Semiconductor Physics, Quantum Electronics & Optoelectronics. 1999. V. 2, N 2. P. 36-41.

PACS 42.55.Lt

Polarization unstabilities in a quasi-isotropic
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Abstract. On the basis of the general Lamb model the set of six coupled nonlinear differential equations
has been derived for two-mode A = 0.63 mm laser operation with the presence both amplitude and phase
anisotropy and axial magnetic field. Numeric integration of the set of equations and the Lyapunov
stability analysis have been proceeded. It turned out that in zero magnetic field in the presence of the
amplitude anisotropy both stable time-independed states with parallelly or orthogonally polarized modes
and non-stationary state are possible. Changing orientation and nonorthogonality/nonparallelity of po-
larization planes in magnetic field are considered. Influence of mode-mode interaction is discussed.
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1. Introduction equations with the presence both amplitude and phase
anisotropy and axial magnetic field. Each spatial mode is

The roots of a quasi-isotropic He-Ne laser have been setdggcribed as a sum of two ones polarized right- and left-
in the paper of Sargent et al. [1] where the general equacularly. So, we get the set of six coupled nonlinear dif-
tions for intensities and frequencies for an arbitrary atomigrential equations for four intensities of polarization modes
transition, any number of excited longitudinal modes ar@Nd two phase angles of spatial modes. Numeric solution is
in the presence of magnetic field of arbitrary direction havgrried out by the Runge-Kutta routine for jral] j=2

been derived. But influence of a cavity anisotropy was ng@nsition and with only amplitude anisotropy being pre-
described consistently. Another theory has been developi&teéd. The time-independent solutions with different po-
in the paper of Lenstra [2]. In this work influence of differJarization states we had got were tested with respect to sta-

ent cavity anisotropy types on behaviour of polarizatioRility by the Lyapunov analysis, and then a conclusion about

characteristics was considered in general for an arbitrafjfistence of stationary states has been made.

atomic transition of laser having been placed in axial or

transversal magnetic field. 2. Intensity-and phase-determining equations
Single-mode laser operating was considered on the ba-

sis of the papers [1,2] for a wide range of atomic transitionse present paper is based upon the formalism brought for-
and laser parameters (see, for example, [2,3] and referenggsd by Sargent et al. [1]. In accordance to it, a laser field is
therein). For two-mode operation such detailed analysis hasum of cavity eigenstates, and the active medium polari-
not yet been given. In the paper of Lenstra [2] qualitativeation is calculated by the density matrix routine up to the
remarks were made about behaviour K1 j=2 transi-  third terms by the electromagnetic field. Each longitudinal
tion laser without magnetic field and in the case of weakode is described as a sum of two ones polarized right- and
linear phase or amplitude anisotropy. The investigation Qift-circularly. There are two equations for each circular
Svirina et al. [3] is restricted to the case of a phase cavifyode: for its intensity and for its phase. So, there are 4n
anisotropy of §=10] j=2 A=0.63um) laser in axial mag- equations in the full equation set, where n is the number of
netic field. longitudinal modes. However, because of all right parts of
In the present paper we have derived, within the framgye equations include phase differencéso called phase

work of the general Lamb mOdel, the two-mode Operat|%g|e) but not phases Separately, we can rep'ace two sepa-
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rate equations for phases with one for a phase angle. Thisiiation frequency to or from the centre of the gain line with
correct if we consider only time-independent solutiongespect to the eigenfrequency of an empty cavity). These
Hence, the full set includes 3n equations. coefficients have their analogues in single-mode equations.
In the case of two longitudinal laser modes we have tfigut @, T don’t have. We can say that they are responsible
following intensity- and phase-determining equations: for some sort of gain saturation and frequency change as
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wherel . , |,_are the intensities of the right- and left-handedvell but those ones depend besides on mode-mode phase
circular waves of the n-th spatial modg, is its phase an- relations.

