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1. Introduction

The roots of a quasi-isotropic He-Ne laser have been set up
in the paper of Sargent et al. [1] where the general equa-
tions for intensities and frequencies for an arbitrary atomic
transition, any number of excited longitudinal modes and
in the presence of magnetic field of arbitrary direction have
been derived. But influence of a cavity anisotropy was not
described consistently. Another theory has been developed
in the paper of Lenstra [2]. In this work influence of differ-
ent cavity anisotropy types on behaviour of polarization
characteristics was considered in general for an arbitrary
atomic transition of laser having been placed in axial or
transversal magnetic field.

Single-mode laser operating was considered on the ba-
sis of the papers [1,2] for a wide range of atomic transitions
and laser parameters (see, for example, [2,3] and references
therein). For two-mode operation such detailed analysis has
not yet been given. In the paper of Lenstra [2] qualitative
remarks were  made about behaviour of a j=1⇒j=2 transi-
tion laser without magnetic field and in the case of weak
linear phase or amplitude anisotropy. The investigation of
Svirina et al. [3] is restricted to the case of a phase cavity
anisotropy of a j=1⇒j=2 (λ=0.63 µm) laser in axial mag-
netic field.

In the present paper we have derived, within the frame-
work of the general Lamb model, the two-mode operation

equations with the presence both amplitude and phase
anisotropy and axial magnetic field. Each spatial mode is
described as a sum of two ones polarized right- and left-
circularly. So, we get the set of six coupled nonlinear dif-
ferential equations for four intensities of polarization modes
and two phase angles of spatial modes. Numeric solution is
carried out by the Runge-Kutta routine for the j=1⇒j=2
transition and with only amplitude anisotropy being pre-
sented. The time-independent solutions with different po-
larization states we had got were tested with respect to sta-
bility by the Lyapunov analysis, and then a conclusion about
existence of stationary states has been made.

2. Intensity-and phase-determining equations

The present paper is based upon the formalism brought for-
ward by Sargent et al. [1]. In accordance to it, a laser field is
a sum of cavity eigenstates, and the active medium polari-
zation is calculated by the density matrix routine up to the
third terms by the electromagnetic field. Each longitudinal
mode is described as a sum of two ones polarized right- and
left-circularly. There are two equations for each circular
mode: for its intensity and for its phase. So, there are 4n
equations in the full equation set, where n is the number of
longitudinal modes. However, because of all right parts of
the equations include a phase difference (so called phase
angle) but not phases separately, we can replace two sepa-
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rate equations for phases with one for a phase angle. This is
correct if we consider only time-independent solutions.
Hence, the full set includes 3n equations.

In the case of two longitudinal laser modes we have the
following intensity- and phase-determining equations:

where In+ , In– are the intensities of the right- and left-handed
circular waves of the n-th spatial mode, ψn is its phase an-
gle, Q c L l lxy x y= −( )( )4  is the amplitude cavity anisotropy
and ~ ( )( )νxy x yc L= −4 φ φ  is the phase one, c is the light
velocity, L is the cavity length, lx and ly are losses, and φx
and φy are phase changes for the waves polarized in x- and
y-direction. α, β, θ, θ’ , σ, ρ, τ, τ’  are calculated from the
density matrix motion equation. These calculations and used
assumptions are adduced in the Appendix. Let’s note that
in amplitude equations an appropriate α coefficient is re-
sponsible for a mode gain while β and θ’s are the self-satu-
ration and cross-saturation parameters, and in the phase
equations σ, ρ, τ coefficients are responsible for the mode
frequency pulling/pushing phenomena (change of the op-

eration frequency to or from the centre of the gain line with
respect to the eigenfrequency of an empty cavity). These
coefficients have their analogues in single-mode equations.
But θ’ , τ’  don’t have. We can say that they are responsible
for some sort of gain saturation and frequency change as

well but those ones depend besides on mode-mode phase
relations.

