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The Lagrangian relativistic direct interaction theory in the various forms
of dynamics is formulated and its connections with the Fokker-type action
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1. Introduction

The relativistic direct interaction theory arises from the expectation that the
dynamics of an interacting particle system can be constructed in a consistent
Poincaré-invariant way without introducing the notion of the field as an inde-
pendent object with its own degrees of freedom [1-5]. At present the principal
possibility of such a theory is evident in the classical and quantum domains. Its
application to the description of particle systems is most effective when processes
of radiation and particle creation may be neglected.

Among various more or less equivalent approaches to the construction of the
relativistic direct interaction theory, the single-time Lagrangian formalism [1,6,7]
proposed by Professor Gaida more than twenty years ago, seems to be the most
convenient for the consideration of the general problem of relativistic dynamics, as
well as for the investigation of various approximations. This formalism has been
extended to an arbitrary form of relativistic dynamics [8] defined geometrically
by means of space-like foliations of the Minkowski space [9,7,10]. The conditions
of the Poincaré-invariance were reformulated in an arbitrary form of dynamics
and a wide class of exact solutions to the equations expressing these conditions
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were established for the interactions originally described by a Fokker-type action.
The transition from the classical Lagrangian to the Hamiltonian description allows
one to consider the relativistic effects in the statistical and quantum mechanical
properties of the particle systems.

The purpose of the present paper is to review some relatively recent generaliza-
tions and specifications of this development. The transition from a non-relativistic
interacting particle system to its relativistic counterpart, which on a more formal
level can be considered as the replacement of the Galilei group by the Poincaré
group as a symmetry group of the system, leads to profound changes in the struc-
ture of the theory. Within the Lagrangian formalism such a change manifests itself
in the necessity of using the interaction Lagrangians depending on derivatives of an
infinitely high order: in the general case the exact relativistic Lagrangian must be
defined on the infinite order jet space [6]. This fact is the Lagrangian counterpart of
the famous no-interaction theorem in the Hamiltonian relativistic mechanics [11]
and has with the latter a common cause lying in the very structure of the Poincaré
group. It also reflects the time non-locality inherent to relativistic interactions. All
the aforementioned exact solutions of Poincaré-invariance conditions correspond-
ing to time-symmetric Fokker-type actions have such kind of non-locality in any
form of relativistic mechanics [12,13,10]. Although there are elaborated several
methods of dealing with such systems (expansions in various parameters [1,14,15],
transition to the center-of-mass variables [16]), it is evident that such a drastic
change in the structure of mechanical description leads to serious difficulties in
the physical interpretation of the formalism, as well as in proving its mathemati-
cal consistency.

But there are important exceptions from the general rule. If the form of dynam-
ics defines a simultaneity relation in the Poincaré-invariant way (i.e. the Poincaré
group transforms simultaneous events into simultaneous ones), then the corre-
sponding invariance conditions of the Lagrangian description allow a large class of
exact solutions containing derivatives of any finite order (not less than unity). Par-
ticularly, in such forms of dynamics we can construct in the closed form a variety
of nontrivial interaction Lagrangians depending on the first order derivatives.

This fact was first established for an N-particle system in the two-dimensi-
onal space-time My within the framework of the front form of dynamics [17].
Then it was extended to the case of a two-particle system in the four-dimensional
Minkowski space My by means of isotropic forms of dynamics with simultaneity
between the events of particle world lines defined by a light cone [18]. The existence
of such “standard” relativistic Lagrangians brings the problem of describing such
kind of systems within the scope of the usual analytical (and, probably, quantum)
mechanics. It allows the formulation of various exact models of relativistic direct
interactions which admit more or less explicit investigations. Such models are the
main subject of this paper.

It is organized as follows. In section 1 we begin with introducing the notion
of the form of relativistic dynamics within the framework of the Lagrangian for-
malism. The general features of the relativistic Lagrangian description in a two-
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dimensional version of the front form of dynamics and in isotropic forms of dynam-
ics are discussed in sections 3 and 4, respectively. The Fokker-type action integrals
which correspond to time-asymmetric interactions are considered in section 5. Sec-
tion 6 is devoted to the construction of the Hamiltonian formalism with constraints
in the isotropic form of dynamics. On this basis in section 7 we investigate in the
most explicit form the motions of two particles under the influence of a time-
asymmetric scalar, vector, and other interactions of physical interest. The limiting
case of straight line motions of such systems is considered in section 8 within the
framework of the front form of dynamics. Finally, in section 9 we present certain
exactly solvable relativistic quantum models of interacting particle systems in the
two-dimensional space-time.

2. Geometrical concept of the forms of dynamics

Let us consider a dynamical system consisting of N interacting point parti-
cles. It is convenient to describe the evolution of this system in the 4-dimensional
Minkowski space My with coordinates z#, = 0,1, 2, 3. We use the metric ||7,,|| =
diag(1,—1,—1,—1). The motion of the particles is described by the world lines
Yo : R — My, a=1,..., N, which can be parametrized by arbitrary parameters 7,.
In the coordinates we have

Ya i Ta > Th(T4)- (2.1)

The velocity of light is taken to be unity.

Since in the Poincaré-invariant theory no particle can move with the velocity
greater than the velocity of light, the world lines 7, must be time-like lines, and
the tangent vectors

daxt
H=_2 2.2
= (22)
obey the inequality
u? = nuubtul = ug - ug > 0. (2.3)

It is well known that the whole physical information about the motion of the
system is contained in the world lines 7, considered as unparametrized paths in
the Minkowski space. Therefore, freedom in the choice of parameters 7, may be
used for the simplification of the description. Particularly, we can choose common
parameter t for all the world lines of the N-particle system. This parameter is
defined by a set of NV relations of the following general form:

Bo(z1(1), . an(t), (@), ..., un(t),t) = 0. (2.4)

The geometrical concept of the forms of relativistic dynamics originated by
Dirac [8,19] can be introduced within the framework of the single-time Lagrangian
or Hamiltonian descriptions in the following way [9,7,10]. Let us consider the fo-
liation ¥ = {¥;|t € R} of the Minkowski space My by the hypersurfaces 3; with
the equation

t=o(x), teR (2.5)
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We require that every hypersurface 3, = {z € M,,;|o(z) = t} must intersect the
world lines 7, of all the particles at one and only one point

ralt) =7 20 (26)

This allows us to consider ¢ as an evolution parameter of the system [19,20]. In
the Poincaré-invariant theory, when we consider only time-like world lines, the
hypersurfaces (2.5) must be space-like or isotropic,

N (0%0)(0"0) = 0, (2.7)

where 0¥ = 0/0x,. Then we have Jyo > 0, and the hypersurface equation (2.5)
has the unique solution z° = ¢(t,x), where x = (2%), i = 1,2, 3. Therefore, the
constraint z,(t) € X; enables us to determine the zeroth component of x,(t) in
terms of ¢ and 2¢(¢). The parametric equations (2.1) of the world lines of the
particles in the given form of dynamics are as follows:

120 = o(t,%,(t)) = ¢, r' = (t). (2.8)

The evolution of the system is determined by 3N functions ¢ +— z%(¢). They
may be considered as representatives (in some local chart) for the sections s : R —
F,t — (t,2(t)) of the trivial fibre bundle 7 : F — R with 3N-dimensional fibre
space M = R*N [21]. The latter constitutes the configuration space of our system.

Three Dirac forms of relativistic dynamics correspond to the following hyper-
surfaces (2.5): 2° = ¢ (instant form), 2% — 2® =t or 2° + 2® = ¢ (front form), and
Nuwr'x” = t* (point form). Other examples may be found in [9].

Now we assume that the evolution of the system under consideration is com-
pletely determined by specifying the action functional

S= / dtL. (2.9)

The Lagrangian function L : J*®°7m — R is defined on the infinite order jet space of
the fibre bundle 7 : F — R with the standard coordinates 2" [22,23]. The values
of these coordinates for the section s : ¢+ (¢, 2% (¢)) belonging to the correspond-
ing equivalence class from J°r are . (t) = d°zi(f)/dt* , s = 0,1,2,.... The
variational principle §S = 0 with the action (2.9) gives Euler-Lagrange equations
of motion

i(—D)S oL =0, (2.10)

s=0 amZ(S) B

where D is an operator of the total time derivative

= . 0 0
o i(s+1)
D= E EU x, —8:52(5) + pre (2.11)

a S
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Let us consider an arbitrary r-parametric Lie group G acting on My by the
point transformations g : My — My:

o = (go)t = 2" + X (x) + o(N), (2.12)
where \*, a = 1,...,r are the parameters of the group. The vector fields
Xo = (0, (2.13)

satisfy the commutation relations of the Lie algebra of group G,
(X, Xp] = €5, a,B,y=1,...,r, (2.14)

with the structure constants c_ .
The action (2.12) of group G on My can be easily extended on the world lines
e by the rule:

Ya = 9% = {97]x € Imr, }. (2.15)

But in the given form of dynamics the world lines v, are determined by the func-
tions ¢ + z'(t) or, in other words, by sections s of the bundle 7. Therefore,
(2.15) induces an action of group G on J*7 by the Lie-Bécklund transformations
[22,24,23]. As it was shown in [9], the generators of such transformations have the

form:
- S ¢l a
X, =330 (2.16)
a $=0 a
where _ . .
tZza = Zza - UZLT]GO&: (217)
and . _ . .
a0 = C(Zl(ta Xa): Naoe = (Xaa) (t: Xa): v, = xfz(l)' (2'18)

The Lie-Bécklund vector fields (2.16) obey the same commutation relations as
(2.14),
[Xa, Xg] = CzﬂX% (2.19)

and commute with the total time derivative (2.11)
[Xa, D] = 0. (2.20)

For the Poincaré group we have the following ten vector fields corresponding
to the natural action of P(1,3) on My:

X! =0, (2.21)
X!, = 1,0, — ,0,, (2.22)

with the commutation relations
(X7, 2 1=0, (2.23)
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B AAE S (2.24)
[XL XL] = nupXL + nleL meL nuaXuLp- (2.25)

s
Thus, we obtain the following realization of the Poincaré algebra in terms of Lie-

Bécklund vector fields (2.16):

s . . o
= D61 — v g ] ——, (2.26)
2.2 Pt
e i i i 9
= Z Z D*[2ap0,, — Tar0;, — Vo (TapTay — xauaau]W: (2.27)
— 0%q

where we must use (2.8) for the elimination of 2%, and we denote
Oy = (0,0)(t,Xq). (2.28)