gle, Qv = (c/4L)(Ix— ly) is the amplitude cavity anisotropy

and iy = (¢/4L)(@«~ @y) is the phase one,is the light 2, Time-independent solutions

velocity, L is the cavity lengthl, andly are losses, ang
and g, are phase changes for the waves polarized amd .
y-dir(glction.a, B, 6 8,0 p, 1, T are calculated from the A) Zero magnetic field

density matrix motion equation. These calculations and usR@meric integration of the set of equations (1)-(6) was per-
assumptions are adduced in the Appendix. Let's note tifatmed for thej=100 j=2 (A = 0.63um) transition and fol-

in amplitude equations an appropriatecoefficient is re- lowing parameters: the Lorentz widgh, = 225 MHz, the
sponsible for a mode gain whisand@ s are the self-satu- upper and the lower atomic levels widd¥160 MHz and
ration and cross-saturation parameters, and in the phage 290 MHz, the gaim = 1.33 ... 1.38, the Doppler pa-
equationsg, p, T coefficients are responsible for the modeameterKu = 1010 MHz, the spatial mode intenl=v,-
frequency pulling/pushing phenomena (change of the op;= 640 MHz and several values of the amplitude anisotropy
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Quy- Itturned out that at weak anisotropy the state with modpslarized in the lower loss plane becomes stable on full duty
polarized linearly in orthogonal planes is stable on the mosgcle. Such situation is realized in a commercial laser LGN-
part of the gain profile while the nearest to the centre mo@@7B with Brewster’'s window introducing considerable
is polarized in the lower loss plane. Hence, each mode lamplitude anisotropy into a cavity.
ing moved through the gain profile undergoes two chang
of a polarization plane. This is outlined in the Fig.1. Whe
a mode is in a hatched area it is polarized in the lower lolssstudying a laser in external magnetic field we were mainly
plane. That is conventionally signed with a horizontal ainterested in two questions: 1) do linear polarization planes
row in the figure. At the same time the another mode is inramain orthogonal, and 2) how does magnetic field change
clear area and has the orthogonal polarization signed witlth&ir orientation.
vertical arrow. Frequencieg*D/2 correspond to the sym-  The set of equations (1)-(6) has been integrated for two
metric location of the modes with respect to the centre wélues of the cavity anisotropy:1%* MHz and 101 MHz
transition line. It is just this point that has the unstable rangé different magnitudes of external magnetic field. It fol-
where none of solutions is stable. Those are the dotted lws from preceding consideration that in zero field at
eas in the Fig.1. When anisotropy being rised from 0 tQXy:5-104 MHz the state with modes polarized linearly in
certain value the unstability range spreads on full duty cgrthogonal planes is stable on almost full gain profile while
cle. This value is about 10 kHz for the given set of paranan unstability range is very narrow, it is less then 6 MHz.
eters. The biggest Lyapunov exponents determining whetrmrQXy:S-lcr“ MHz the state with both modes polarized in
a stable solution exists are shown in the Fig.2 for sontiee lower loss plane is stable on full duty cycle.
anisotropy values. The mentioned phenomenon evidently First of all, it is worth noting that a spatial mode always
follows from mode-mode interaction. It is absent at singléras nonzero ellipticity in magnetic field owing to nonequa-
mode operation when at any value of amplitude anisotrofiy of left- and right-circularly polarized modes intensities.
there is a stable solution with mode polarization in the low&o, we will mean a direction of the bigger axis pbkariza-
loss plane. tion ellipse as a direction of a polarization vector.
When anisotropy being further rised (up to about 100 kHz Calculated angles of the modes polarization planes and
for the used set of parameters), the state with both modhe interplane angle versus the middle intermode frequency
vi=(vV1+W,)/2 (wherev; andv, are modes operation fre-
quencies) are shown in the Figs 3,4. The mode being called
A A the first has the lower frequency while the mode being called
the second has the higher one with respect to each other. It
X —> X is worth noting that the interplane angle is close enough but
not equal to that without field (i.e. to 0° or 90°) on the full
duty cycle except the central tuning of one mode (when its
M frequency is close to the central transition frequency) at both
values of anisotropy. At the central tuning the interplanes
angle equals to that without field to within calculation er-
rors. The polarization planes undergo turn in magnetic field.
The fact is that the stronger anisotropy a cavity has the higher
1 field magnitude is needed for that turn to be significant. In
w-D/2 w wtb/2 both considered cases the turn is more significant at the close
to symmetrical tuning while it is small at the close to cen-
fral tuning contrary to single-mode operation when turn of
the polarization plane of a mode is greater at the central

