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The exact analytic expression for the polaron mass operator in the second
order of the coupling constant is established for the first time. It holds in the
whole energy scale. The peculiarities of the mass operator are analysed.
The renormalized polaron energy spectrum is obtained and analysed in
this approximation.
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1. Introduction

Polaron as a quasiparticle was studied by Feynman, Landau, Pekar, Pines,
Rashba [1] and others. Nevertheless, a lot of physical and mathematical problems
have not been solved yet. As far as the physics of polaron is concerned, the most
important problem concerns the existence of bound complexes [2]. The mathemat-
ical problems of the correct calculation of the electron and phonon spectra in the
region of high energies, quasimomentum and electron-phonon binding are tightly
connected with physical ones. There is an important question about the ranges of
diagram technique convergence for the polaron Green function.

The actual problem is the analytical calculation of the polaron mass operator
(MO) in the higher orders of the binding constants, because the exact numerical
results are obtained only in one-phonon approximation [1-3] while the contribution
of any higher order diagrams is done, as a rule, only evaluatively.

In this paper the exact analytical calculation of the polaron MO is performed
for the first two orders of the coupling constant in the arbitrary range of energies at
T = 0 K. On this basis the dependence of the renormalized energy of the polaron
zone bottom on the coupling constant is derived. Some peculiarities of the MO
behaviour in the region of energies higher than the phonon creation threshhold

(© M.Tkach, O.Voitsekhivska, O.Val’ 401



M.Tkach, O.Voitsekhivska, O.Val’

are studied.

2. Frohlich Hamiltonian. Analytic expression for My (k,w)

It is known that the polaron is described by the Frohlich Hamiltonian [1]

H=Y Eafan+ 3 ity +1/2)+ Y cettiganlba +50), (1)
k

q k,q

where Fp, = E + h;—ff; Qy = w; p(q) = ¢ are the dispersion laws of the electron and
optical phonons, respectively, and their binding function is expressed within the
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At T = 0 K the renormalization of the electron-phonon spectrum is defined by the
polaron Green function Fourier image poles. It is given by the Dyson equation

1
— (3)
w—e—M(k,w)
with the total MO given by an infinite range of diagrams [4].
The expression for the first diagram corresponding to one-phonon approxima-

G(k,w') =

tion reads: (g)
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Introducing the convenient dimensionless quantities
My E h h
mo = ——, =W — =, K - ka = 5
2 Q 3 Q 2 0) Q Qqu (5)
one can obtain
a [ d2Q
K, ¢) = . 6
w6 =55 | G-k —an )
Integration in (6) can be performed exactly and gives the known [2,3] result:
K
o [ arctan N E<1,
ma(K, &) =——21¢ i ek (7)
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At K = 0 one can get
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_ ] A f<b
pe ma(e) = { T E50 ®)
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am ma(e) = { %, ()
= E< 1.

Analytical expressions for one-phonon MO give an opportunity to study the renor-
malized polaron spectrum in this approximation.
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3. Analytical calculation of M} (k,w)

MO of the fourth order in the powers of the binding function which corresponds
to the diagrams without crossing the phonon lines [1,4] is defined as

Mf(k,w) _ Z ( 902((]1)902(QZ) (10)

q1,92 W= Ektqr — Q)Q(w ~ Cktqitgz — QQ>’
according to the rules of a diagram technique. Performing in (10) a transition from
summation to integration with taking into account the dispersion laws, binding
functions and by introducing the dimensionless quantities, (10) one can obtain

a _« d3Q1 d3Q2
m4(K7€) - 4:7T4/ Q% _1_ K+Q1 2] / Q2€ 2— K+Q1+Q2>2]
(11)

Integration in (11) is performed in the spherical coordinate system. Herein, in
the internal integrals 6, is the angle between vectors K + Q1 and Q2 and in the
external integrals 6; is the angle between K and Q7. Insertion of cos#; = x; and
cos fy = x5 and integration over the angles ¢, and y give the following result:

dQ
m4 K g f d.’lflf e 17(K2+2K1Q111+Q%)}2X
(12)
dQ
><_f1 dx2‘0f5727[(K+Q1)2+2(12<+Q1)Q212+Q%].

Two internal integrals in (12) are taken in a general case and the results read:

K a2 d d@Q, X
mi(K, &) = f x1f VE?H2KQia1+Q3[6—1— (K2 42K Q121+Q3))]

am:t&uu/KzJF#émJ“Q1 £ <2, (13)
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V2HEH/ K2 4+2K Q121 +Q3

iln

2

As at K # 0 integrating in (13) cannot be performed exactly, then m$(¢, K = 0)
can be calculated. From (13) it is clear that in the £ < 1 region m$(£ < 1) is a real
function of variable ¢ and is given by the expression

202 T dQ; arctan Q(v/2 — &)1
-/ |

mie s =- Q1€+ Q) o
Using
L =— lim —(r+Q)™* (15)