2. Time-independent solutions

A) Zero magnetic field

Numeric integration of the set of equations (1)-(6) was per-
formed for the j=1⇒j=2 (λ = 0.63 µm) transition and fol-
lowing parameters: the Lorentz width γab = 225 MHz, the
upper and the lower atomic levels width γa=160 MHz and
γb = 290 MHz, the gain η  = 1.33 ... 1.38, the Doppler pa-
rameter Ku = 1010 MHz, the spatial mode interval D =ν2-
ν1 = 640 MHz and several values of the amplitude anisotropy
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Qxy. It turned out that at weak anisotropy the state with modes
polarized linearly in orthogonal planes is stable on the most
part of the gain profile while the nearest to the centre mode
is polarized in the lower loss plane. Hence, each mode be-
ing moved through the gain profile undergoes two changes
of a polarization plane. This is outlined in the Fig.1. When
a mode is in a hatched area it is polarized in the lower loss
plane. That is conventionally signed with a horizontal ar-
row in the figure. At the same time the another mode is in a
clear area and has the orthogonal polarization signed with a
vertical arrow. Frequencies ω0±D/2 correspond to the sym-
metric location of the modes with respect to the centre of
transition line. It is just this point that has the unstable range
where none of solutions is stable. Those are the dotted ar-
eas in the Fig.1. When anisotropy being rised from 0 to
certain value the unstability range spreads on full duty cy-
cle. This value is about 10 kHz for the given set of param-
eters. The biggest Lyapunov exponents determining whether
a stable solution exists are shown in the Fig.2 for some
anisotropy values. The mentioned phenomenon evidently
follows from mode-mode interaction. It is absent at single-
mode operation when at any value of amplitude anisotropy
there is a stable solution with mode polarization in the lower
loss plane.

When anisotropy being further rised (up to about 100 kHz
for the used set of parameters), the state with both modes

polarized in the lower loss plane becomes stable on full duty
cycle. Such situation is realized in a commercial laser LGN-
207B with Brewster’s window introducing considerable
amplitude anisotropy into a cavity.

B) Nonzero magnetic field

In studying a laser in external magnetic field we were mainly
interested in two questions: 1) do linear polarization planes
remain orthogonal, and 2) how does magnetic field change
their orientation.

The set of equations (1)-(6) has been integrated for two
values of the cavity anisotropy: 5·10-4 MHz and 1·10-1 MHz
at different magnitudes of external magnetic field. It fol-
lows from preceding consideration that in zero field at
Qxy=5·10-4 MHz the state with modes polarized linearly in
orthogonal planes  is stable on almost full gain profile while
an unstability range is very narrow, it is less then 6 MHz.
At Qxy=5·10-4 MHz the state with both modes polarized in
the lower loss plane is stable on full duty cycle.

First of all, it is worth noting that a spatial mode always
has nonzero ellipticity in magnetic field owing to nonequa-
lity of left- and right-circularly polarized modes intensities.
So, we will mean a direction of the bigger axis of a polariza-
tion ellipse as a direction of a polarization vector.

Calculated angles of the modes polarization planes and
the interplane angle versus the middle intermode frequency
ν12=(ν1+ν2)/2 (where ν1 and ν2 are modes operation fre-
quencies) are shown in the Figs 3,4. The mode being called
the first has the lower frequency while the mode being called
the second has the higher one with respect to each other. It
is worth noting that the interplane angle is close enough but
not equal to that without field (i.e. to 0° or 90°) on the full
duty cycle except the central tuning of one  mode (when its
frequency is close to the central transition frequency) at both
values of anisotropy. At the central tuning the interplanes
angle equals to that without field to within calculation er-
rors. The polarization planes undergo turn in magnetic field.
The fact is that the stronger anisotropy a cavity has the higher
field magnitude is needed for that turn to be significant. In
both considered cases the turn is more significant at the close
to symmetrical tuning while it is small at the close to cen-
tral tuning contrary to single-mode operation when turn of
the polarization plane of a mode is greater at the central

X X

ω -D/20 ω +D/20ω0

Fig. 1. Direction of mode polarization plane versus its location at the

gain line at weak anisotropy.

Fig. 2. The determinative Lyapunov exponent versus the middle intermode frequency, (ν2+ν1)/2 at γab=225 MHz, γa=160 MHz, γb=290 MHz, η=1.33,

Ku=1010 MHz, D=640 MHz and Qxy=0.5 kHz (a), Qxy=3.0 kHz (b), Qxy=6.0 kHz (c) without applied magnetic field.
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tuning. We can conclude that the mentioned phenomenon
is a result of coupled action of the external magnetic field
and mode-mode interaction. That is a reflection of a new
type items in the set of equations which are absent in sin-
gle-mode operation equations.