%3 Nonzero magnetic field

Fig. 1. Direction of mode polarization plane versus its location at th
gain line at weak anisotropy.
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Fig. 2. The determinative Lyapunov exponent versus the middle intermode frequertey)/@ aty,=225 MHz, y,=160 MHz, =290 MHz,n=1.33,
Ku=1010 MHz,D=640 MHz andQ,,=0.5 kHz (a),Q,,=3.0 kHz (b),Q,,~6.0 kHz (c) without applied magnetic field.
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Fig. 3. Calculated angles of the modes polarization plgneg (a) and the interplane angfg-¢, (b) versus the middle intermode frequenay;,)/2.
The squared line corresponds to magnetic #&H.2G, the circled line — t61=0.3G, the crossed line — k=0.45G.Q,,~0.5 kHz, the other param-
eters are the same as in Fig.2.
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Fig. 4. Calculated angles of the modes polarization planes, (a) and the module of the interplane angle-¢| (b) versus the middle intermode
frequency, ¥>+v;)/2. H=20G and the circled line corresponds to mode 1 and the crossed — to mode 2 in (a). The squared line cortéspGndseo
circled line — toH=12G, the plane line — td=16G, the diamonded line — E=20G.Q,, =100 kHz,n=1.38, andhe other parameters are the same as
in Fig.2.

tuning. We can conclude that the mentioned phenomenand the Lyapunov stability analysis have been proceeded
is a result of coupled action of the external magnetic fiekdr them. It was found that without magnetic field at weak
and mode-mode interaction. That is a reflection of a neanisotropy the state with linearly polarized in orthogonal
type items in the set of equations which are absent in splanes modes is stable at almost full duty cycle with the

gle-mode operation equations. nearest to the centre mode is polarized in the lower loss
plane while at strong enough anisotropy the state with both
Conclusions modes polarized in the lower loss plane becomes stable on

full duty cycle. It turned out that even in zero magnetic field

In the present paper a two-male 0.63um laser opera- ° time-independent state exists at the close to the sym-
P pap ool b metrical tuning in the presence of weak amplitude

tion with the presence both amplitude and phase amsonoé)gisotropy. The interplane angle and angles of the modes

and axial magnetic field was considered on the basis of t o : .
o ; . Olarization planes was enumerated in nonzero field. It was
general Lamb model. Numeric integration of the nonlinegr . ; : .
. LY - found that changing orientation and nonorthogonality/
equations set gave a number of time-independent solutions : o
nohparallelity of the polarization planes takes place. They
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are more significant at the close to symmetrical tuning con-  _ _
trary to single-mode operation when the turn of the polari-Pn* ~ Re(Oyins)  Tnx =Re(Op),
zation plane of a mode is greater at the central tuning. I+ v+ =Re(©,. ), T =Re(©',),
was concluded that the reported phenomena belongs to the

mode-mode interaction depending on the mode-mode phds# different®’s we have:

correlations between them.

(A.3b)

4
Opens = (Ve 8Ku)y 80 o a)? D Ta(u) | (a.4)
Appendix ab =1

_ where n=1,2, thd;(w) are in the Doppler limit as fol-
a,B, 6 6,0, p, 1, T can be evaluated on the basis of thgyys:

paper [1]. In the present paper these values have been cal-

culated in assumption of lifetimes equality of both atomicrﬂzzl‘\/;[ytz(th +r3)] 7, Ty =0, T3=0, (A.5)
levels magnetic sublevels involved and equality of the Lande

factors of both atomic levels involved, one isotop, no ndhe argumentsy can be found in the table A.1.

clear spin and active medium filling all the cavityis the 4

real part whilex is the imaginary one of the complex coef-Op+ y+ = (1 v50h3/8Ku)Z 5[,21,'11@ ap) X

ficient A, a,b

<) < 2) (A.6)
ani = Im(Ani)’ Ont = Re(Ani )3 (Al) X{Z Ttl (Vtk)+ Z Ttl (Vtk )}
where til -

where n, h=1,2; nzn' (if n = n' the former equation should
Aps = (ve0h3/8Ku) x be used). Let’s note two sums of hgvy) functions in the

xS darps1U 0 0) > GZLpap +iEppeH —v5)1=1) (A.2)
a.b

. . . Table A.1. This table defines the arguments of; appearing
n= 1,2,v |s_the operating frequency of th_e given moz;l_ﬁ:, in the third-order integrals ©ps e (A.4)
is thedetuningof the mode from the atomic line centyas o

the factor LandeHl is the magnitude of external magnetic
field, L] . is an electric dipole matrix elemeity is the k=1 k=2 k=3
Doppler parameten, is the Lorentz widthy is the mode t=1
gain,Z[x] is the plasma integral.