Making use of the hypersurface equation (2.5) we find:

00 = (00 /Ot) ™ = gogtl, (2.29)

= —u (00a)0Tai) = — 0t Pai- (2.30)
It is convenient to introduce the vector fields
1

H=-XI, Pi=X' J= gUkX]Lk, K= Xk, (2.31)

obeying the following commutation relations:
H,P]=0,  [P,P]=0, [HT]=0,  [Pi,Js]=—ewP, (2.32)
[jz‘, jk] = —ciudl, [Kz‘, jk] = —eiuk, [Kialcj] = gijkjk: (2-33)

Inserting (2.29), (2.30) into (2.26), (2.27), we obtain the realization of the Poincaré
algebra which is convenient for the consideration of the symmetries of a single-time
three-dimensional Lagrangian description [9]:

= S[p,8 , A — 0
H= Z Z D [,Uagpatl]w: (235)

a s=0 8%

s 0
P Z z; D 6] + ,Uagpm(pat ]a "l(s) ’ (236)
s 0
=cim Y Z D[k (6] + vipapat HW’ (2.37)
0

]Ci - Z Z DS[_Spadzj + ’Ug(f,Em' - (pa(pai)(p;ﬁl] (238)

a s=0

Azl
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The symmetry of the Lagrangian description of an interacting particle system
under group G means the invariance of the Euler-Lagrange equation (2.10) under
corresponding Lie-Bécklund transformations generated by the vector fields (2.16).
The sufficient conditions for the symmetry under the Poincaré group have the form
[6,7]:

XL = DQ,, a=1,...,10, (2.39)

with auxiliary functions €2,, satisfying the consistency relations
XaQﬂ - XﬂQa = CZ,BQV' (240)

An important corollary of symmetry conditions (2.39), (2.40) for an arbitrary
r-parametric Lie group is the existence of r conservation laws

DG, =0, a=1,...,r, (2.41)
for quantities (G, which can be explicitly determined in terms of the Lagrangian

function L and auxiliary functions €2,. This statement, which is well known as the
Nother theorem, follows immediately from the identity [22,24]

X I = Zgz 8‘”L+DZZ7TMSD gaaﬂ (242)

which holds for an arbitrary Lie-Bécklund vector field (2.16). Here,

S n—s oL
7Tai,s = Z(—D) W (243)

are the Ostrogradskyj momenta. Making use of the identity (2.42) in symmetry
conditions (2.39), one readily checks that for the solutions of Euler-Lagrange equa-
tion (2.10) the conservation laws (2.41) hold with

ZZ%HD“ — Q.. (2.44)

a

In the general case the Poincaré-invariance conditions forbid the existence of
interaction Lagrangians which are defined on the jet-space J"m with some finite
r (for example, with r = 1). This leads to serious difficulties in the physical in-
terpretation of the formalism, and, in fact, makes it impossible to obtain a closed
form of the corresponding Hamiltonian functions.

In the following we shall consider some exceptions from this rule. The first is
offered by the front form of dynamics in the two-dimensional Minkowski space.
In this case there exists a wide class of interaction Lagrangians for an N-particle
system, which are defined on the first-order jet-space J'7 [17]. The second consists
in the consideration of a more general definition of the form of dynamics, than
(2.5).
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3. Front form of dynamics in M,

In the two-dimensional space-time My the front form of dynamics corresponds
to the foliation of My by isotropic hyperplanes (i.e., lines):

'+ =t (3.1)

In this form of dynamics for an N-particle system Poincaré-invariance conditions
allow the existence of interaction Lagrangians which do not contain derivatives
higher than the first order. The general form of such a Lagrangian function in-
cluding only pairwise interactions is given by [17]:

L=— Z maka + Z Z Tabvab(rabkgla Tabkljl): (32)

a<b

where k, = /T — 204, Tap = Zo — Ty, a,b =1, N, and V,, are arbitrary functions of
the indicated arguments. As a result of the Poincaré invariance of the Lagrangian
function (3.2), there exist three conserved quantities: energy F, total momentum
P, and the center-of-inertia integral of motion K. They have the form [17]:

N
oL oL
E = o=——L, P= - F,
;U ov, g ov,
N
oL
K = —tP o 3.3

The existence of the interaction Lagrangians (3.2) permits one to trace quite
easily the relations between various formalisms of relativistic dynamics and to find
out special features of relativistic particle systems. In spite of the fact that the
Lagrangian function (3.2) does not contain higher derivatives and the transition to
the Hamiltonian description is a usual Legendre transformation, the investigation
of exactly solvable models shows some new features which do not occur in the
non-relativistic mechanics.

In the classical mechanics, the Lagrangian function is determined on the tan-
gent bundle TM, L : TM — R [21]. If the configuration space M is diffeomorphic
to RY, then the tangent bundle is a trivial one: TM = RY x RY. This means that
a single chart with coordinates (x1, ..., n,v1, ..., vy) covers the whole T'M.

For the Lagrangian (3.2) the configuration space M coincides with the whole
RY or at least with the disconnected union of open sets in RY. Hence, one can
expect that there should not be any complications connected with the global struc-
ture. But the Lagrangian function (3.2) is determined on submanifold Q; of T M.
This submanifold is defined by the inequalities

v, < 1/2, (3.4)

which reflect the time-like character of particle world lines in M. Submanifold Q¢
does not have the structure of a tangent bundle.
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Moreover, we do restrict the Lagrangian description to the smaller region than
TM for another reason. The Hamilton principle 6S = 0 leads to Euler-Lagrange
equations if the Hessian is positively defined:

h = det||0*L/0v,0v|| > 0. (3.5)

For the Lagrangian function (3.2) the Hessian is, in general, a complicated function
on coordinate differences and velocities: h = h(rg, k.). Therefore, inequality (3.5)
defines an open region @ C TM =~ R?VN. This region also does not have the
structure of a tangent bundle and for a free-particle system coincides with Q.

It could be unimportant if the system moves inside the region (3.5) and does
not reach the boundary

9Q = {(a,v4) € TM|h = 0,h "1 = 0}. (3.6)

In contrast, the difficulty arises when the system reaches the points of the bound-
ary region (singular points) at a finite value of the evolution parameter ¢ [25].
The theorem of existence and uniqueness for Euler-Lagrange differential equations
breaks at singular points and the Lagrangian system is not defined. Therefore, we
cannot prolong the evolution of the system beyond the critical points within the
framework of the basic Lagrangian description.

The way of overcoming this difficulty is offered by the Hamiltonian descrip-
tion. It is well known that the Legendre transformation is a differentiable map-
ping £ : TM — T*M. The transition from the Lagrangian (3.2) to the Hamil-
tonian formalism may be performed by the usual Legendre transformation. But
this transformation is a diffeomorphism only in the region Q. It maps the open
region Q@ C R?Y to the open one £Q C T*M ~ R!. The Hamiltonian description
is equivalent to the Lagrangian one only in the region £Q [21]. In a strict sense
the motion in the Hamiltonian case is well defined on £9Q only. In other words, we
should consider £Q as a whole phase space of the system.

After the Legendre transformation is performed, the conserved quantities (3.3)
become canonical generators of the Poincaré group P(1,1):

N N
Py = Zpaa K = Zxapaa (37)
a=1 a=1

Py, Ly
= ;p_a+P_+ (rpy, 1/7) - (3.8)

They satisfy the following Poisson bracket relations:
{P+7P—}:07 {Kapzt}:ipzl: (39)

Here we have introduced more convenient in the front form quantities P = E +
P. The classical total mass squared function M? = P, P_ has vanishing Poisson
brackets with all the generators (3.7), (3.8).
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If we deal with the Lagrangian region £Q within the Hamiltonian description,
we shall obtain the same results as in the Lagrangian case. For systems which
reach the points of 0Q, the Lagrangian description leads to disconnected segments
of world lines [26]. To obtain the whole evolution of such systems we have to
determine the motion of the system beyond the Lagrangian region. In the following
we shall demonstrate for certain relativistic models that the Hamiltonian formalism
permits one to prolong the evolution of the system beyond singular points and
obtain smooth world lines in M, as well as in the four-dimensional space-time My
(see sections 8 and 7.1, respectively).

4. Isotropic forms of dynamics

For a two-particle system in My the class of isotropic forms of dynamics cor-
responds to the following definition of simultaneity between the events of particle
world lines [18]:

[21(t) — 22(1)]* = 0 (4.1)

with the supplementary condition
sgufa{(t) — 23(t)] =€, (4.2)

where € = +1. Such a description has been developed within the framework of the
predictive relativistic mechanics in a series of papers by Kiinzle [27-29]. The idea
of this definition of simultaneity was formulated in the classic Van Dam-Wigner’s
work [30]. In the contents of relativistic Lagrangian and Hamiltonian mechanics
the descriptions based on equation (4.1) were elaborated in [18,31,32].

equations (4.1), (4.2) determine the difference of the zeroth components:

21(t) — 25(t) = elxi(t) — xa(1)]. (4.3)
For the definition of the value of the common evolution parameter ¢ we choose the

relation
(20220 _, ”

where o(z) is the same function as in the definition of the geometrical forms of
dynamics (2.5). Therefore, we have

fﬂl(t);rxz(t) :¢<t’ Xl(t)_;_XQ(t)>’ (4.5)
and
. 1 . 1
r) =@t y) + §€Ir|, Ty = @(t,y) — §€|r|- (4.6)

Here and henceforth the variables y* = (af + 24)/2 and r* = 2 — x4 are used.
If we put ¢(t,y) =t as in the instant form of dynamics, we obtain

1 )
x0:t+§(—1)“e|r|, a=1,2; a=3—a. (4.7)
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These relations have been used in [27,28]. When we choose o(x) as in the front
form [p(t,y) = t — y3], we obtain

Ly, (4.8)

T =ty +

In the two-dimensional space-time (4.8) reduces to the geometrical definition of
the front form provided € = sgn(zy — ).

The general structure of the Lagrange function is again determined by the
Poincaré-invariance conditions. Their formulation requires the realization of alge-
bra p(1,3) by the Lie-Backlund vector fields (2.16). In paper [18] it was shown,
that the components of the corresponding fields have the form (2.17), where

aa = Calza(t)] (4.9)

and

o = o) + oo (1572)

Ty + X9

— (@) (") = matey) (4.10)

All the zeroth components here must be excluded by means of relations (4.6). Let
us note the independence of 7, on the particle labels.

It is a matter of simple calculation to verify that such vector fields satisfy the
commutation relations (2.19).

