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Generalization of the Sommers—Sen spinor connection for spinor fields,
associated with the distribution V2 is made and on its basis the equations
for Weyl and Dirac null vector fields on complexificated V;? are obtained.
We interpret the obtained results by examining the interaction of spinor
fields with inertial forces.
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1. Introduction

As it is known, the four-dimensional description of relativistic fields for a num-
ber of problems, especially for the comparison of theoretical provisions and exper-
imental results, must be substituted by a 3+1 description. For the spinor fields
the original method of their description in the 3+1 form was proposed in [1] and
developed in [2]. The obtained in [2] Sen-Witten equation is widely used in the
gravitational field energy problem investigations [3-5]. But this does not allow us
to study all the variety of physical effects in the interactions of spinor fields with
inertial forces, because this method is based on the foliation of curved space-time
by space-like hypersurfaces and thus on nonrotatory frames of reference. In our
work [6] we introduced a covariant derivative of spinor fields associated with the
space-like distribution V;?, which generalizes the Sommers—Sen covariant deriva-
tive and obtained on this basis a 3+1 equation for Weyl and Rarita—Schwinger
fields in arbitrary frames of reference, not only in nonrotatory ones. In this work
we obtain for an arbitrary frame of reference the equations for a complex 3-vector,
which are correspondent to Weyl spinors and bispinors. These squared equations
of Weyl and Dirac fields are, in fact, a 3+1 splitting of the Penrose—Rindler [7]
tensor form of spinor differential equations.
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In section 2 we briefly review the technique for obtaining 3+1 spinor equations
with a spinor connection on nonintegrable manifolds. In section 3 we give a spinor
representation of tensor fields on the V? distribution.

2. Generalization of the Sommers-Sen derivative on distribu-
tions

Let us consider the oriented manifold V; of class C'*° which is noncompact or
of a zero Euler characteristic; then it accepts the Lorentz g metric. Let us denote,
as usual, a tangent bundle over V, by T'Vj.

Definition 1. A vector subbundle V,;*, 1 < m < 3, of TV} is called a distri-
bution over Vj. Let us denote by C*°(V}) a ring of functions of a C'*° class and by
(V") —a C* module of distribution V" over Vj.

Definition 2. The mapping

L) < rvy") — TV,

(X,X;) — DxX,, X, X; e I'(9),

which for arbitrary vectors X, Xy and functions g, f € C*°(V}) satisfies the condi-
tions

DX(XI + X2) - Dxxl + Dxe, (1)
Dx(fX1) = X(f)X1 + fDxXy, (2)
Dixigx, X2 = fDxXs + gDx, Xs. (3)

is called a covariant derivative or anholonomic connection on the distribution V™.
The homomorphism

I'(Bo): I(TVs) — I'(V]")

of cross-sections is correspondent to projections By of bundle 7'V, on subbundle
v,

Definition 3. im Cy, where Cy = 1py, — By, is called rigging Vf*m of the
distribution V;/* C T'V,.

Let V! be a one-dimensional time-like distribution over Vj; its unitary cross-
section u is identified with the field of 4-velocity of some frame of reference, and
the integral curve of cross-section u — with its time lines. The normal rigging V2 of
the distribution V}! is a geometrical image of the physical space for the appropriate
frame of reference and is nonintegrable in general. The vectors, which belong to
V[, are called time vectors, and those belonging to V> — spatial vectors.

Further we require that the second Stiefel-Whitney class wy of manifold V}
equal zero. Then V, permits the SL(2, C')spinor structure. Let us denote by S, (Vi)
the C*° module of spinor fields of (r, s) valence on V.
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Let us introduce the C* module of S, ;(V;?) spinor fields of (r, s) valence on V}
associated with the distribution V> in the following way: its elements are spinor
fields of the form ¢TIy, o and

’ébTA"'KC"'LM...RP...Q = (ﬁuf‘) <\/§U§> (\/iu%) (\/iug) X

A.KC..L . |
T M..RP..Q

The defined in such a way C* module of S, 4(V}?) is a module of SU(2) spinor
fields. Let us call the module S, ;(V;*) with the basis limited to the hypersurface X
a module of SU(2) spinor fields on the anholonomic hypersurface X.. In a particular
case, when this hypersurface is ordinary and space-like, the module of SU(2) spinor
fields on it coincides with the module of Sommers—Sen spinor fields.

We introduce the antisymmetric tensor A of anholonomicity of V2, A € V2.
Let

T :T(V}) x T(Vy) — T(P),
T = F(CU) [XI: XQ], Xl; X2 € F(P)
Then T = 4A ® u. In the coordinate basis on some open domain in Vj tensor A
has the components [8]
1 vy
Au)\ = ihuh/\U[yu(g] .