Coefficientsp, 1, T are real parts whilg, 6, 8 are im- =2 yab+i(+ upgH-pn) ya yab-+i(F usgH-yn)
aginary ones of comple®'s.

yab+i(xuBgH-vnt) ya yab+i(F uBgH-vn)

t=3 yab+i(* uBgH-ynt) Vb yab+i(F uBgH + vnt)
Bor =Im© ), 6hy =Im(Opy),

, . A. t=4 yab+i(* yBgH-ynt) yb yab+i(F uBgH-vnt)
ent,n'i = Im(eni,n'i ), 0 n* = Im(® nt ), ( 38.)

Table A.2. This table defines the arguments of T,; appearing in the third-order integrals Qp. ' (A.6)

s k=1 k=2 k=3

t=1 yab+i( yuBgH-ynt) ya yab+i(F uBgH-vnt)
t=2 yab+i(* uBgH-vnz) ra yab+i(F uBgH + pnzx)
t=3 yab+i(* yuBgH-vnt) yb+i(vn' + -pnt) yab+i(F uBgH + pnz)
t=4 yab+i(tuBgH-pn+) yb+i(vn’ £ -pnz) yab+i(F usgH-vnz)
i k=1 k=2 k=3

t=1 yab+i(* yuBgH-vnt) ya+ti(vn' + -pnt) yab+i(x uBgH-yn=)
t=2 yab+i(tuBgH-ynt) ya+i(vn' + -pnz) yab+i(F usgH + vnz)
t=3 yab+i(x uBgH-pn+) b yab+i(F uBgH + vnt)
t=4 yab+i(* yuBgH-vn+) b yab+i(F uBgH-vn+)
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Table A.3. This table defines the arguments of T(; appearing in the third-order integrals Qp. - (A.7)

Y k=1 k=2 k=3

=1 yab+i(xuBgH-nt) n yab+i(FuBgH-nt)
=2 yab+i(xuBgH-vnz) r yab+i(xusgH + vnz)
=3 yab+i(xuBgH-vnz) P Ti(X2uBgH+vn' F -pnx) yab+i(xuBgH + vn)
= yab+i(xuBgH-vnz) P Ti(X2uBgH+vn' F -pnx) yab+i(xusgH-ynz)
52 k=1 k=2 k=3

t=1 yab+i(xuBgH-rnz) ya+ti(22 ugH+vn' ¥ -pnx) yab+i(*uBgH-vn=)
=2 yab+i(xuBgH-vnz) yati(¥2uBgH+vn' F -pnx) yab+i(xuBgH + vn)
=3 yab+i(xuBgH-vnz) ”w yab+i(xusgH + vnz)
t= yab+i(x uBgH-vnx) 7w yab+i(x uBgH + pnt)

Table A.4. This table defines the arguments of T(; appearing in the third-order integrals Q’,. (A.8)

s k=1 k=2 k=3

=1 yab+i(£ yuBgH-vn ¥ +vn' F -yn'+) ya+i(vn' F -pnt) yab+i(F uBgH-vnz)
=2 yab+i(£ yuBgH-vn ¥ +vn' ¥ -yn't) ya+ti(vn' F -pnt) yab+i(xusgH + ynx)
=3 yab+i(£ yuBgH-vn ¥ +vn' F -yn'+) yb+i(£2uBgH+vn' F -vnx) yab+i(xusgH + ynx)
=4 yab+i(£ yuBgH-vn ¥ +vn' ¥ -yn't) yb+i(£2uBgH+vn' F -vnx) yab+i(*uBgH-vn+)
52) k=1 k=2 k=3

=1 yab+i(x uBgH-yn F +vn' F -vn'£) ya+i(X2 uBgH~+vn' ¥ -pnt) yab+i(*uBgH-vn+)
=2 yab+i(x uBgH-vn F +vn' F -pn'+) ya+i(X2 uBgH+vn' ¥ -vnt) yab+i(xuBgH + ynt)
=3 yab+i(x uBgH-vn F +vn' F -pn'+) yb+i(vn' F -pnt) yab+i(xuBgH + vnt)
t=4 yab+i(x uBgH-vn F +vn' F -pn'+) yb+i(vn' F -pnt) yab+i(F uBgH-vn+)

4 4
brackets. This is reflected in the following table A.2 which 07, (], 2] ) Z DT )} (A8)
=

consists of two parts for the first and for the second sum.

eni,n’¢ = (’7V50h3 /SKM)Zﬁa',b'il {d:l a, b')2 (D a'\b¥2 )2 X
a,b

4 4
xy DTH ) e ) *U s ZZ)TA )
t=1 t
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where n = 1,2, the argumentg are in the table A.4.
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