The Poincaré-invariance conditions have the form (2.39) where we can put

Q, = —nal. (4.11)
Such a choice of auxiliary functions €2, enables (4.11) to be expressed in the form:
X,L+ LDn, =0, (4.12)

where the vector fields

Xo = Xo + n.D. (4.13)

generate the point transformation of the extended configuration space F = Rx M.

As in the case of the front form of dynamics in My, equations (4.12) allow a
large class of exact solutions depending on the derivatives of any finite order. If we
suppose that the Lagrangian contains only the first derivatives, i.e. it is defined
on the space J'm, we obtain

. oL
"aat+z<“aaz + (D¢, —ana)av>+LDna_0 (4.14)

a

where (! = (' [z4(1)]-
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The general solution to these equations can be presented in the form [18]:
L =9F(0y,09,w), (4.15)

where
¥ = () — @h)uy, = (2 — 24)ug, = €[r|Do(t,y) —r - y;

1 2
[,? = ulu,, = (Dg@(t, y)— 5(—1)(1611 . v) — 2

n=r/r, r=|r|, V=V — Vg
Oq = Faﬁ — Tyaaua aal/ = uau/ V uga

1 A Ay
w="TT9 {(Dg@(t, y))2 — V- Vy — Z(n . V)2:| = iy, Uy,

and F being an arbitrary (smooth) function on three variables.
In the front form of dynamics in My we have 9 = r, T, = (1 — 2v,)~"/? = k!,
and w is a function on the invariants oy, os:

1 Fl FQ 1 g1 g9
NN AN N A 4.16
v 2<F2+F1> 2(02+01 (4.16)
Invariance conditions (4.12) lead to the conservation laws for the quantities
(2.44). In our case they have the form:

. 0L
Go=> (Co— Valla) 5 = a- (4.17)

a=1 a

Taking into account (4.11) they can be expressed as

2
- 0L

G, =  —— — NoH, 4.18

;C““aug 0 (4.18)

where ,

0L

H= uu— 4.19

> i (419)

Let us introduce the Poincaré-invariant functions:

OF OF

A, =02 9o + (wo, — 0,—1)%, (4.20)
F F
B, = o2 gaa + (wo, + aa)g—w. (4.21)
They are not independent,
0'1(141 — Bl) = O'Q(AQ — Bz) (422)
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In terms of these functions we have:

oL 1 ~ oF oF OF
vt = 5(7"90z'(t: y) —eri) F +vglq0, (Uaa—aa + wa_w> - Uln‘raaaa—w
1 1
_Ewl(t’ y)(Flu(llAl + FQU%AQ) + 5(—1)06ni(F1U?B1 — FQUSBQ) (423)
where )
~ OF
F:F+Zaa87. (4.24)
a=1 a
The function (4.19) is easily found to be
H = wt(t,y)(—rﬁ + Tl Ay + ToudAy). (4.25)

Explicitly, the integrals of motion (4.18) are given by
Go =—CUt,y)oult,y) " H+ Gt y)(—ers F + Ty Ay 4 Tavgi Ag)+

1 . .
+§(<ia — Céa)[FQ(GniUg — UQZ')BQ — Fl(eniu? — ’UM)Bl]. (426)

Inserting the expressions for functions (7 which correspond to the generators
(2.21), (2.22) of the Poincaré group, we obtain the following formulae for con-
served energy F, momentum P, angular momentum J and the center-of-inertia
integral of motion K:

E= QO;IH = —TF + Flu(l)Al + FQUSAQ, (427)
P = —GI'F + F1V1A1 + FQVQAQ, (428)
1
J= y X P+ Erx(Fllel — FQVQBQ), (429)
1
K=yE—p(ty)P— E[Fg(rug — ervy)By — Ty (rul — ervy By]. (4.30)

We note that the expressions (4.27), (4.28) can be united into a 4-vector of mo-
mentum P,, as well as equations (4.29), (4.30) represent a 4-tensor of angular
momentum J,,

PM = GTNF - IALLU/Al - fLQuAQ, (431)
1 . . . .
Jl“’ = 5 (yVPM — yMPV — ry(uluBl - UQMBQ) - T‘M(UlyBl - UQVBQ)) . (432)
Here
E=-Py, Ji=euJ* Ki=Jy, (4.33)

and the zeroth components of the 4-vectors x, and 4, must be excluded with the
help of relations (4.6).

The structure of the motion integrals (4.31), (4.32) agrees with the results
of [27,28] which were derived within the framework of the predictive relativistic
dynamics.

Ten integrals of motion can be used to reduce the integration of equations of
motion to quadratures. But it is more convenient to preform such a reduction by
means of the techniques of the constrained Hamiltonian mechanics.
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5. Fokker-type action and single-time Lagrangians

One of the possible ways to specify the form of the arbitrary functions entering
the general solution of the Poincaré-invariance conditions is the comparison with
the Fokker-type relativistic mechanics [4,5,33], the oldest attempt to construct the
relativistic direct interaction theory which has a relation to the field description.
It is based on the manifestly Poincaré-invariant variational principle formulated
in terms of four-dimensional coordinates and velocities of the particles. Such a
variational principle was first introduced for the electromagnetic interaction by
Schwarzschild, Tetrode, and Fokker at the beginning of this century and developed
by various authors (see [1,5,33] and references therein). Later this description was
extended to other relativistic interactions. The equations of motion following from
such a variational principle explicitly satisfy the demand of relativistic invariance
and can be compared with the corresponding field theory expressions. However,
this approach is not free of difficulties both on physical and mathematical levels.
The cost for a manifestly Poincaré-invariant four-dimensional description is the
necessity to use a many-time formalism which complicates the physical interpre-
tation of its results. Mathematically, it is hard to motivate the obtaining of the
equations of motion from the action integrals which are obviously divergent be-
cause the integration is carried out on the whole length of the world lines of the
particles [4].

Within the framework of Fokker-type mechanics the dynamics of a relativis-
tic particle system is specified in a manifestly Poincaré- and reparametrization-
invariant way on the basis of the variational principle 4.5 = 0 with the action being
given by

S =5¢— Sint, (5.1)

Zma/dTa 2, (5.2)

corresponds to a free-particle system and

znt - ZZ/dTa/dTbAab l‘a,iEb,Ua,Ub) (53)

a<b

where

determines two-particle interactions. Here A, are some functions depending on
the four-dimensional particle coordinates z# and on the first derivatives u#. They
have the form [33,35]:

Aab — uguzUab(xaa Tp, ﬂaa Iab)a (54)

where u# = u#/\/u2 and function U, (which we shall call the Fokker potential)
depends on the following set of the two-body Lorentz scalars:

Oab = (ma - l‘b)2, Oab = (xa - mb) : ﬂa, Wab = ’LLb, (55)
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that is
Uab - Uab(@aba Oaby Obas wab)- (56)

In papers [12,13] it was shown that many-time Fokker-type action integrals
can be transformed into single-time actions with non-local Lagrangians depending
on the three-dimensional coordinates of the particles and on all the derivatives of
the coordinates with respect to parameter ¢. Such Lagrangians provide us with
a useful tool for the consideration of various approximations [12,13,7], as well as
for the transition to the predictive relativistic mechanics and Hamiltonian formal-
ism [14,15]. It was demonstrated [13] that non-local Lagrangians corresponding to
the manifestly Poincaré-invariant action integrals satisfy the Poincaré-invariance
conditions within the framework of the three-dimensional Lagrangian description
of interacting particle systems [6]. The conservation laws which follow from such
an invariance were investigated via the Nother theorem. Moreover, the non-local
single-time Lagrangians which are found on the basis of the Fokker-type action
integrals represent a closed form for a wide class of solutions of equations (2.29)
expressing the requirements of the invariance of the Lagrangian description of
particle systems under the Poincaré group [13,10].

If U, happens to have the special form

Uab - eaebwabé(gab)a (57)

then action (5.1) describes the electromagnetic interaction of charges e, within
the framework of the Tetrode-Fokker-Wheeler-Feynman electrodynamics. Such an
approach has been extended to the interactions which are mediated by massive
scalar and vector fields [4,33,35]:

the scalar case Uab = 296G (0a), (5.8)

the vector case Usb = 9a96wabG**™ (0ap)- (5.9)

In the above, g, is a coupling constant of particle ¢ and G*¥™(x) = G*¥™(2?) is a
time-symmetric Green function of the Klein-Gordon equation

(O + &*)G¥™(z) = 476 (), (5.10)
where O = 7,,,0"0” and & is a mass of the field quanta. Explicitly, we have

G™(1) = 6(2?) — @(x2)2\l;ﬁjl(/<a\/x_2), (5.11)

where O(z) is the Heaviside step function and Ji(z) is the Bessel function of
order 1.

There exists a wider class of physically important Fokker-type integrals which
permit a field-theoretical interpretation of interaction between particles. It corre-
sponds to Fokker potentials of the following form:

U = gagbf(wab)G(Qab)a (512)
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where f(w) depends upon the tensor structure of the fields mediating the interac-
tion, and G(z) is a symmetrical Green function of the relevant wave equation. In
the case of massless fields G(x) = §(x?). Especially, for interactions mediated by
the massless field with the given helicity A = £n we have [36]

fw) =T,(w). (5.13)
One more example is a model of confinement interaction [37], for which

Uw = gagbaababa5(9ab)- (5-14)
=w

Equivalently, this model can be presented in the form (5.12) with f(w) and
the Green function G(z) replaced by the “phenomenological propagator” ©(z?).

Generally, the Fokker-type action with a time-symmetric Green function leads
to non-local in time Lagrangians and integral- or difference-differential equations of
motion. It makes the analysis of particle motions a complicated task (except for the
case of circular motion when the solution may be constructed explicitly [38,39]).
An interesting possibility to obtain ordinary differential equations of motion is to
replace G in the right-hand side of equation (5.12) by the retarded (advanced)
Green function of d’Alambert equation [34]:

G (r) = 20(ex")d(x?), e=+1. (5.15)

This choice in the case of a two-particle system corresponds to the model with the
following particle interaction: the advanced field of the first particle acts on the
second particle and the retarded field of the second particle acts on the first parti-
cle. Such interactions correspond to the exact solutions of the Poincaré-invariance
conditions considered above in the front and isotropic forms of dynamics [17,18,32].
In such models a one-to-one correspondence of points of two particle world lines
appears naturally, namely, of those points which satisfy the light cone condition:

=0, e®>0, ie., er® = |r|, (5.16)

This correspondence allows one to reduce the Fokker-type integral to a manifestly
covariant single-time action,

S = /dT (L + \r?), (5.17)

where the Lagrangian multiplier A is introduced to take into account condition
(5.16) as a holonomic constraint (the boundary constraint er® > 0 is also meant).