Conclusions

In the present paper a two-mode λ = 0.63 µm laser opera-
tion with the presence both amplitude and phase anisotropy
and axial magnetic field was considered on the basis of the
general Lamb model. Numeric integration of the nonlinear
equations set gave a number of time-independent solutions,

and the Lyapunov stability analysis have been proceeded
for them. It was found that without magnetic field at weak
anisotropy the state with linearly polarized in orthogonal
planes modes is stable at almost full duty cycle with the
nearest to the centre mode is polarized in the lower loss
plane while at strong enough anisotropy the state with both
modes polarized in the lower loss plane becomes stable on
full duty cycle. It turned out that even in zero magnetic field
no time-independent state exists at the close to the sym-
metrical tuning in the presence of weak amplitude
anisotropy. The interplane angle and angles of the modes
polarization planes was enumerated in nonzero field. It was
found that changing orientation and nonorthogonality/
nonparallelity of the polarization planes takes place. They
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Fig. 4. Calculated angles of the modes polarization planes φ1, φ2 (a) and the module of the interplane angle |φ2−φ1| (b) versus the middle intermode

frequency, (ν2+ν1)/2. H=20G and the circled line corresponds to mode 1 and the crossed – to mode 2 in (a). The squared line corresponds to H=8G, the

circled line – to H=12G, the plane line – to H=16G, the diamonded line – to H=20G. Qxy =100 kHz, η=1.38, and the other parameters are the same as

in Fig.2.

Fig. 3. Calculated angles of the modes polarization planes φ1, φ2 (a) and the interplane angle φ2−φ1 (b) versus the middle intermode frequency, (ν2+ν1)/2.

The squared line corresponds to magnetic field H=0.2G, the circled line – to H=0.3G, the crossed line – to H=0.45G. Qxy=0.5 kHz, the other param-

eters are the same as in Fig.2.
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are more significant at the close to symmetrical tuning con-
trary to single-mode operation when the turn of the polari-
zation plane of a mode is greater at the central tuning. It
was concluded that the reported phenomena belongs to the
mode-mode interaction depending on the mode-mode phase
correlations between them.

Appendix

α, β, θ, θ’ , σ, ρ, τ, τ’  can be evaluated on the basis of  the
paper [1]. In the present paper these values have been cal-
culated in assumption of lifetimes equality of both atomic
levels magnetic sublevels involved and equality of the Lande
factors of both atomic levels involved, one isotop, no nu-
clear spin and active medium filling all the cavity. σ is the
real part while α is the imaginary one of the complex coef-
ficient ΑΑΑΑΑ,

      ),Re(      ),Im( nnnn ±±±± Α=Α= σα                    (A.1)
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n = 1,2, ν is the operating frequency of the given mode, νn±
is the detuning of the mode from the atomic line centre, g is
the factor Lande, H is the magnitude of external magnetic
field, ℘ab is an electric dipole matrix element, Ku is the
Doppler parameter, γab is the Lorentz width, η is the mode
gain, Z[x] is the plasma integral.

Coefficients ρ, τ, τ’  are real parts while β, θ, θ’  are im-
aginary ones of complex Θ’s.
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For different Θ’s we have:
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where n=1,2, the Tt1(νtk) are in the Doppler limit as fol-
lows:
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the arguments νtk can be found in the table A.1.
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where n, n’= 1,2; n ≠ n’  (if n = n’ the former equation should
be used). Let’s note two sums of the Ttk(νtk) functions in the

k=1 k=2 k=3

t=1 )( ±± nab gH-íì+iã B aã )( ±nab gH-íì+iã Bm

t=2 )( ±± nab gH-íì+iã B aã )( ±nab gH-íì+iã Bm

t=3 )( ±± nab gH-íì+iã B bã )( ±+ nab ígHì+iã Bm

t=4 )( ±± nab gH-íì+iã B bã )( ±nab gH-íì+iã Bm

Table A.1. This table defines the arguments of Tt1 appearing
in the third-order integrals ΘΘΘΘΘn±,n± (A.4)