M.Tkach, O.Voitsekhivska, O.Val’

and taking into account the known integral [5]

o0

I(q,p) = /arctan (qx)

0

dx T
—— = —1n(1 > 1
x(p?+x%) 2p? n(l+gqp),(p>0,q920) (16)

from (16) the expression for mg(¢ < 1) containing only the real part can be ob-
tained

) a2 N 1-¢Y\ v1—=¢
mg(§ <1) = (1—¢)2 [1 <1+ 2—5) 2V1-¢6+v2-9)

The analytical continuation of (17) into the region 1 < £ < 2 gives the real and
imaginary parts

] .

a2

mi(l < €<2) = =

5 — arctan ﬁ

(18)

E {551 +In(2— &) +i
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and extending (17) into the region & > 2 gives only the real part

mi(2 <€) =— o [1n<1+ 5_1> c—1 ] (19)

(6 —1)2 £-2) 2VE-T+VE-2)
Finally, formulas (17)-(19) completely define m$(§) as a complex function of the
real dimensionless energy £ in the whole region of its variation.

4. Analytical calculation of M?(k,w)

The expression for the MO diagram of the fourth order with the crossing of
phonon lines reads:

) v*(q1)¢°(g2)
M4<k7 ) o Z (w — Ek+q1 — Q) (w — Ek+qax — Q) (w ~ Cktqitqz — QQ) (20)

1,92
Using the dimensionless variables one can obtain
mb (K €) = 2 7 @ 7 . $Qs .
drt ) Qi€ =1 - (K +@Q1)% J Q36 —1— (K +Q2)?[( -2 - (K +Q1+Q2)°
(21)

At arbitrary K exact integration cannot be performed. At K = 0 one can pass to
the spherical coordinate system in both integrals. Herein, 6, is the angle between
vectors @1 and Q. Insertion of cosf#, = x and integration over the angles 1, @
and 0, gives the following result for mj(€):

%) 1 00
b _ 2a2 dQ dQ
mi(§) = SF Of i _fl dxbf T T Q200 OB (22)
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From equation (22) it is clear that in the region £ < 1 the internal double integral
has not any peculiarities. Using the integral

dQ _
I(t,a,a,K) = — f da:f (t+aQ?) (et K212KQu1Q2)

= th {arctan Ve + arctan [?%} — arctan [%] }

(23)

for m% in the region ¢ < 1 the following expression is obtained:

d0Q
my(§ < 1) f ONGIESER

—F 2,9
X [arctan \ﬁ + arctan (%) — arctan (% 621117?%2%26)} .

(24)

Integration in (24) can be performed exactly when the arguments of all the arctan
functions are linear in (). Using the expression

201+v/1 —
arctan( @ 5 §> arctan[(y/1 — & + /2 — £)z] — arctan ( * )
14+ Q7 VI—E+v2-¢
(25)
the last term of (25) can be written in the form:
Q1 Qi+3-26)\ _ _
arctan (\/217& 11+Q% ) = arctalgl a1Q) + arctan sy + arctan az (@ = (26)
. Qia1aa3—Q1(a1+az+as)
= arctan [_ 11*Q%(a1a2+a1a3+a2a3) :|
The result of the integration reads:
/o9 — )3
mi(€ < 1) = —2(10125)2 {In [(\/%15\}% ] —In[1 + (ag + ag + a3)/1 — &+ (27)

+(arag + araz + azas) (1 =€) + ajagazy/1 — 53]}

Combinations of the coefficients a, s, ag can be obtained from the (26) formula
and, obviously,

1 3—2¢
¢ a1 + araz +agaz = =1, aptag+az= 5

Inserting (28) into (27) one can get an analytical expression for m4(¢ < 1) as a
real function on ¢ in this region

@ (VI=E+ V1=’ |
20-€F " (V€ +2/T- 9/ -0 -0+

The analytic continuation of (29) into the region 1 < £ < 2 gives both real and
imaginary parts

. (28)

Q1ptry = —

i

(29)

mi(§ <1) = -

a? 1 2(¢—-1 -1
mZ(1<£<2):(§_1)2 51n(3§—2)—iarctan< 2(5_1) g—{)] (30)
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and analytic continuation of (29) into the region £ > 2 gives only the real part

o> | [(VE-2+VE-1)
2(1 — €)2 3¢ -2

m(€ >2) = — (31)

Finally, formulas (29)-(31) completely define m}(£) as a complex function on the
real variable ¢ in the whole range of its variation.

5. Analysis of the results

Figures la, 1b show the frequency dependences of the MO terms (real and
imaginary) calculated by the formulas obtained in the previous sections at o = 1.
From the figures one can see:
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Figure 1. Dependence of the terms fe m (figure la) and Im m (figure 1b)

on ¢ at a = 1. Thin solid curve corresponds to mg, dotted - m$, dashed - mZ,

dashed-dotted - m$ 4 m}, thick solid - ma 4+ mg + mb, respectively.