An action of this kind occurs when the Fokker potential has a more general
structure:

U= f(w,al,ag)Ge(r), 01 = 019, 09 = 091. (518)
The relevant Lagrangian function reads:
- 52/
L=- Mmay/ 12 — ~———f, (5.19)
; [ - ]

where the dot denotes a derivative on parameter 7. It creates a sufficiently wide
class of two-particle time-asymmetric models. Their study would not be successful
without an appropriate Hamiltonian description.
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6. Hamiltonian description in the isotropic form of dynamics

The Lagrangian description in the configuration space M3 allows a natural
transition to the manifestly covariant Hamiltonian description with constraints [40,
34]. The corresponding phase space T*M? is a 16-dimensional one with the Poisson
brackets [...,...]. They have a standard form in terms of covariant coordinates x#
and conjugated momenta defined in a usual manner:

Pap = OL /D", (6.1)

Since the Lagrangian (5.19) and the constraint (5.16) are Poincaré-invariant,
there exist ten Nother integrals of motion,

2

2
Pp - Zpa;u J;w - Z (xaupau - xaupau) . (62)
a=1

a=1

In the Hamiltonian description these P, and .J,, are generators of the canonical
realization of the Poincaré group.

By virtue of parametric invariance of the action (5.17), the Lagrangian (5.19)
is singular. Hence the canonical Hamiltonian vanishes, while the dynamics of the
system is determined by the dynamical constraint of the following general form:

¢(P27 pia pP- r, pL- T‘) = 07 (63)

which appears together with the holonomic constraint (5.16); here p,, = p, —r,P-
p/P-r; P, and p, = %(plu — pgu) are canonical momenta conjugated to y* i r#,
respectively. Both the constraints are of the first class, and they unambiguously
determine the particle dynamics in My (i.e. the particle world lines).

Since no secondary constraints occur, the system possesses 12 physically es-
sential degrees of freedom. In order to single them out explicitly, two subsidiary
gauge firing constraints are needed. They can be given in the general form:

x(y,r, P,py,t) =0, [x; 9] #0, 0Ox/ot #0. (6.4)

Yy, r,P.p) =0,  [.1°] #£0. (6.5)

These constraints permit one to eliminate redundant time-like variables 2% and
the corresponding momenta p,, and then to pass to the three-dimensional Hamil-
tonian description.

The gauge fixing constraints do not influence the dynamics of the model, but
their choice determines specific features of the final description, namely, the re-
duced phase space P (as a submanifold of T*M3?), the induced Poisson brackets,
and a possible choice of variables, in terms of which these brackets take the canon-
ical form. An explicit form of observables (i.e. the covariant particle positions, the
generators of the Poincaré group etc.), being functions of the canonical variables
of space P, depends on a choice of the gauge fixing constraints, too. Thus, using
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the arbitrariness of this choice one can make an effective influence on the structure
of the final description.
A special choice of the constraint (6.4) in the form

X = X(y7 r, P077_)7 (66)

allows one to avoid a well-known no—interaction theorem [11], that is, to pass to
such a three-dimensional Hamiltonian description of time-asymmetric models in
which the spatial covariant particle positions z (a = 1,2; i = 1,2,3) become
canonical variables.

The three-dimensional Hamiltonian description in terms of covariant variables
is desirable in various aspects. For example, it simplifies the introduction of the in-
teraction with external fields and allows a position representation on the quantum-
mechanical level. But this description is not convenient for solving a two-body
problem, because it does not provide a relevant separation of external and internal
degrees of freedom.

Another choice of the gauge fixing constraint (6.4),

x =19 +tr(AQOAT/OP) — 7 =0, (6.7)

where

Quu = TuPv — TwPus (68)
|P| = VP2, and matrix IA(P/|P])", ]| € SO(1,3), A", P” = 6| P| describes the
Lorentz transformation into the centre-of-mass (CM) reference frame, leads to a
three-dimensional Hamiltonian description within the framework of the Bakamji-
an-Thomas model [41-43]. Within this description ten generators of the Poincaré
group P,, J,.,, as well as the covariant particle positions x# are the functions of
canonical variables Q, P, p, 7. The only arbitrary function entering into expres-
sions for canonical generators is the total mass |P|= M (p, w) of the system which
determines its internal dynamics. For time-asymmetric models this function is de-
fined by the mass-shell equation [18,32] which can be derived from the dynamical
constraint via the following substitution of arguments on the l.-h.s. of (6.3):

P~ M?* p%— —w? P.r—eMp, p.-r— —m-p; here p=|p|. (6.9)
Due to the Poincaré-invariance of the description, it is sufficient to choose the
CM reference frame in which P = 0, Q = 0. Accordingly, Py = M, Jo; = 0 (i =
1,2,3), and the components S; = %ijij form a 3-vector of the total spin of the
system (internal angular momentum) which is an integral of motion. At this point
the problem is reduced to a rotation-invariant problem of some effective single

particle which is integrable in terms of polar coordinates,
p=pe, T™=me,+5e,/p. (6.10)

Here S = |S|; the unit vectors e,, e, are orthogonal to S, they form together
with S a right-oriented triplet and can be decomposed in terms of the Cartesian
unit vectors i, j:

e, =icosp+jsing, e, =—ising+ jcosy, (6.11)
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where ¢ is a polar angle.
The corresponding quadratures read:

t— 1o :/dp or,(p, M, S)OM, (6.12)
o= 0= = [dp 0, (. 21,5) 05 (6.13)
where ¢ is an evolution parameter fixed by constraint (6.7) in the CM reference

frame, and the radial momentum =, as a function of p, M, S is defined by the
mass-shell equation written down in terms of these variables,

S
¢(M27 _7‘-2; 6M,0; _WP) = ¢ <M2, _71'3 - ?, GMp, —’ﬂ'pp) = Uu. (614)

The solution of the problem given in terms of canonical variables enables one

to obtain particle world lines in the Minkowski space using the following formulae
[18,32]:

1, .-
o =t+5(=)"ep, (6.15)
1, . 0 1, . 7 S
Xq = 5(—) p+ Py = <§(—) + fﬁ) pep + VA (6.16)

Particularly, vector r = x; — x5 = p characterizes the relative motion of particles.

7. Time-asymmetric models of particle interactions with long-
range and confining potentials

The explicit form of ¢ (6.3) depends in a complicated manner on the choice of
the original Fokker potential. Its construction is the main difficulty which occurs
in the analysis of time-asymmetric models. Let us split function ¢ into two parts:

st + d)int =0, (71)

where

1 1 T
b = P = 5(m +md) + (m} = mi) = 4y (7.2)

4 P-r
corresponds to a free-particle system, and ¢;,; is to be found. Hereafter we refer
to ¢iny as the Hamiltonian potential.

Only few cases are known when function ¢;,; can be constructed explicitly.
They correspond to the three-parametric Fokker potential

U=Us;+ U, + U. = (a5 + apw + a.0109)G(1) , (7.3)

where ay, «,, a,. are arbitrary constants. The first and the second terms on the
r.-h.s. of equation (7.3) correspond to the scalar and vector field-type interactions
with the coupling constants a, and «,, respectively, and the third term describes
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the confinement interaction (when o, > 0). In the non-relativistic limit this model
leads to the potential U®) = (a, + a,)/r + a.r, where 7 is the distance between
the particles.

The corresponding Hamiltonian potential has the form:

_ 2a5mamg + o(P? —mi —m3) %0, biby o,
eP-r eP-r
2asmymg + (by — a)m3 + (ba — i )m?

- (as - av) eP - T((bl — av)(bz - av) - ag)

¢int =

(7.4)

where )
bo=€(3P-r+(=)"pL-7). (7.5)

It is worth noting that the interactions are combined in terms of the Hamiltonian
potential in a non-linear manner.

For other Fokker potentials approximation methods (such as coupling constant
expansion) should be applied for the Hamiltonization procedure. Especially for the
time-asymmetric analogue of the Fokker potential (5.12) the Hamiltonian potential
in the second order approximation in coupling constant a = g;¢- reads:

Bint = —%af(u) . % <’Z’—F + %) +0(a?), (7.6)
where
h(v) = ((f(v) = M ()" = (f'(v)? (7.7)
and ) ) )
VEP —mi —m; (7.8)

2m1m2

We note that particular cases of (5.12) are the Fokker potentials which corre-
spond to the particle interaction via massless linear tensor fields of an arbitrary
rank (see equation (5.13)) and their superpositions.

Below we consider some most interesting features of time-asymmetric models
described in this section.

7.1. Vector and scalar models

We begin with vector and scalar time-asymmetric interactions. These models
are based on the Fokker-type integrals (5.1) with the Fokker potentials U = U,
and U = U, respectively (see (7.3)). Both scalar and vector models were partly
considered earlier (the former in the two-dimensional space-time only) [44-46,26,
20,28.47]. Our results obtained by means of both the Lagrangian and especially the
Hamiltonian formulations of these models complete the analysis of their classical
dynamics.

The vector and scalar time-asymmetric models present two-body problems ly-
ing near the border line of those problems the solution of which can be presented in
a closed form. A lot of analyses can be made analytically. Especially, turning and
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other important for the integration points are solutions of the third and fourth or-
der algebraic equations, while the quadratures cannot be expressed even in terms
of elliptic and other special functions and, thus, they need computer work. For
simplicity here we limit ourselves to the case of equal particle rest masses my.

In the non-relativistic limit the vector and scalar interactions reduce to the
Coulomb interaction with the coupling constant « (namely, «, and as, respec-
tively). Thus, it is convenient to present the specific features of vector and scalar
models in comparison with the non-relativistic Coulomb system.

The variety of solutions to the equations of motion of a two-particle system
consists of a 12-parametric family. The Poincaré transformations (which form a
10—parametric group) change only the motion of system considered as the whole.
This motion does not reflect specific features of the models. Here we do not dis-
tinguish solutions which differ from one another by the Poincaré transformations.
So, non-equivalent solutions form a two—parametric family. It can be parametrized
by values of total mass M (or energy F in the non-relativistic case) and spin (in-
ternal angular momentum) S, the pair of integrals of motion. Thus, a variety of
all the possible solutions is reduced to some subset of (M, S)—plane. We note that
parameters mg and |«| become unessential when using mg and ry =|a| /mg as units
of measurement for momentum— and position—like variables, respectively. We also
introduce dimensionless integrals of motion y = $M/my and o = S/ |a|. For the
convenience we will speak about various solutions (namely, phase trajectories, par-
ticle trajectories and world lines) as if each of them is placed at the corresponding
point of (i, o)—plane.