Σ1) k=1 k=2 k=3

t=1 )( ±± nab gH-íì+iã B aã )( ±nab gH-íì+iã Bm

t=2 )( ±± nab gH-íì+iã B aã )( ±+ nab ígHì+iã Bm

t=3 )( ±± nab gH-íì+iã B )( ±±′ nnb -íí+iã )( ±+ nab ígHì+iã Bm

t=4 )( ±± nab gH-íì+iã B )( ±±′ nnb -íí+iã )( ±nab gH-íì+iã Bm

Σ2) k=1 k=2 k=3

t=1 )( ±± nab gH-íì+iã B )( ±±′ nna -íí+iã )( ±± nab gH-íì+iã B

t=2 )( ±± nab gH-íì+iã B )( ±±′ nna -íí+iã )( ±+ nab ígHì+iã Bm

t=3 )( ±± nab gH-íì+iã B bã )( ±+ nab ígHì+iã Bm

t=4 )( ±± nab gH-íì+iã B bã )( ±nab gH-íì+iã Bm

Table A.2. This table defines the arguments of Tt1 appearing in the third-order integrals Qn±,n�± (A.6)
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Σ1) k=1 k=2 k=3

t=1 )( ±± nab gH-íì+iã B aã )( ±nab gH-íì+iã Bm

t=2 )( ±± nab gH-íì+iã B aã )( ±+± nab ígHì+iã B

t=3 )( ±± nab gH-íì+iã B )2( ±′± nnb -ígH+íì+iã B m )( ±+± nab ígHì+iã B

t=4 )( ±± nab gH-íì+iã B )2( ±′± nnb -ígH+íì+iã B m )( ±± nab gH-íì+iã B

Σ2) k=1 k=2 k=3

t=1 )( ±± nab gH-íì+iã B )2( ±′± nna -ígH+íì+iã B m )( ±± nab gH-íì+iã B

t=2 )( ±± nab gH-íì+iã B )2( ±′± nna -ígH+íì+iã B m )( ±+± nab ígHì+iã B

t=3 )( ±± nab gH-íì+iã B bã )( ±+± nab ígHì+iã B

t=4 )( ±± nab gH-íì+iã B bã )( ±+± nab ígHì+iã B

Table A.3. This table defines the arguments of Tt1 appearing in the third-order integrals Qn±,n� m  (A.7)

Σ1) k=1 k=2 k=3

t=1 )( ±′′± nnnab -í+ígH-íì+iã B mm )( ±′ nna -íí+iã m )( ±nab gH-íì+iã Bm

t=2 )( ±′′± nnnab -í+ígH-íì+iã B mm )( ±′ nna -íí+iã m )( ±+± nab ígHì+iã B

t=3 )( ±′′± nnnab -í+ígH-íì+iã B mm )2( ±′± nnb -ígH+íì+iã B m )( ±+± nab ígHì+iã B

t=4 )( ±′′± nnnab -í+ígH-íì+iã B mm )2( ±′± nnb -ígH+íì+iã B m )( ±± nab gH-íì+iã B

Σ2) k=1 k=2 k=3

t=1 )( ±′′± nnnab -í+ígH-íì+iã B mm )2( ±′± nna -ígH+íì+iã B m )( ±± nab gH-íì+iã B

t=2 )( ±′′± nnnab -í+ígH-íì+iã B mm )2( ±′± nna -ígH+íì+iã B m )( ±+± nab ígHì+iã B

t=3 )( ±′′± nnnab -í+ígH-íì+iã B mm )( ±′ nnb -íí+iã m )( ±+± nab ígHì+iã B

t=4 )( ±′′± nnnab -í+ígH-íì+iã B mm )( ±′ nnb -íí+iã m )( ±nab gH-íì+iã Bm

Table A.4. This table defines the arguments of Tt1 appearing in the third-order integrals Q�n± (A.8)
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brackets. This is reflected in the following table A.2 which
consists of two parts for the first and for the second sum.
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where n, n’ = 1,2, the arguments νtk are in the table A.3.

×=Θ′ ±±± ℘℘∑ 2
2''

2
''1''

3
0n )()()8( { ,ba,ba

a,b

,baäKuhνεη

}
4

1

)(1
)22

2''
2

''

4

1

)(1
)1 )()( ∑℘℘∑×

t=
tkt,ba,ba

t=
tkt íT+íT

m         (A.8)

where n = 1,2, the arguments νtk are in the table A.4.


