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Abstract. The semiconductor Cd3As2 is known as a zero-gap material like HgTe or α-Sn 
but with the tetragonal lattice and in various crystalline forms. One of the forms has no 
symmetry center, and just this form is stable under ordinary conditions. So, every of its 
energy bands is split into a pair of spin subbands owing to the removal of the Kramers 
degeneration. The theory predicts that the total sum of all spin splittings will be equal to 
zero, whereas the modeling shows the peculiar dependences of spin splittings on the 
direction and modulus of the wave vector. 
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1. Introduction 

A band model suitable for crystals with and without 
symmetry center has been presented in [1]. This model 
describes uniaxial semiconductors by taking into account 
their lattice deformations, spin-orbital interaction, and 
the splitting within the kP-approach. One of the features 
of the Hamiltonian in [1] is the account of removing the 
Kramers degeneration in a crystal modification without 
symmetry center. This allows the partition of some 
energy band into two subbands having opposite-spin 
states. The knowledge about this splitting is essential for 
the newest branches of electronics dealing with the 
opposite-spin states in crystals or nanostructures. We are 
going to prove here a general theorem on such a splitting 
within the model developed in [1]. 

The predictions of the theorem will be illustrated 
by the example of Cd3As2. We have two reasons for this: 
1. This material has an inverted band structure like 

those in α-Sn, HgTe or HgSe what is interesting by 
itself [2]. 

2. This material can have few tetragonal structures, 
and one of them has no symmetry center (I41cd-

12
4υC ) and is stable under normal conditions [3]. 

2. Theorem 

It has been shown in [1] that the generalized kP-
Hamiltonian for a uniaxial material can be presented in 
the rational canonical form (alias Frobenius’ form):  
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It is worth to note that βα = HH  if the symmetry center 
exists. Each of the submatrices has size [4×4]: 
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Here, ja  are the coefficients of jε  (j = 0, 1, 2, 3) in two 
characteristic polynomials in the spherical system of 
coordinates like that in [1]: 
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These polynomials are slightly different only for the 
structures without symmetry center. 

Additionally, we mention that εg, P, ∆ are three 
known parameters of Kane's model [4]: the energy gap, 
impulse matrix element, and spin-orbital interaction 
parameter, respectively; δ is the crystal field parameter 
introduced by Kildal [5]; ξ is the another crystal field 
parameter which can be either non-zero in the absence of 
a symmetry center or equal to zero otherwise [1]; and η 
is the parameter of the uniaxial lattice deformation [1]. 
The energy ε is reckoned from the top of the highest 
valence band. The subscripts (α, β) for the coefficient 
a1α, β correlate with two opposite spin states.  

The model [1] (ξ ≠ 0, η ≠ 0, δ ≠ 0) generalizes both 
the model for cubic crystals [4] (ξ = 0, η = 0, δ = 0) and 
the model for uniaxial crystals with symmetry center [5] 
(ξ = 0, η = 0, δ ≠ 0) to the crystals without symmetry 
center and with axial deformations of lattices.  

Let us to denote the solutions of Eqs. (3) and (4) as 
εn,α  and εn,β, respectively (n = 1, 2, 3, 4). It is well known 
that the sum of these solutions is equal to a3 (as it is the 
trace of a submatrix). Thus, we have 

δ−∆−ε=ε=ε ∑∑ βα g
n

n
n

n ,,  (5) 

simply for the reason that this coefficient is identical for 
both polynomials. Moreover, it follows from relation (5) 
that 
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Rule (6) is trivial if the center of symmetry exists, 
because each element of the sum is zero (sn = 0). 
Nevertheless, this rule would be operating even if the 
symmetry center is absent and elements of the sum are 
non-zeros (sn ≠ 0). Now we can formulate the following 
proposition:  
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Fig. 1. Dependences of si on the direction (θ) and modulus of 
the wave vector. 

Table. 

εg, eV P, 
eV⋅m

∆, 
eV δ, eV ξ, eV η a, Å c, Å 

–0.13 7.0× 
×10–10 0.27 0.095 0.035  1.005648 12.6461 25.4908

 
Theorem. The total sum of the spin splittings of all 

subbands must be zero with Hamiltonian (1).  
This theorem is true under condition that the 

absence of symmetry, which is the reason for removing 
the degeneration by spin, does not change anyway the 
sum of parameters presented by (5): εg – ∆ – δ = a3. 

The numerical values of the parameters 
characterizing Cd3As2 which were used in our 
computations are presented in the Table according to [1]. 

3. Results of computations and their discussion 

Equations (3), (4) allow the direct solutions. We 
calculated the dependences of the elements of sum (6) 
(i.e., βα ε−ε= ,, nnns ) on the modulus and direction of the 
wave vector by using the numerical values of parameters 
given in the table. The results are shown in Figs. 1 and 2.  

The direct computer verification of the obtained 
rule (6) showed their correctness within the limits of the 
computing accuracy. It is clearly visible even from the 
different signs of these splittings. 

Each sheet of Fig. 1 which corresponds to one of 
the energy bands demonstrates an extremum depending 
on the modulus of the wave vector k, whereas the 
dependences of the splittings on the directions are 
monotonic: they simply increase from the main axis 
direction (θ = 0) up to the directions normal to them 
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Fig. 2. Dependences of sn on the modulus of the wave vector. 
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The magnitudes sn of the spin splitting are 
comparable with the magnitude of the parameter ξ ≈ 
0.035 eV. Our calculations convince us also that they 
depend on this parameter much stronger than on the 
parameter δ or η.  

So, both the theoretical analysis and the 
computation testify that the absence of a symmetry 
center is not able to create such a splitting of energy 
levels, for which the total sum could be non-zero, within 
the model [1].  

Let us also to remark that an analogous statement 
can be proved as for the influence of a tetragonal 
deformation on shifts of the energy levels. Indeed, such 
a deformation (η) cannot change the coefficient a3 = εg – 
–∆ – δ, generally speaking. It would be right if none of 
them does not depend on such a deformation directly. 
However, sometimes it may take place, for instance, for 
δ = δ(η) [6].   
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