the electric
parameters of Ni(Ti) n-21R(6H)-SiC contacts. The results obtained show that pulse thermal
treatment is an efficient technique for local change of parameters of heterogeneous metal/
silicon carbide structures.
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1. Introduction

The main line in development of manufacturing technol-
ogy for semiconductor devices intended for high-tempera-
ture electronics and microsystem engineering is search
for novel methods of controlled provision of required pa-
rameters of spatial-nonuniform heterogeneous structures,
as well as refinement of the existing methods. Almost all
semiconductor active elements are just such heterogene-
ous structures [1�4]. The parameters of such structures
(especially of those with Schottky barrier) are determined
by morphology and electronic properties of interfaces.
Variation of structure parameters and interface morpho-
logy has a determining effect on the electric characteris-
tics of contacts. Besides, it enables one to interpret the
experimental results and elucidate the role of techniques
applied for structure formation and treatment [5, 6].

Pulse thermal treatment with concentrated energy
flows (e.g., laser processing, rapid thermal annealing
(RTA) with incoherent IR radiation, electric-spark treat-
ment (EST) and electron-beam treatment (EBT)) is one
of those technological procedures that make it possible
to provide sufficiently local effect on the properties of
both discrete devices and integrated circuits [7�9].

The advantages and flaws of laser processing appli-
cation in technology of microelectronic devices and
micromechanical systems are well known (see, e.g., [3,
9]). At the same time other kinds of pulse action on the
electrophysical properties of both silicon-carbide device
structures with Schottky barrier and ohmic contacts to
them has not been adequately investigated.

Here we present the results of experimental studies of
the effect of RTA with incoherent IR irradiation, EST
and EBT on the electric parameters and morphology of
interfaces in Ni(Ti)�n-21R(6H)-SiC contacts. The rea-
son for choosing the metal silicon carbide structure was
that this structure is the main element of not only the
devices of microsystem engineering which provide signal
input/output but of all active elements of silicon-carbide
electronics as well.

2. The samples and experimental procedure

We studied the structures whose Lely-grown substrates
(SiC single crystals of 21R and 6Í polytypes) were doped
with nitrogen (up to concentration of ~1018 ñm�3). Both
ohmic and barrier Ni�n-21R(6H)-SiC contacts were
formed using resistive sputtering of ~0.1 µm thick Ni film
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onto chemically cleaned (0001) or ( 1000 ) faces (at
substrate temperature of ~300°C) followed by RTA with
incoherent IR radiation for 10 s at the temperatures of
450, 600, 750, 900, 1000 and 1100°Ñ (a plant ÈÒÎ-18
ÌÂ [10]). The device structures were formed with photo-
lithography.

To perform experiments on how EST affects the Ni n-
6H-SiC contact parameters, we made ohmic contacts (us-
ing the above technology) on one face. On the opposite
face, we perform EST of SiC surface through the windows
(100×100 µm2) in thermally grown SiO2 layer 0.15 µm
thick. We used a tungsten or aluminum probe 0.25 mm in
diameter; the pulse energy was ~10�3 J. After this, we
sputtered Ni film formed contacts and made RTA at the
above temperatures.

The 6Í-SiC single crystal samples (made by Bandgap
Technologies Inc. 1428 Taylor St., Columbia, SC 29201,
USA) intended for the EBT experiments have concentra-
tion of uncompensated donors equal to (1.5�1.6)⋅1017 ñm�3.
They were exposed to standard cleaning procedure. To
exclude graphitization, a Si layer was deposited onto the
substrate surface. After EBT this layer was removed us-
ing the etchant HNO3:HF (3:1). Ti n-6H-SiC contacts
were formed on the substrates treated in the above way.

The test structures were either metallization-free or
completely metallized SiC samples. We studied the proc-
esses proceeding at formation of SiC surface and con-
tacts due to the above pulse treatments. The following
techniques were used: atomic force microscopy (AFM),
x-ray diffraction (XRD) and secondary ion mass spect-
roscopy (SIMS).

The parameters of ohmic (contact resistivity ρc) and
barrier (Schottky barrier height ϕÂ) contacts were calcu-
lated from I�V curves taken for the test structures. An
analysis of I�V curves was performed using traditional
techniques [5, 6].