First of all we shall consider a vector model. Qualitatively different types of
the phase trajectory (three top graphs of figure 1) correspond to three different
domains D(+), D(—) and D(0) of (u, 0)-plane (the bottom graph of figure 1).

The number and the position of (u,o)—domains on (i, 0)-plane are roughly
in accordance with the non-relativistic case, while the phase trajectories are more
complicated: they consist of few disconnected branches. It does means that there
exist few solutions of the Hamiltonian equations of motion at the same values of
the integrals of motion yu,o.

Only one branch, namely, v* for the attraction case (a < 0) and 4" for the
repulsion case (« > 0), is regular, i.e. it is a relativistic analogue of the phase
trajectory of the Coulomb system and coincides with the latter in a weakly rel-
ativistic domain of (u,o)-plane (i.e., p ~ 1, and o > 1 for the attraction case).
If 4 > 1 (D(+) domain of (u,o0)-plane), both v* and 4" exist and correspond
to unbounded particle trajectories which are analogues to the hyperbolas of the
Coulomb problem. We note that particle trajectories v* have a loop-like shape at
the points of (u, 0)—plane which are close to p = 1, 0 = 1 (figure 2a). This effect
becomes more evident for bounded states v* (existing in D(—)) as the appearance
of the perihelion advance (figure 2b) (states 4" of the repulsion case disappear in
this domain). In the ultrarelativistic case y — 0 (the left lower corner of D(—))
the particles ”stick” together, so that the distance between them becomes far less
than the distance to the centre-of-mass (figure 2¢). On curve F the regular states
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ing types of the phase trajectory (three top
1 graphs).
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particle 2
particle 1

+ centre of mass

Figure 2. Vector model, a < 0 (at-
traction). Regular particle trajectories for
various values of u, o.

a) D(+): p =1.01, 0 = 1.0;

b) D(—): p=0.95, 0 = 0.68;

¢) D(—): p=0.05, 0 = 0.01.

Figure 3. Vector model. | ;0
Pathological world lines ¢ .
Critical points:

[l is a turning point;

e is a collision point;

o is start/end of the evolu-
tion.
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correspond to a circular motion of particles, so that in domain D(0) (from below
curve F) the regular motion is forbidden.

The remaining branches 7%, 7T, 75, and 7" of the phase trajectory do not
have non-relativistic counterparts. They exist and are qualitatively similar on the
whole (p, 0)—plane. These branches present a rather strange motion of particles, so
that the sign of o does not characterize the interaction as attractive or repulsive.
Moreover, it turns out natural to sew up the three branches 7%, v, and ~; into
a unique one 74 (this is shown in figure 1 for the phase trajectory in D(0)), so
that the resulting motion is as follows: the particles move from an infinite distance
between them to their collision, go through one another and go away to the distance
~ 19, draw closer to one another, collide again, and go away to an infinite distance
(figure 3). Branches 7/, and 7¢ and the corresponding world lines are pathological
in the sense that the velocities of massive particles tend asymptotically up to the
light speed. Besides, these solutions contain critical points (namely, collision and
turning points) in which massive particles reach but not exceed the light speed at
a finite time. Nevertheless, the particle world lines turn out smooth both at these
points and everywhere. Another specific feature of the pathological states is that
the evolution of particles is spread over a semiinfinite interval of the coordinate
time while the evolution parameter covers the whole real axes (figure 3).

The scalar model is more intricate, especially for an attractive interaction.
There are more qualitatively different types of the phase trajectory which corre-
spond to a larger number of (i, 0)-domains and which consist of more branches
(figure 4).

Among them only one branch is regular, i.e. analogous to the Coulomb phase
trajectory. It exists in the domains D(1+; 1). Bounded states (in D(1—;1)) present
a motion of particles with the perihelion retardance (unlike the advance in the
vector model). They disappear from below curve F, o > 1/4/5, on which the
particle trajectories become circular.

In contrast to the case of a vector model, the domain of regular states is
bounded not only from below, but also from the left where a motion is not for-
bidden. The border lines X, and J, p > \/% indicate no special changes in
the particle motion except the appearance of critical points (which corresponds to
reaching the light speed) on the particle world lines. These provisionally reqular
states exist in the domains D(1+£;2) and D(1+;3). The effect of the perihelion
retardance grows for them (figure 5a), especially in the domain D(1+;3); here
the particles move as if they attract one another at a large distance, while at a
small distance ~ ry each particle repulses another one by a very (but not abso-
lutely) hard core. The particles bounce back off this core with the light speed, but
their world lines are smooth at this critical point (figure 5b). Going to curve 7,
o < 1/4/5, the particle trajectories tend (as in the regular case) to circular ones,
but in a very strange manner: the particles rebound more frequently (figure 5c¢),
so that in the limiting circular trajectories (which corresponds to J itself) the set
of critical points becomes dense everywhere.

Apart from the regular or provisionally regular states (which present a reason-
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Figure 5. Scalar model, a < 0 (attraction). Various types of bounded particle trajectories.
a) D(1—;2): p=0.95, 0 =0.68;b) D(1—;3): p=0.9, 0 =0.5;

c) D(1—;3) near J : u=0.75, 0 =0.3; d) D(2) near H_ : p = 0.6, 0 = 0.16666;

e) D(4;2) : p=0.3, 0 =0.15.

able behaviour of the particles on the whole) and the pathological ones (which are
roughly similar to those in the vector model), the attraction (i.e. @ < 0) scalar
model possesses some exotic states which correspond to a bounded particle motion
at a relative distance of order ry. These states exist in the domains D(2), D(3%),
and D(4;1) — D(4;2), i.e., far from the weakly relativistic domain, and thus they
have no non-relativistic analogues. For example, in the domain D(2) the particles
move as if each particle repulses another one by the hard exterior of an empty
core inside (figure 5d); in the domains D(4;1) — D(4;2) the trajectory of one of
the particles always lies inside the trajectory of another particle (figure 5e).

The variety of solutions described above is obtained within the Hamiltonian
formulation of the vector and scalar models. Within the framework of the La-
grangian formalism only regular solutions can be reconstructed completely. Be-
sides, this framework partially recovers provisionally regular solutions, namely,
some segments of world lines between the critical points. Other solutions disap-
pear within the Lagrangian formalism.
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In our consideration the Lagrangian formalism is primary with respect to the
Hamiltonian one. Thus, one can conclude at first sight that non-Lagrangian solu-
tions have no physical meaning. On the other hand, the Hamiltonian formulation
of the models is an important link toward their quantization, and non-Lagrangian
solutions may contribute to the resulting quantum-mechanical picture.

These complicated questions are discussed in more detail in sections 8 and
9.1 where we study the classical and quantum mechanics of the vector and scalar
models in M.

7.2. Scalar—vector model

The purely vector and scalar time-asymmetric models are calculatingly cum-
bersome and present a rather intricate particle dynamics. The case of arbitrary
superposition of the scalar and vector interaction is not expected to be simpler
(though it is also solvable). It follows from the complicated structure of the Hamil-
tonian potential (see equation (7.4) with a, = 0).

In a special case of superposition, a,, = ka; = ka, k = *£1, the second term
of ¢ins (7.4) vanishes. This structure of the dynamical constraint simplifies to a
great extent the dynamics of the model and makes it similar, in the mathematical
respect, to the dynamics of a non-relativistic system with the Coulomb interaction.
In this case one can expect the existence of an additional integral of motion, the
relativistic analogue of the Runge-Lenz vector.

Actually, it is easy to guess the structure of this integral of motion working
within the framework of manifestly covariant Hamiltonian mechanics [31]. For this
purpose it is convenient to simplify the free-particle term ¢; (10) of the dynamical
constraint whose cumbersome form obscures the following treatment of the model
and is caused by a descriptional rather than dynamical reason. Let us perform the
canonical transformation (y*, P,, ", p,)+— (z*, P, 1™, q.),

2

m? —m? m? — m2 P-r
Qu:pﬂ_ﬁpw z“:y“—}—%( H—2 P2 Pﬂ): (7-9)

(the variables r# and P, remain unchanged). In terms of new variables the dynam-
ical constraint takes the form:

1 1 m? — m2)? a(P? — (my — kmy)?
¢=1P2—5(m3+m3)+7( S S g ipl_r ) _ o, (7.10)
where
¢ =P'E,JP-r, EL=ruq —1uq; qi-P=0. (7.11)

Then, it is easy to examine that the relativistic analogue of the Runge-Lenz
vector has the following form:

o fae a(P? — (my — kmy)?)
R, =11, (qL'—‘/\l/ + %P 7 r,,), (7.12)
where I = o — P,P”/P?. Tt is indeed an integral of motion, i.e.
[Ru, ) =0,  [R,,7*]=0 (7.13)

489



A.Duviryak, V.Shpytko, V.Tretyak

and satisfies the relations:

[Rua P,,] =0, [Rua JAU] = _nw\Ra + nleA’ (7'14)
1 1 (m? — m3)? i
LRMIL]R:(ZPQ—-§0n%+wn@—+——JZ?E¥L—)H2HVJM7 (7.15)

where the Dirac symbol &~ denotes a weak equality.

The relations (7.14)—(7.15) are similar to those obtained for the Runge—Lenz
vector of a simple relativistic oscillator and Coulomb models in [48]. These relations
are essentially nonlinear and thus their group theoretical treatment is complicated.
In the present paper we limit our study to the case of the CM reference frame in
which the corresponding Poisson bracket relation can be linearized.

For this purpose we reformulate (as in the previous cases) the present time-
asymmetrical model into the framework of the Bakamjian-Thomas model. Then
the Runge-Lenz vector becomes R, = (0,R), where

R=nxS+g(M)p/p, (7.16)

S = p x 7 is a spin of the system, and the total mass satisfies the equation

d(M) — 7 —2g(M)/p = 0. (7.17)

Here
ﬂkﬂEiJﬁ<NP—(my+mﬁﬁ<AF—(my—mﬁﬁ, (7.18)
g(M) = ﬁ(M2 — (my — Hm2)2). (7.19)

Besides, in the CM reference frame the covariant particle positions are the following
functions of the canonical variables:
(_)a 2 2

- @+%_%)+ il ~1,2 a=3 (7.20)
X, = e Pty a=1,2; a= a. .