Let us introduce a spatial covariant derivative for spinor fields associated with
the distribution V> as the mapping

L(VP) x S10(Vy) — S10(Vy),

(Xap, A\e¢) — Dapro, Xap € S10(V}P) x S10(V}), (4)

determined by the condition

; 1
Diprc = ﬂu(AAVB)A)\c — E(WABCD + Aapc®) b, (5)

where V; is a spinor representation of an operator of the covariant derivative
on Vj, in agreement with the metrical connection. The action D,p on spinors of
a higher valence extends in accordance with the Leibnitz rule and the action on
vector fields satisfies the condition (1)—(3).

Reducing the SL(2,C) operator of the covariant derivative to the SU(2) oper-
ator, we obtain:

Van = V2 (0¥ i+ 0tV ) = Feant Vg VItV
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The first term denoted by ?8,43(11 V) is a time derivative, the second one is
represented in terms of space derivative D p in the rigging. Finally, we obtain the
action of V45 on spinor A\¢ in the form:

V2 i V2
VAB)\C’ = TSABUAAVAA)\C + DAB)\C — 7 (ﬂ'ABCD + AABCD) )\D. (6)

We obtain the generalized 3+1 form of the Weyl equation

carrying out the SL(2,C) — SU(2) reduction and using (6). Then we have

1
(W-V)As+ V2Dsp\P + ST~ ApaPpAP = 0. (7)

Therefore, the Weyl spinor A4 € Sy (V) is determined by the geometric properties
of V; and by both the geometric and equally physical properties of V? . These
properties are determinated by the acceleration spinor Fap € S30(V}), the angular
velocity spinor Aapep € S40(V}) and the rate-of-strain spinor mapcp € S40(V}).
These spinors are uniquely expressed by the Schouten first order curvature tensors
of V;} and vector u € V!

3. Spinor representation of tensor fields on the V3 distribu-
tions

Let spinor field T € Sy, 94(V2). If T is symmetric in all pairs of indices, then
T € V. The projector from TV, into V! is u ® u, the projector from TV} into V2
ish=g+u®u.

It is easy to characterise the SU(2) representation of a space projected tensor

Vap =0,V 2up" = gy = wup) b0y = vu(gy = u'uu)ol ;=

P A _ m_ b

The overline denotes the components of space projected tensors, the symbol ~

denotes the components of time projected tensors, O'f; ; are the Pauli spin matrices

and the unit matrix which are referred to as a space-time tetrad. The o), and
o',z matrices are given by the formulas

! ! A m, 1 BA
O’AB:O'AA\/iuB =V2u 04 i0m
and, respectively,

A A A A BA
o ap = 0 iV 2up? = V2ot o, B
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For the matrices 07} ; we obtain the necessary in the following consideration identi-
ties which substitute for the normalization and orthogonalization identities of the
Pauli matrices:

0 apoPC = ol ypo,P¢ = \/iTLMO'MBAO')\AA\/inVO'VCCO'/\DC = —2\/571”0,,0355 =

-2vV26,%,  o*apo, P =40).

Let us also obtain the necessary for further investigations tensor representation of
the spinor form

3
?C(A_ = Z UmOC(aZm0 " B)C + Z ymZzUc(AUZB)C- (8)
m=0 m#l

We obtain the matrices 0%, in the form

m 0 m 1_m 2.m 3 .m | B l BC
0™ ca = V2(n°wmea + n M oa + 0P ea + 0P en),  ole® = oloae

W 'cA=0 cc00A » T CA=0 014 5, X CA=0 o024,

V"o = 0" @03a°
The first sum in (8) equals zero, therefore, further we consider only the second

sum in which we distinguish the terms with the products 7,z5. In this case the
products of the necessary matrices give:

2 C _ 43

w'oaw?p® = —iw? 4p, loaw? ¢ = —it? 4,
w'eat?s8% = x'as, Trear? 8¢ =17 4B,
WICAXQBC = —1X AB, TlCAXQBC _XQABa
wloa?p® = —i? 4p; Tloah?5® = =2 ap;
X'caw?5C = —ix® as, Ploaw’ s = wias,
X'cam*¢ = —7' A, ¢ICAT2BC = i7% 1B,
x'cat?B¢ = i 4B, V'oax?s” = —i' g,
X' cat?5C = =% ap; Yloa?5¢ = i 4p.