3. Experimental and discussion of results

Figure 1 presents resistivity of the Ni n-21R(6H)-SiC
contacts (formed on Si and C faces) as function of RTA
temperature. These temperature dependences were ob-
tained from analysis of I�V curves.

After RTA at temperature up to 400°C, contacts have
barrier-type I�V curves; after RTA at temperatures over
750°Ñ, I�V curves become ohmic-type. The Schottky bar-
rier height ϕÂ in Ni�n-21R(6H)SiC (0001) contacts lies
within the 0.7�0.8 eV range (for different samples), both
in initial samples and those after RTA at Ò = 400°Ñ.
After RTA at Ò = 600°C, ϕÂ decreases and is 0.5�0.6 eV;
after RTA at Ò = 750, 900 and 1000°Ñ, ϕÂ decreases con-
secutively: from 0.38�0.42 eV (after RTA at Ò = 750°Ñ)
down to 0.31�0.34 eV (after RTA at Ò = 1000°Ñ).

The trend in ϕÂ dependence on the RTA mode re-
mains for similar contacts made on the C face: after RTA
at Ò = 600°Ñ, it is practically the same as for the samples
made on the Si face. However, ϕÂ value in the initial
samples made on the Ñ face is by 0.05 eV below that in
the samples made on the Si face.

In the intermediate temperature range (400�750°C),
according to the Ni-SiC phase diagram, the processes of
formation of nickel silicides of various compositions oc-
cur in contacts.

At RTA up to 400°C, the electric parameters of con-
tacts are due to presence of defects (produced during Ni
film deposition onto SiC substrate heated up to 300°C) at
the Ni-SiC interface. Variations of contact parameters in
the RTA temperature range 400�750°Ñ are related to
interface smearing out due to diffusion of Ni and its in-
teraction with SiC. At temperatures of the order of 750°C,
a structure of stable morphology and composition is for-
med. In this case (as shown by us earlier), the contact resis-
tivity value is stabilized at a level of several 10�4 Ω⋅ñm2; it
slightly varies when RTA temperature is increased up to
1100°C [11�13]. The above variations practically do not
depend on the SiC polytype and the face at which the
contact was formed. This is evidenced by the component
concentration depth profiles in the initial samples and
those annealed for 10 s up to 1000°C (Ni 6H-SiC con-
tact) and 1100°C (Ni�21R-SiC contact) � see Fig. 2.

At thermal annealing of the Ni SiC structures, nickel
is spent for formation and transformation of metastable
nickel silicide phases. One can see from Fig. 2 that, de-
pending on the face where contact is formed, this process
is accompanied with increase of number of either carbon
or silicon vacancies at the interface. This is in agreement
with the results of [13]. As a result, the structure of films
obtained after thermal treatment is nonuniform. This
conclusion is supported by the results of investigations of
Ni�21R-SiC interface with AFM (Fig. 3) and XRD
(Fig. 4) techniques.

It follows from the data given in Fig. 4 that both pure
nickel (predominantly hexagonal modification) and
nickel silicides NiSi2 (cubic modification), Ni2Si and NiSi
(rhombic lattice) are present in the initial sample. Pres-
ence of nickel silicides is related to SiC substrate heating
(up to 300°C) in the course of nickel sputtering. It was
noted in [15] that the Ni2Si phase (enriched in metal)
appears on silicon substrates at comparatively low
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Fig. 1. Resistivity of the Ni�n-21R(6H)-SiC contacts (formed on

Si and C faces) vs temperature curves obtained from analysis of
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(~200�300°Ñ) temperatures. In our case, this phase is
formed on silicon carbide at ≈300°Ñ. It is known [14, 16]
that no phase formation is observed in the initial samples
if Ni is deposited onto a �cold� 4H-SiC or 6H-SiC sub-
strate ((0001) face for both polytypes). It should be noted
also that concurrent existence of several silicide phases
after RTA results from the fact that structure reconstruc-
tion has not been completed at short-term treatment.