The Poisson bracket relations for the internal angular momentum (spin) of the
system S and the Runge-Lenz vector R are similar to those in the non-relativistic
Coulomb problem:

{Sz'; Sj} = eiijk, {R“ S]} = giij/ﬂ {R“ Rj} = —d(M)Siijk. (721)
Indeed, when d(M) = 0, equations (7.21) are the relations for generators of
the Euclidian group £(3). In the case d(M) # 0 the S; and the normalized
R; = R;/+\/|d| generate the group SO(4), when d(M) < 0, and the group SO(1, 3),
when d(M) > 0. Taking into account equation (7.21) we obtain the following cases
for the algebra of internal symmetries:

s0(4) for |my —mo| < M < my + ma,
e(3) for M = |m; — ms| and M = my + mao,
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50(1,3) for 0 < M < |my — my| and M > my + mo.

The existence of the Runge-Lenz vector makes it possible to obtain both the
relative and particle trajectories traced by vectors p and x,, respectively, without
an integration. At first we note that these trajectories are flat curves placed on
the plane orthogonal to the spin of the system, i.e. p- S = x,-S = 0. Vector R lies
on the same plane, i.e. R - S = 0. Multiplying equation (7.16) by p one can obtain
the relation:

R-p=gp+5° (7.22)

where S = [S|. Let ¢ be an angle between R and p, i.e. R p = Rpcos¢. Then
equation (7.22) can be reduced to the canonical equation of a conic section

p/p=ecosp—sgng (7.23)

with the following canonical parameter p and eccentricity e:

S? 2M S? R 1+ S?2 M? — (my + kmy)?

= — = s eCc = — = —_— .

P70l Tl = (g — wma)?] r o2 M2 = (my — rimy)?
(7.24)

Searching for the equations of particle trajectories is a similar but somewhat
complicated task. Let us define the vectors:

r, =X, — . R, (7.25)

where

Ca = 2 : (7.26)

Then, one can obtain the relations
- m,
—)R -1, = gro + —52, 7.27
()R-1, = gry + (7.27
which are similar to equation (7.22) and hence can be written down as follows:

Pa/Ta = €COS @, — sgny, (7.28)

where ¢, are angles between (—)"R and r,. Equations (7.28) describe the particle
trajectories as being conic sections of the same shape as the relative trajectory, i.e.
with the same eccentricity e (7.25) but with other canonical parameters p, = T p.
The foci of these conic sections are shifted with respect to the centre of mass
by vectors c¢,R. On the contrary, the non-relativistic particle trajectories have a
common focus which is located in the centre of mass.
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7.3. Models with higher rank tensor interactions.

As it was pointed out above, among time-asymmetric field-type models only
those corresponding to the (arbitrary) superposition of scalar and vector interac-
tions permit the exact hamiltonization. In the case when the rank of the field n > 2,
the transition to the Hamiltonian description and the construction of quadratures
can be done by means of the method of expansion in a coupling constant.

The structure of the second order Fokker potential (7.6) is common for linear
field-type interactions of various tensor dimensions. It specifies the sort of inter-
action by the functions f(v) and h(r) which depend on the integral of motion v
only. Moreover, the nonlinear gravitational interaction can be also described (at
least in a slow motion approximation) by this potential (7.6) (see [49,50]) with

for(v) =202 — 1, (7.29)
hgr(v) = —=2(20% + 1), (7.30)
and oy = —YTm;my where T is the gravitational constant. It is possible to inte-

grate a two-body problem considering f and h as arbitrary first and second order
functions, respectively.

We note that in the second order approximation the quadratures for the present
case can be expressed in terms of elementary functions. For bounded states they
lead to the relative motion trajectory of a very simple form,

1/p =la] + bcos((1—19)p) (b <lal), (7.31)

where a, b, and ¢ are functions of the integrals of motion. It describes an ellipse
which precesses with the perihelion advance

Ap = 216 = —ma’h(1)/S% (7.32)

In the case of a linear purely tensor interaction of arbitrary rank n the perihelion
advance Ay can be calculated by means of the formulae (7.7), (5.12)—(5.13),

Ap = 7(2n* —1)(9192/9)* (7.33)
For the gravitational interaction, using (7.30), we obtain
Ap = 6m(Tmimy/S)>. (7.34)

The spatial particle trajectories calculated by means of (7.16) turn out to be
more intricate than the relative trajectory which is the typical feature of time-
asymmetric models. Nevertheless, their analysis leads to the same value of the
perihelion advance.

We note that these relations for the perihelion advance fit those obtained within

the various quasirelativistic approaches to the relativistic direct interactions [51—
53,1,54].
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7.4. Confinement models

Our simplest version of a confinement model [55] is based on the Fokker poten-
tial U, (see equation (7.3)), the time-asymmetric counterpart of which is proposed
in [37]. This model could be regarded as a classical relativisation of the primi-
tive quarkonium model with the linear non-relativistic potential. Of course, the
relativisation of any non-relativistic system is not unique. There exists in the lit-
erature a wide variety of relativistic versions of the potential confinement model.
The present model has a number of features which are expected for the models of
this kind but which usually are not realized together.

1. The model is a self-consistent relativistic two-particle model. The quantities
in terms of which it is built have a clear physical meaning. Solutions of this model
are free of any critical point and lead to timelike particle world lines.

2. It is well known that a non-relativistic potential model with the linear po-
tential leads to the Regge trajectory with the unsatisfactory asymptote M ~ S2/3.
Here we do not propose a quantum version of the present model, but we make the
estimates of the Regge trajectory from what follows.

Usually the Regge trajectories in the potential models are calculated in the
oscillator approximation [56]. Then, the leading Regge trajectory originates from
the classical mechanics: it coincides with the curve of circular motions on the
(M, S)-plane. In our case this curve is described by the following equation:

M?(1 — 4mi /M?)3/*
6\/§Ozc

(we consider the case of equal particle rest masses my). In the ultrarelativistic limit
M — oo it leads to the desirable linear asymptote:

S =

(7.35)

M? ~ 6V/3a,8S. (7.36)

It is remarkable that this asymptote is achieved only by taking account of relativity.

3. The present model permits the interpretation of an interaction in terms of
some classical fields. It follows from the fact that the Fokker potential U. can be
transformed into an equivalent form,

U, = —2a.wD,(z), (7.37)

where function D (x),
D.(z) = 10(ex)O(?), (7.38)

is the fundamental solution of the equation
%D, (z) = 476 (x). (7.39)

Thus, the interaction of particles can be considered as mediated by the vector field
obeying some fourth order equation. Gauge invariant nonlinear equations of this
kind arise when considering the behaviour of a gluon propagator in the infrared
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Figure 6. Confinement model. Classical Regge trajectories at various rates of the coupling
constants and the rest mass.

region [57]. Static solutions of such equations are used in a sort of the bag model
of confinement [58].

The simplest version of the relativistic confinement model can be appropriate
for the description of light mesons for which the confinement interaction dominates.
To include into consideration also heavy mesons one can modify the present model
by adding to U, the usual vector potential U, (with the appropriate coupling
constant a, < 0) [55]. In the non-relativistic limit this mixture leads to the well
known potential U®) = — |a,| /7 + a,r. The resulting model becomes appreciably
cumbersome but still remains solvable. Pathological solutions which occur in this
model can be unambiguously separated from its regular solutions (which are free
of critical points). As an illustration we present the classical Regge trajectories
for various rates of the coupling constants and the rest mass (figure 6). We note
that all the trajectories tend asymptotically to straight lines. Moreover, the vector
correction does not influence their asymptotic behaviour which is still described
by equation (7.36).

8. Vector and scalar models in M

The analysis of the vector and scalar time-asymmetric models in the four-di-
mensional space-time M was carried out in the previous section for the case of
equal particle masses. The cumbersome form of the expressions and a large set of
possible motions obscures the physical understanding of the obtained results. In
the two-dimensional space-time M, the analysis of dynamics becomes considerably
simpler even for different particle masses. The dynamics in M, seems to correspond
to the motions with the inner angular momentum (spin) S = 0. But as it turns out,
the limit S — 0 is a singular one. Therefore, the consideration of the dynamics of
such models in the two-dimensional Minkowski space M, appears to be interesting.

The Fokker-type action integral with a time-asymmetric variant of the Fokker
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potential (5.12) in the front form in M, leads to the Lagrangian [17]

N
Olklkgf(w)
L=— kg — —————=, 0, 8.1
;m . r > (8.1)
where L L
1 2
e PR .2
v=35 <k2 * k1> (8:2)

The existence of three integrals of motion, which for the Lagrangian (8.1) have the
form

m;  my aB(w)

p. o= M M2 8.3
+ kl + I{JQ r ’ ( )
P. = m1k1+m2k2, (84)
2
K = —t(P+P )23 Tl
a=1 a
(6 LEle ngl 1 kl kg Ilkg LEle ’
. B (. - 8.5
T[<k1+k2>f+2<k2 k1><k1 k2>f},( )
where
B(w) =2 (~wf + (& = 1)) (8.6)

permits one to reduce the solutions of Euler-Lagrange equations to quadrature [26].
But solutions of Euler-Lagrange equations exist only in the region Q C TM ~ R*
which is defined by the inequalities (3.5):

mime (mg@ + mllil)A(W)
hy = - 0 8.7
T T -0 8.7)
where
AW) = —f +wf + (@ = )" (8.8)

The investigation of two-particle models with the time-asymmetric field-like
interactions (see [26,25]) shows that for some values of the parameters the system
reaches the boundary of the Lagrangian region 0Q = {(z,, Ty, va, vy) € R |hy = 0;
h;' = 0}. An exception is the repulsion case (a > 0) if the total mass of the system
M > my + my = m, where my, my are particle rest masses. Then the system does
not reach the singular points and the world lines are smooth timelike curves in
M, [46,45]. The Hamiltonian description allows one to prolong the evolution of
the system beyond the critical points for other values of the parameters and, as a
result, to obtain continuous world lines in the following way [25].

The Legendre transformation £ associated with the Lagrangian (8.1) with
f(w)=wh £=0,1,2,... has the form:

oL m, 2
Pa =le 2 (1 O+ (1 —z)k—;> Wit (8.9)

- o, k., 2r
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Here a = 1,2, a =3 — a.