Then, we obtain the term with ;%5 in the form:
By analogy, for terms with 7,z; we have

V25,7 [inOJ?AB) - m%?AB)] :
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Summing all the terms of the form 7,,Z, (m # [) we find that
yC(AzB)C = —Z'\/ié“asnkna?s?naﬁw)- (9)

Let us consider the evolution of the complex null spatial vector field L = —A s \p
corresponding to the Weyl spinor field. Then, as the first step we obtain

(n- V)L, = 2V2\Dayc A’ — 7L, + 2\3 A4 pAL.
Using the Sommers identity
ADapAc = A’ Doarp) — A\aDpyc\C
we have
(n- V)L, = —V2X°Dagrc — 7La + V2DoaLp € + 22 A0 pA.
For the vector representation of v2D¢(4Lp)® Sommers [1] applies expression (9)
by direct substitution of 7j, 4 = D¢y into it, instead of 7, ,. But D;o'c4 # 0, and

taking into account this circumstance we obtain:

DC(ALB)C = UZC’(ADZ [imUmB)C] =D [UZC(AUmB)CLm] —

—LmO'm(BCDlO'lA)C = —i\/i»s“Sddeak(AB)Dsna — ’i\/i&asnknaO'k(AB)DsLn—
V2
\/iLmFram(CBa’"A)c — 2\/56“5dknawsLdak(AB) — TWLmO-k(AB)_

\/ELmO'm(CBO'l‘CC‘O',«A)C (ATZ — Drl) + i\/i&asnkAasLnO'k(AB)—F
20" ko FyLyo® (ap) -

The first term on the left can be re—expressed [1] as LD, L., where the unit real
spatial vector L is in the direction of propagation of the neutrino field and is

L = —i(LgL®) e eng L L™,

Finally, we find that the squared neutrino equation on V2 distributions, i.e. in an
arbitrary frame of reference is

<dL,n>=—7L+2-3lix(uADAL)+ < L,DL > +

4-31% (uAWAL)—2-3lix (uAFAL)—v2-3lix(AAL).
With the help of the squared Weyl equations we can obtain the squared Dirac
equation in the 3+1 form. The Dirac equation is equivalent to the pair of equations

Vit = and VA5 = —my/2¢t

ﬁﬁfi
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or in terms of &4 € So1(V}), np € S10(V}) :

m m
VAB§A = — and VABnB = ——2§A.

B
V2 V2
Let X = =&, and Y = —nanp be two complex null spatial vector fields. Then,
the squared Dirac equation, which describes the evolutionof X and Y fields and is
written in terms of the tensors determined on the distribution and in the rigging,
is the system of two equations:

<dX,u>=-7X-2-3lix(uADAX)+ < X,DX > +

2% (UAWAX)—ix(uAFAX) - V2 (AANX)+
V2im <X, Y > 2 x(uAXAY)

and
<dY,u>=—i*(UADAY)-<Y,DY > 6% (uAwAY)+

i*x(WAFAY)=V2ix(AAX)+V2im <X, Y > Y2 5(uAXAY).

4. Discussion

The proposed in [6] and in this paper method for the investigation of an inter-
action between spinor fields and inertial forces requires the use of a nonintegrable
subbundle. Unlike [1,2], the spinor derivatives are determined here by the intrin-
sic geometry of distribution. This is defined by the physical sense of the problem
and not by the application of the tetrad formalism which is not necessary here.
In a particular case of the integrable V;? distribution, both the tetrad and monad
methods determine the spinors in terms of the intrinsic geometry of foliation.

We ascertain the appearance of additional differences between the evolutions
of the Weyl, Dirac and Maxwell fields, since the interaction of these fields with the
inertial field is described by the term which includes not only the angular velocity
vector of the frame of reference, but also its angular velocity.
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8. For the expressions written in coordinates, Greek indices are global and Latin ones are
local. Our Lorentz metric will have the signature (+2)

KeapposaHi nonga Beina i [lipaka i3 3B’A3HICTIO
Commepca-CeHa, acouiioBaHolo i3 posnoginammu V3

B.lMennx

IHCTUTYT NpuknagHUX NPobeM MexaHiku i MaTeMaTukm
iMm. 9.C.Migctpurada HAH Ykpainu, 290601 m. Jbsis, Byn. Haykosa, 3 °

Otpumano 10 notoro 1998 p.

Ha ocHoBI y3aranbHeHHs criHopHOi 3B’a3H0CTi Commepca-CeHa ans no-
niB, acoLjn0OBaHUX i3 PO3Moainiom V2 , OTPUMAaHO PIBHAHHS A1 HY/IbOBMX
nonie Beins i Ldipaka y komnnekcudikoaHomy posnogini V2 . OTpumati
PiBHAHHA 0O3BOJISAIOTL ONMCATV B3AEMOLII0 HYIbOBUX MOJIB i3 NoNgaMmn
iHepuijl.

Kniouosi cnoBa: criHop, MHOrosua, po3rogisi, HyJibOBe r1oJie
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