Investigation of I�V curves of the Ni�6H-SiC con-
tacts formed at the (0001) face exposed to EST before

nickel deposition showed that the contacts were ohmic.
Their sufficiently low (~3⋅10�3 Ω⋅cm2) resistivity ρc practi-
cally did not change at RTA with temperatures from 400
up to 1100°Ñ. The properties of Ni�6H-SiC contacts for-
med on the ( 1000 ) face according to the above procedure
were identical to those of contacts made on (0001) face.

Thus, exposition of substrate to EST changes com-
pletely the properties of metal SiC contacts, since (as was
noted before) similar contacts that were formed on 6H-
SiC surfaces without EST transformed from barrier to
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ohmic after RTA at temperatures from the 400�1100°C
range, and their resistivity ρc becomes minimal at RTA
temperature Ò = 750°C. Further increase of RTA tem-
perature practically does not change ρc value.

The effect of substrate pretreatment may be explained,
first of all, by formation of a developed relief on the
substrate surface after EST (see Fig. 5 and Table 1). This
leads to enhancement of generation-recombination proc-
esses at current flow and formation of ohmic metal semi-
conductor contacts [5�7, 17]. Indeed, the initial SiC sur-
face was a standard surface of single-crystalline semi-
conductor that was prepared for sputtering after the cor-
responding chemo-mechanical treatment (Fig. 5a), but
after EST surface morphology became nonuniform: along
with flat areas, those with very developed relief are
present (Fig. 5b).

Another factor leading to variation of contact proper-
ties may be a complicated composition of SiC surface
after EST. This results in structure-phase nonuniformity
of the surface that provides non-barrier current-flow

Fig. 3. Interface morphology variation in the Ni SiC structure due to RTA: a � initial sample; b, c, d � those annealed up to 450, 750

and 900°Ñ, respectively.
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mechanisms and results in decrease of contact resistance
in such structures.

Study of near-surface composition of SiC layers after
EST with a tungsten nib was made using sufficiently
highly-sensitive SIMS technique. It enabled us to detect
low concentrations of tungsten and its oxides that were
absent at the initial surface. Shown in Fig. 6 is the yield
diagram for single-charged positive ions of elements and
compounds leaving SiC surface after EST. One can see
that there are ions of tungsten and its isotopes, their ox-
ides and positively-charged WOH+ ions, as well as ions
of tantalum and its oxides, in the SiC layer studied.

SiC treated with aluminum electrode has not been
studied in such detail. However, an intense aluminum
peak detected for it indicates at high possibility of pres-
ence, along with atomic aluminum, of its oxide phases. It
seems that more purposeful studies of various surface
oxides should be made for SiC samples exposed to such
treatment, with variation of parameters and change of
sign of potential applied to the probe.

The presented dependences show that application of
EST makes it possible to form contacts with good ohmic

characteristics without use of high-temperature anneal-
ing. This enables one to substantially simplify the manu-
facturing technology for active elements on the silicon
carbide basis. Figure 7 presents our experimental results
on contact resistivity ρc  formed by Ni2Si metallization as
function of the dopant concentration in n-SiC. One can
see that ρc  values obtained in our experiments without
and with RTA for 10 s at Ò = 1000°C are in agreement
with the results on ρc obtained by other authors [16, 24�
29] who used thermal annealing � see [30].

Contrary to the above treatment, EBT makes SiC sur-
face more flat and clean (see Fig. 5c and Table 1). But
the metal (titanium) surface morphology on the initial
and treated SiC surfaces is practically the same, both in
microstructure and roughness (RMS roughness size
~ 4 nm, spread of roughness heights Zr ~ 41 nm).