In the scalar (¢ = 0) and vector (¢ = 1) cases it is possible to solve equations
(8.9) with respect to velocities and obtain from the expressions for conserved
quantities (3.3) the generators of the Lie algebra of the Poincaré group P(1,1) in
the explicit form [59,25]. Separation of the external and internal motions is carried
out by the choice:

Pi=pi+p, Q=K/Py; {Q P }=1 (8.10)
as new external canonical variables. As internal variables we choose

mop1 — M1P2

_ _ P _
f— P_|_ ) q=T m ) {qag} - 17 (811)

where m = m; + ms. Then the Hamiltonian equations of motion become

. M2 )
Q=1/2— o =0 (8.12)
) 1 OM? . 1 OM?

Solving equations (8.9) with respect to velocities and substituting the solutions
into the expression for the Hessian we obtain from (8.7) inequalities which define
the image £Q of the Lagrangian region Q under the Legendre transformation (8.9).
The external canonical variable P, is an integral of motion. The Hessian does not
depend on the external variable (). Thus, all the singularities of the Hessian are
expressed in terms of inner variables and we can transform (8.7) into an inequality
which defines the region i’:@ in the inner phase space: fé C R?. In the scalar
case, if a > 0, the region £Q of the phase plane corresponds to the region ¢ > 0
restricted by the curves y;, yo (see figure 7) which are defined by the equations:

Y1 —mi€ + mymg +moa/qg =0,
(8.14)
Yo 1 Mok + mymg + mia/qg=0.

If @ < 0, then f@ lies between the curves 1;, ys to the right of their intersection
point. -

In the vector case, if a < 0, the region £Q corresponds to the region bounded
by the curves 7;, 72, ¢ =0 (see figure 8) which are defined by the equations:

g12m1+£—05/q20,
(8.15)
Uo:mg—&—alqg=0.

If & > 0, then the indicated region lies between the curves ;, g to the right of
their intersection point. The intersection points of the phase trajectories and the
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curves yi, Y2 (71, 72) correspond to the case when one of the particles reaches the
speed of light: k1 = 0 or ko = 0.

To construct smooth world lines in M, it is necessary to consider the inner
motion in more detail. It is determined by the mass-shell equation

o (P=1)m*m2miq®—2aM?*mimomitq+(—1)"*1 Mia?
where 22 2?2
€1 = (M?*—m )(mz—mz)’ L= —my—my (8.17)
2M? 2mymy
m/la] @) ®m/|a] )
19 ; 19 ,
9 9
»}”” ]- /,’
\ “Il,,,, 1
-1 4 \ -1 4 \
-11; 11
\\ T _ 1 — 2 \ TAT
, |l [Tl
-21 ‘ ‘ - - ‘ ‘ -
-20.0 -10.0 0.0 10.0 20.0 -20.0 -10.0 0.0 100 20.0

Figure 9. World lines in My for an unbounded motion: (my — my)/m =
0.2, M/m = 1.2 ,a < 0. a): scalar interaction (Stephas case [46]); b): vector

interaction (Rudd and Hill case [45]).

We assume that equation (8.16) is true in the whole phase plane R?. The motion
is possible in the region where

D, = (V¥ — 1)m*m2m2q® — 2aM*mymomv’q + (—1)1 M1a? (8.18)

is non-negative. Then, we see that for a bounded motion ¢ belongs to the interval
[¢1, G2], where ¢, g2 are real solutions of the quadratic equation D, = 0:

20 M?(—1)41 20 M?

q1 = (M2 — (ml — m2)2)m, g2 = m (8.19)

In such a manner we get the phase trajectories which lead to smooth world lines
in M, for all the values of the total mass of the system M > 0 and signs of
the coupling constant a [25]. Using phase trajectory equation (8.16) and solving
equations (8.12), (8.13) we obtain a parametric equation for world lines in Mp:

29(q) = t(q) — x1(q) , 25(q) = t(q) — z2(q) ; (8.20)
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21(q) = K/Py + (ma — E(M?,q)) ¢/ Py,
(8.21)

w3(q) = K/Py — (mq + &(M?,q)) q/ Py .

Figures 7,8 show examples of the phase trajectories for the scalar (figure 7) and
vector (figure 8) interactions. Figures 9-11 show the corresponding smooth world
lines.

Unlike the scalar interaction, there exist particle collisions in the vector case.
At the collision points (¢ = 0) the particles mutually change their positions (figure
8, b) and the phase trajectories break up. The motion along smooth world lines
corresponds to the jumps along the momentum axis —oc — 0o (00 = —00).

9. Quantum models in M,

In this section we consider a number of exactly solvable quantum-mechanical
models which follow from certain quantization procedures applied to the corre-
sponding classical counterparts. We construct a quantum description for the in-
vestigated above classical time-asymmetric scalar and vector models, as well as for
the classical models for which the Lagrangian description is not known.

9.1. Vector and scalar interactions

The classical two-particle system with time-asymmetric scalar and vector in-
teractions can be quantized in a purely algebraic way [59] regarding the Lie algebra
50(2,1) as the basic algebraic structure. Let us introduce the following functions
of canonical variables:

1 q oAl —a?)
— [ Age24+ L4 /30 1)
Jo 2 < q§” + A + )
1 q Ak —a?)
= “|Age2 - L 4 -0 "1 1
J2 = q§ ’

where A is an arbitrary constant. They span, under the Poisson bracketing, the
Lie algebra so(2,1)

{JO; Jl} - J27 {Jh J2} — _JU; {JQ; JU} — Jl- (92)
Then, the mass-shell equation (8.16) takes the form:
J+Cp=0. (9.3)

The quantity
J = (ZJ(] + le + dJ2 (94)
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is an element of the Lie algebra of group SO(2, 1) and we use the following notation:

2 M2
a:KnLAmlmQ(mQ—MQ), b:X—AmlmQ(mQ—MQ),
d=(mg—my)(m*—M?), Cy=2ammymy’. (9.5)

It would appear natural that the structure of the linear relation on the Lie algebra
50(2,1) must be preserved after quantization. Then, replacing functions (9.1) with
the Hermitian operators obeying the commutation relations of the so0(2,1) Lie
algebra o X o X o X

[Jo, J1] = i, [J1, Jo] = —iJy, [Jo, Jo] = i1, (9.6)

we obtain the quantum-mechanical equation:
(J+Coly) = 0. (9.7)

This equation was considered in [59] as the basic one for the quantum-mechanical
problem. One can obtain in a purely algebraic way on the basis of equation (9.7)
the mass spectrum

(ME)2 = m? + m2 4 2mimy(1 — (—l)éa2/n2)(71)8/2, (9.8)

n

where
n=(-1++/1+4(-1)a?)/2+s, s=1,2,.. (9.9)

The branch (M,")? has a correct non-relativistic limit. Expansion to the order
1/c? gives the following correction to the energy spectrum:

2 4
My Mo a“*mimso mims\ 1 y
Ern— - (1—4£ )——4 —1)f|
2ms?h?  4mh*stc? [ + m? /2 s(=1) ]
s=1,2,... . (9.10)
In the single-particle limit (m;/mq — 0) we obtain
(—1)/2
E=m (1 - (—l)ea2/n2) —my, (9.11)

which is in agreement with a one-particle problem in the external scalar or vector
field in the case of states with the zero value of the quantum orbital number. The
mass spectrum of a vector type agrees with the result obtained by Barut on the
basis of the infinite component wave equation [60].

The existence of an additional algebraic structure of the mass-shell equation
permits one to quantize the classical problem without ambiguities typical of rel-
ativistic mechanics [61]. Furthermore, such a quantization method allows one to
avoid difficulties connected with the choice of certain representation (coordinate,
momentum, etc.) which is very important for the field-type interactions because of
the difficulties of the global structure of the Hamiltonian description (see above).
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9.2. Relativistic Hamiltonian models in M,

Considering the field-type models we started from the Lagrangian description.
But it is also possible to construct a number of exactly solvable models immediately
within the framework of the Hamiltonian description [62-64]. Contrary to the
models based on the Fokker-type action integral, relativistic Hamiltonian models
are not connected with the field theory. Nevertheless, they are also of interest
for a variety of reasons. They can describe phenomenological aspects of the inner
structure of mesons and baryons [65,66]. Besides, these models can be useful for
the verification of different approximation methods, and may be considered as
an approximation of more realistic models. It appears to be significant for the
explanation of relativistic effects in the well-established non-relativistic oscillator-
like quark models of hadrons.

The standard quantization procedure consists in the transition from a set of
canonical generators to a set of Hermitian operators which determine the unitary
representation of the Poincaré group. So, in the case of two-dimensional space-
time we must put in correspondence with the canonical generators of P(1,1) the
Hermitian operators K , f’+, P_ in some Hilbert space which satisfy the following
bracket relations: o o R

[P,,P ]=0, [K,P.] = +iP,. (9.12)

This determines the squared total mass operator M? = f’+1f’_ and the quantum
problem is reduced to the eigenvalue problem [62-64]:

M*) = M2 4. (9.13)

From a variety of the known paths for such a transition we choose the Weyl
quantization rule [67]. It is necessary that typical of the front form inequalities

Pa >0 (9.14)

be satisfied for this quantization method. It will be noted that these conditions are
destroyed by field-like interactions. The wave functions ¢)(p) = (p|¢)) describing the
physical (normalized) states in the front form of dynamics constitute the Hilbert
space Hi = L?(RY, dpk) with the inner product [62-64]:

1) = [ Ak Ui, (9.15)
where N
dun() =] gz;l@(pa) (9.16)

is a Poincaré-invariant measure and ©(p,) is the Heaviside function. According to
the Weyl rule we get the following operators [62—64]:

N N
er:Zpaa k:izpaa/apa: ]57:]\7[2/]5+ ) (917)
a=1 a=1
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which are Hermitian with respect to the inner product (9.15). They determine the
unitary realization of group P(1.1) on the Hilbert space #%. Here M is determined
by

M? =M} +V, (9.18)

where MJ% is a free-particle part of the square mass operator:
N2
M? = P+Zp—“. (9.19)
_ a

Operator V is an integral operator

(Vo)) = [ dske)V (.50 (9.20

with the kernel

V(p,p) = [H VApap,

o) /
5(P+_pjr)/ V(rpb;pb;g> X

.,
d=1
N N dr
X exp [z > rialpa — p;)] 11 2:. (9.21)
a=2 a=2

The general properties of the Weyl transformation [67] ensure that in the classical
limit these operators correspond to the functions (3.7), (3.8).