In the energy region & < 1 all the three terms of MO (my, m%, m}) are real and
negative independently of the a magnitude. Herein, |m$| < |m}| and only when ¢
reaches value 1 from the left-hand side, the relation holds m% ~ mf ~ — o?

3 .
2(1-¢)2
As far as near this point my ~ —ﬁ then
a b
lim mi8) + ma(8) ~— lim -2 =2 (32)
E—lte ma(§) E=1-e1—¢ €

So, in the region ¢ < 1 MO diagrams of order o have a bigger discrepancy than
one-phonon diagrams. Therefore, one has to consider more than the first three
diagrams in the total MO. The region where the account of the first three MO
diagrams is not enough can be evaluated from the condition £’ < & < 1 where £’ is
the solution of the equation

ma(€') = mi (&) +mi(€). (33)
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It is clear that the bigger is o magnitude the bigger is the region. When ¢’ < &,
this approximation is correct.
In the 1 < £ < 2 energy region Remy = 0, Remd < 0, Remf > 0. Herein, as

2 2
Remle e ~ ﬁ? Remfley1qe ~ %, then
a? ?
Re (mo +mg +mi) |esre ~ —’ ~ — — +00. (34)
6 —1 E—1+e €

In the & — 2¢ region Rems(€) ~ a?lne — —oo, Remf(£) ~ a?In2, then
Re (mg +m§ +mb)|e o ~ a’lne — —oo0. (35)

So, independently of the & magnitude in the region 1 < £ < 2, function Re [m2(£)+
m$(€) + mb(€)] has the same qualitative dependence on & as it is shown in figure
la.

It is clear from the analytical expressions and from figure 1b that in the 1 <
¢ < 2 energy region Smmy > 0, Smmg < 0, Smmf < 0. Herein,

%mm2(£—>1—|—5)w\/L_N£Noo

-1 e ’

Smmi(€ o 142) m -8 0t o (36)
4 2e-1)% 2¢3 ’

As in the region £ — 1+ ¢ holds | Sm (m% +mb)| > | Smmsyl, then Sm (my +m§ +
m$) < 0, which proves that the first three MO diagrams give incorrect results in
this energy region.

It is clear from figure 1b that at rather small (o < 1) values in the 1 < € < 2
energy region the condition Sm[ma(§) + mg(§) + m4(€)] > 0 can be satisfied.
Herein, in the same region the condition

£ — Re(my+mi+mb) =0 (37)

is satisfied, too, meaning the possibility of the existence of a strongly damped
bound state in the electron-phonon system (one-phonon repetition).

In the region £ > 2 all the three terms of MO are completely defined and their
frequency dependence is given in figures la,b. It is not to be analysed in detail
because it is clear that in this energy region the MO terms of o order play a
significant role.

Figure 2 shows the dependence of the renormalized energy module (|¢y|) on the
coupling constant « calculated within the dispersional equation

£— Rem($) =0 (38)

in linear (dotted curve) and square (dased curve) approximations. The dependence
which is true in the region of weak and intermediate coupling ¢ (known from liter-
ature [1]) is presented. Figure 2 proves that a diagram of the first order (a') gives
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satisfactory results only at a < 0.4. Taking into account both diagrams of the sec-
ond order in the region (o < 0.9) gives even better results than all other theories [1].
In the region o > 1 these terms make 20 &l

the magnitude of the renormalized en-
ergy obtained in one-phonon approxima-
tion much more exact.

The obtained peculiarities of the MO
behaviour in the vicinity of ¢ = 1 show 1.0
an important role of MO diagrams of a
higher order and not only those having
“dangerous crossings” [2]. The analysis of
this problem is to be made in future tak-

0,5

ing into account partially summed infinite 00 T es 10 15 20
series of MO diagrams.
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AHaniTn4Hi BNacTMBOCTIi MacoBOro oneparopa
NoNsipoOHa B NepLUnX ABOX NOPAAKAX 32 KOHCTAHTOIO
3B’ A3KYy

M.Tkau, O.Bonuexiscbka, O.Banb

YepHiBeubKnii AepxaBHU YHIBEPCUTET, kKadeapa TeopeTUdHOi Pidnkm
274012 m. YepHisuj, Byn. KoutobuHebkoro, 2

OTpumaHo 25 kBiTHA 1998 p.

BrepLue oTpMaHO TOYHMIA aHanNiTUYHNI BUPa3 A1 MacoBOro onepaTo-
panonspoHay Apyromy nopsaKy 3a KOHCTAHTOO 3B’ S3KyY, CnpaBeaivBnin
Ons Beiei obnacTi eHeprili. NpoaHanizoBaHo 0CoBAMBOCTIi MAaCOBOIo one-
patopa. 3HangeHo i NpoaHani30BaHO NEPEHOPMOBAHNI EHEPTreTUYHUI
CNEeKTP NONASIPOHA Y LbOMY HABIMXKEHHI.
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