An analysis of I�V curves of the Ti n-6H-SiC contacts
showed that the check sample had rectifying contacts (the
Schottky barrier height of 0.63 eV), while the sample
exposed to EBT had ohmic contacts (contact resistivity
of 6.2⋅10�4 Ω⋅ñm2) [18]. One of the reasons for the ob-
served changes in contacts at such treatments may be

Fig. 5. SiC substrate surface: a � initial sample; b, c � those after EST and EBT, respectively.
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reduction of the density of surface electron states (SES)
due to removal of a damaged layer that was present at
the surface of the initial samples. Indeed, an analysis
of I�V curves of the samples after EBT showed that bar-
rier height in the Ti n-6H-SiC contact has decreased by
0.3� 0.35 eV as compared to that of untreated samples.
Assuming that the mechanism for current flow in the ini-
tial portion of I�V curve is thermionic, one may deter-
mine   from the following expression [19]:
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where ρC is the contact resistivity, A* is the Richardson
constant (equal to 194 A cm�2 K�2 for n-6H-SiC), q is the
electron charge, and k is the Boltzmann constant. Sub-
stituting in Eq. (1) ϕB = 0.33 eV (calculated from the
forward branch of I�V curve), one obtains ρC  ≈ 5.1×
×10�4 Ω⋅cm2. This value is in agreement with the meas-
ured one (ρC  ≈ 6.2⋅10�4 Ω⋅cm2).

Estimation of the SES density NSS was made accord-
ing to the expression [20]
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Here ε0(εS) is the vacuum (semiconductor) permitti-
vity, and n*(n) is the ideality factor of the reverse (for-
ward) branch of I V curve at small biases. l+ and l� are is

the space-charge region lengths at reverse and forward
biases, respectively. They are determined from the ex-
pressions [29]
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where ND is the dopant concentration in n-6H-SiC (equal
to 1.6⋅1017 cm�3). The barrier height ϕÂ after EBT is
0.33 eV.

When estimating NSS, we assumed that the current
flow mechanism in the initial portions of I�V curve is
thermionic. The model for metal semiconductor interface
took into account SES of two types: those whose filling is
determined by interchange with semiconductor (NSN) or
with metal (NSM). Allowance was also made to the fact
that, at forward bias, charge transfer involves the states
whose filling is provided by interchange with semicon-
ductor (i.e., NSM = 0), while at reverse bias NSN = 0.
Assuming that it was the same states that are empty (filled)
in the first (second) case (i.e., NSM = NSN = NSS), we
obtained: NSS = 2.2⋅1012 cm�2 eV�1.

It was noted in [21] that, at SES density at the Ti n-
6H-SiC interface ~1012 ñm�2 eV�1, the barrier disappears
and the contact becomes nonrectifying. The results of
[22, 23] also indicate at such possibility. Their authors
applied various procedures for chemical treatment of
substrate to change its structure perfection, and varied
SES density in silicon carbide before formation of the Ti
n-6H-SiC contacts. As a result, the contact characteris-
tics changed from barrier (ϕÂ ≈ 0.6 eV) to ohmic (resistiv-
ity of ~6⋅10�3 Ω⋅cm2) [22, 23].

The results with ρÑ values close to the above were
obtained for n-6H-SiC samples exposed to ion-plasma
treatment (IPT) before Ni sputtering. A SiC layer (thick-
ness of ~ 10 µm) has been removed from the surface dur-
ing ion etching. A developed (strongly destructed) sur-
face produced by such treatment is characterized by in-
creased chemical activity, as compared to that of the ini-
tial sample. This leads to bigger possibility of interac-
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initial 3.43 47.17

after EST 34.53 255.36

after EBT 1.35 11.95
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tion with Ni atoms that make chemical bonds (saturate
dangling bonds of semiconductor) with the atoms of semi-
conductor. The result is a decrease of NSS in the Ni-n-
6HSiC contact and (related to this) reduction of ϕÂ. The
latter factor provided formation of ohmic contact with
ρC ≈ (1�2) 10�3 Ω⋅cm2, without further high-temperature
firing.

Thus the most apparent reason for ohmic contact for-
mation at n-6H-SiC surface after EBT and IPT without
further high-temperature annealing is reduction of
Schottky barrier height due to decrease of NSS.

4. Conclusions

In closing, we would like to note that, despite significant
distinctions between the considered pulse treatments of
SiC surfaces and contact structures, they can be applied
for control over formation of nonrectifying Ni(Ti)�n-6H-
SiC and Ni�n-6H(21R)-SiC contacts. Such control may
be realized using RTA, as well as without it, after depo-
sition of contact metallization onto silicon carbide sur-
face previously exposed to pulse treatments (EST, EBT
or chemo-ionic).
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