The evolution of the quantum system is described in the front form of dynamics
by the Schrodinger-type equation

ov .
i— = HV 9.22
where U € HL and
PSR RA A 1 - o
H: —(P++P,): _(P++M /P+) (923)

Putting ¥ = x(¢, Py)v, where v is a function of some Poincaré-invariant inner
variables, we obtain a stationary eigenvalue problem for the operator M?2. In such
a way a number of exactly solvable two-particle systems were considered in [62,63].
It is convenient to introduce for a two-particle system the following Poincaré-
invariant inner momentum variable [65]

n = (p1 —p2)/2Py , (9.24)

which is linearly related to the variable £ = (my—my)/2+4mn. Then the interaction
part of the squared total mass of the system V' takes the form:

V(Tpla rp?) - F(pa /’7) ) P = TP_|_ . (925)
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The conditions (9.14) lead to inequality || < 1/2 . The Hilbert space HZ decom-
poses into the tensor product HL = hy, ® HL,, , where ”inner” and ”external”

spaces are realized, correspondingly, by functions ¢(n) and x(P,) with the inner
products

1/2

i) =5 [ T (9.26)
~1/2

(0 = [ SEdPOXP) (0.27)

0

Operator M? acts nontrivially only on h;,. It is an integral operator which is
determined by the rule:

- 2m? 2m3
e _ 1 2
(o)) = (o + 2 ) v +
(9.28)
1/2 5
1—4n
d / W /! /
+ [ @y [ o)
~1/2
where kernel W (n,n’) has the form:
Wnn) = o ]O apr (p. 11 o) (9.29)
’ 27 T2 ' '

— 00

The structure of operator M? coincides with the one-dimensional variant of the
corresponding expression in [65], but in the present treatment kernel W(n, ') is
directly related to the classical interaction potential V.

It is convenient to pass from the functions 1 (n) with the inner product (9.26)
to the functions

()
e(n) = NOCE T (9.30)
with the inner product
1/2
(o) = [ dnettnet (9.31)
—1/2

The latter differs from the non-relativistic product only by limits of integration.
The action of M? on the function o(n) is defined by the equation

1/2

)Mm+/MWWWWﬂ- (9.32)

—-1/2

2m? 2m3
1+2n 1-2n

(e = (
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Let us consider two simple examples.
1. d—like potential . Let us put F(p,n) = ad(p), a = const. Then the equation
for ¢(n) has the form [62]:

1/2

2 2
2 my B my _ g , ,
(M 1249 1/2— 77) p(n) = o / dn'e(n') . (9.33)
~1/2
Putting
1/2
/ dne(n) = C (#0) (9.34)
~1/2
we get from (9.33)
_ aC 2 m% m% -1
= o <M 1/2+n 1/2—-n) (9.35)

Substituting (9.35) into (9.34), we obtain the equation

1/2 ) ) 1
2
i:/dn <M2— o ) , (9.36)
a / 1/24+n 1/2—n

—1/2

which describes the eigenvalues of M? for bound states.

f
1.5
: — (V)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A
0 100 /2 2.00 3
— f1(A)]
] |
-1.5 ] |
B 1
I
I
I
I
I
I
I
I
A Z
4.5 ]

Figure 12. é-like potential. f1()) is a graph of the r.-h. side of equation (9.38),
f2(\) is a graph of the r.-h. side of equation (9.39)
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Let us consider the case of equal particle masses (m; = mg = m/2). Then we
get from (9.36)

M
2 M? m? dx
=1- ) 9.37
« 2M / 2 +m?2 — M? ( )
M

If M < m, putting M = msin )\, 0 < A < 7/2, we come to the following transcen-
dental equation for A:

2rm? . 2\
sin 2\

The graph of the right-hand side of this equation (figure 12) shows that there
exists its only solution for —3mm? < a < 0. This corresponds to attraction. The
energy of a bound state has a proper non-relativistic limit.

It is interesting to point out that there also exists a bound state in the case of
a strong repulsion. If M > m, one can put M = mch A, A > 0. Then, from (9.37)
we obtain the following equation:

27mm? 2\
=1+ _)ch 2 )\= A .
5 < +sh2)\>c f2(A) (9.39)

) sin™2\ = f1()) . (9.38)

«

which has the only solution if a > wm? (figure 12). This solution does not have a
non-relativistic limit.

2. Oscillator potential. Let us consider an interaction with a quadratical de-
pendence on coordinates of the following type:

V = wer’pipy = wi(1/4 —n*)p*, wo € R (9.40)

Then, equation (9.13) transforms into an ordinary differential equation of the
hypergeometric type [62,63]:

G - 972) " (n) = 2n¢'(n) +

1 1 m?2 m2
—— 4 — | M? - L 2 =0 9.41
+[ 2+w3< "1/240 1/2—n>]¢(n) (9:41)

with the boundary conditions

li = li "M =0. 42
i u(m)e(n) =0, lim u(n)¢'(n) =0 (9.42)
Equation (9.41) leads to the mass spectrum

2

M? = [m+wo(n +1/2)]° + %. (9.43)

Its nontrivial solutions, which are bounded and square-integrable on the interval
(—1/2, 1/2) have the form:

1 m1 /wo ma /wo
e =Co(yu)  (5on) PRy (e
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In equation (9.44) P™2/«02m1/%0) (9 are Jacobi polynomials [68] and C,, are nor-
malization constants.

In the non-relativistic limit fiwy/mc* — 0, M,, — m + E,/c* we obtain well-
known wave functions in the momentum representation and a non-relativistic en-
ergy spectrum of the harmonic oscillator: E = hwy(n + 1/2).

It is also possible to construct within the framework of the two-dimensional
variant of the front form an exactly solvable quantum-mechanical N-particle model
with the oscillator-like interaction

V=uw} Z Z 72, DaDb- (9.45)

a<b

Function (9.45) gives an N-particle generalization of the two-particle interaction
(9.40), as well as one of the possible relativistic generalizations of the N-particle
oscillator potential. For this system by means of the Weyl quantization rule one can
also reduce the eigenvalue problem (9.13) to a differential equation. The system
with interaction (9.45) has N — 2 additional integrals of motion which mutually
commute and provide the exact integrability of the system in the classical case.
They depend nontrivially on the products of coordinate and momenta variables
[64]. Therefore, in general, the quantization procedure can destroy commutation
relations between these quantities and, as a result, the integrability of the quantum
problem. The Weyl quantization rule transforms classical additional integrals of
motion into a set of quantum integrals of motion in involution. That permits
one to solve exactly the eigenvalue problem and to obtain the eigenfunctions and
eigenvalues of M2 (see [64]):

N N—1 2 N1
M? = . 1/2 2, 9.46
; ;m +wo;(nb+ /2| + = (9.46)

Interaction function (9.45) may be generalized by adding terms which are linear
in the coordinates

V—>V:V+a22rab(pa—pb). (9.47)

Such a system also has additional integrals of motion and permits exact solutions
in the quantum case [64].

Thus, the Weyl quantization rule preserves the commutation relation of Po-
incaré group P(1,1), as well as additional symmetries which are responsible for
the integrability of this model [64]. As it was shown in [61] on the example of a
two-particle oscillator-like model in the two-dimensional variant of the front form,
the Weyl quantization is not the only quantization rule with this property. The
application of different quantization rules preserving the commutation relation of
P(1,1) may result in different observables as, for instance, a mass spectrum of the
system [61].
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10. Conclusion

We have considered the class of isotropic forms of dynamics which admit the
construction of a variety of exactly solvable relativistic models of interacting par-
ticle systems. Most of the models originate from the Fokker-type actions with the
time-asymmetric (retarded or advanced) Green function of the d’Alembert equa-
tion. These models reflect not only the relativistic kinematics but also certain
field-theory aspects of the particle interaction. They demonstrate a complexity of
the relativistic particle dynamics in comparison with its non-relativistic counter-
part. The study of such a dynamics in detail is possible because of the fact that the
considered forms of dynamics allow reformulation of the theory in terms of vari-
ous formalisms and approaches, both three-dimensional and manifestly covariant
four-dimensional.

The physical meaning of time-asymmetric interactions is not so clear. Never-
theless, the corresponding models may be regarded as the first step to some ap-
proximation scheme for finding solutions of more physically acceptable models, for
example, the Wheeler-Feynman electrodynamics and the related theories. Partic-
ularly, in the linear approximation in the coupling constant the time-asymmetric,
time-symmetric and purely retarded (field) approaches yield the same result. On
the other hand, exact solutions of such models provide a better understanding of
the special features of relativistic interactions and interrelations between various
descriptions of relativistic interacting particles.

We wish to thank Yuriy Kluchkovsky, S. N. Sokolov, V. I. Lengel, and J. Llosa
for the stimulating discussions. The ideas and influence of the late Professor Roman
Gaida are evident throughout all the reported investigations.
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I3oTponHi popmMmu AUHaAMIKU Yy PEenAaTUBICTUYHIN Teopil
npsaMuUx B3aemogain

A.[ysipsk, B.WLnnTtko, B.TpeTsk

IHCTUTYT @i3nkn koHaeHcoBaHMXx cnctem HAH YkpaiHn,
290011, NbeiB—11, ByNn. CBEHLjLBLKOrO, 1

OTtpumaHo 12 yepsHsa 1998 p.

CdopmMynboBaHO narpaHxXeBy PENSTUBICTUYHY TEOPIO MPSMUX B3aEMO-
4in y pisHnx dopmax AnHaMiku i BCTaHOBIEHO ii 3B’A30K 3 dopmManiamom
iHTerpanis gji Tuny dokkepa Ta raminbTOHOBOIO MexaHikoio 3 B’a3amu. B
pamMkax i30TponHMX GOpPM ANHAMIKM Yy ABO— Ta YOTUPUBUMIPHOMY MNpPO-
CTOpi—4aci aHani3yeTbCs Pyx KNaCMYHMX OBOYACTUHKOBUX CUCTEM 3 MpPsi-
MOIO B3aeEMOZAIE. TakoxX po3rnanaloTbCs OesKi PENATUBICTUYHI TOYHO
PO3B’A3Hi KBAHTOBO—MEXaHi4HiI Mogeni.

KniouoBi cnoBa: pessstusicTnyHa MexaHika, sarpaHxis gopmariam,
ramisnibTOHIB popmMasiiam, cuctemu 3 B’a3mu, ais Tuny dokkepa.

PACS: 03.20.+i, 03.30.+p, 03.65.Ge, 11.30.Cp
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