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The influence of local atomic static displacements (ASD) on the short range
order formation in binary alloys is investigated within the microscopic the-
ory. Explicit expression for the binary correlation function Fourier compo-
nents (prp—_) is obtained by the collective variables method. The theo-
retical results are illustrated by numerical calculations performed for disor-
dered alloys of the K-Cs and Ca-Ba systems. A drastic effect of the ASD
on the (prp_x) -function behaviour in the first Brillouin zone is observed.
The ASD smooth the dispersion of the (pgp_g) -function. Negative values
of the short-range order parameter on the first coordination sphere indi-
cate a trend to the ordering in alloys of the systems investigated. The ASD
are shown to favour the ordering tendency. The theoretical conclusions
concerning the temperature influence on the short range order parameter
perfectly agree with the experimental data from the treatment of the X-ray
diffuse scattering in binary alloys.
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1. Introduction

It is well known that the short-range order (SRO) in binary alloys is caused by
the difference in effective interactions between ions of two kinds, namely, see [1,2]

(oep—r) ~ Va(k) , (1)

where (prp_k) and Vo(k) are the Fourier components of the binary correlation
function and the ordering potential

Va(R) = Vaa(R) + Vep(R) — 2Vap(R) (2)

respectively, index j = A, B denotes a sort of an alloy component. The SRO
influences different alloy characteristics, such as electrical conductivity, magnetic
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and galvanomagnetic properties [1,3]. A close correlation between the SRO and
mechanical properties is also observed [3]. That is why, investigation of the factors
which alter the SRO in alloys is an urgent problem. Atomic static displacements
(ASD) could be regarded as one of such factors.

Formation of metal solid solutions is accompanied by the arising of local lat-
tice distortions. The latter are characterised by the ASD with respect to the ideal
mean lattice sites. The ASD have a drastic effect on the X-ray (neutron) diffuse
scattering [1]. They determine a lattice parameter dependence on alloy concentra-
tion. However, the mutual influence of the ASD and the SRO on each other has
not been investigated yet within the microscopic theory.

Study of the ASD effect on the SRO formation is the purpose of the present
paper. It is organized as follows. Derivation of explicit expressions for the alloy free
energy by the collective variables method is given in section 2. Special attention is
paid to the original moments of the considered approach. Behaviour of the binary
correlation function Fourier components in the Brillouin zone principal directions
is analysed in section 3. The theory is illustrated by numerical calculations carried
out for the alloys of K —C's and C'a— Ba systems. Calculations have been performed
for two cases:

1) with the ASD taken into account;

2) in the rigid lattice approximation, that is without the ASD.

The influence of the ASD on the SRO parameter ag values is also considered
in section 3. The dependence of ar on temperature and alloy concentration is
presented. Conclusions in section 4 complete the paper.

2. The binary alloy free energy

Consider a substitutional binary alloy. Atoms of two kinds A and B are placed
arbitrarily on N crystal lattice sites. Their configuration is given by the set {og}
of numbers or which equal +1 if the site R is occupied by the A-kind atom and
equal -1 otherwise. The alloy Hamiltonian within the pair interatomic interaction
approximation, after summing over electron states [2,4] has the form:

1+0Ri 14+oRr. 1+0Ri 1_0'Rj

H(UR) = ﬁzRi,Rj{zq[(vAqu) 2 P) : +VAB<q) 2 P +

(3)

1—oRr. 1+oR. 1-or. 1-0R; ; R
+VBa(q) 2Rl 2R] + Vie(q) QRZ 2R] >QZQ(RZ R])]}-

Here V;;(q), i,j = A, B is the Fourier transform of the effective interaction between
ions of ¢ and j kinds, Vap(q) = Vsa(q). The explicit expressions for V;;(q) are given
in [2,4,5]. Let us take into account the fact that the local ASD are present in an
alloy. Then, the coordinates of the lattice sites are the following ones:

R=R"+4R (4)

where 0R are the ASD with respect to the sites R’ of the ideal mean lattice.
Assume that 0 R does not depend on the kind of an atom and perform the Fourier
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transformation of d R:

SR = —— > [dRyexp(ikR") + IR_g exp(—ikRY)| , (5)
keBZ
Symbol k € BZ means that the wave vector k takes N values in the first Brillouin
zone (BZ). The ASD (6R;; as well as 0 Ry,) are random quantities in a disordered
alloy. Let us separate Ay, a configurationally independent part of d R, by means
of the following relationship [5]

Ay
5Rk = Z7k (pk — \/N(SOJC) A_k = —Ak. (6)

Here 1
Iy — — E OR €X —ikRiO . 7
Px N R P( ) ( )

is the k-th Fourier component of the occupation numbers, dg, the Kronecker
symbol. Equations (6) and (7) indicate that the Fourier components of the local
lattice distortions are caused by fluctuations of the impurity concentration waves
with respect to the average value Cz = Ng/N where N;, i = A, B is the number of
i-kind atoms. Component B is regarded as an ”impurity”. One should emphasize
that the approximation (6) works very well in the whole region of C'z values (0 <
Cp < 1) in such alloys where dependence of the mean lattice parameter on Cp is
close to the linear one [1,5].

Let us expand the factor exp(igR) in (3) in power series of the static displace-
ments § R, restricting ourselves to the square of §R. The alloy Hamiltonian H (o)
(3) with allowance for (4) to (7) in the harmonic approximation [5] takes the form

H(og) = Ho(p) + > [Hi(k,0Ax, px) + Ha(k, Ay, )], (8)
keBZ
where
R o1 A
Ho(p) = NVo+ VNVipo + 5 Y Va(k)prpx (9)
keBZ

is the Hamiltonian of an ideal mean lattice without displacements. The explicit
expressions for potentials V, V; and V,(k) are presented in [2,5]. They have the
following physical meaning: Vj is the part of alloy energy which does not depend on
atomic configuration, V) indicates the difference between alloy component atomic
characteristics [5] and V,(k) is the Fourier transform of the ordering potential.

The addends Hi(k, Ak, px,) and Hs(k, Ag, pr) are linear and quadratic in Ay
amplitudes, respectively. The explicit equations for them see in [5].

We proceed from the grand partition sum to find the free energy

} . (10)

The following notations are introduced in (10): 8 = (kgT)~' is the inverse tem-
perature, p; — the chemical potentials of the alloy components. Symbol T'r(,, in

7 = Tr{sp} €XP {—B [H(a) — Z 14 N

i=A,B
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(10) means summing over all the possible values of the occupation numbers {og}.
One can rewrite equation (10) with a view of (8) and using the rigid ideal lattice
of an alloy as a reference system, as follows:

Z = exp [~ NBVo(1)| Tropny exp | —BVi(u zaR g Z Bk, Ay)ir

2 vepz
(11)
Details are given in [5]. Here

~ 1 1 ©0)
Vo(u) = Vo — §(MA + pB) + ZAOCP Ao, (12)
. 1 1 .
Vilp) = Vi = 5(pa — pp) + 5 PoAg — 5 Ag®T A (13)
~ 1
Va(k, Ay) = Va(k) — PrAg + §Akq)(0)Ak (14)

are the addends of the alloy Hamiltonian (8) renormalized by the ASD and

= 1S UG -~ KVan(G k)~ Von(G — K]
—(G+k)[VAA(G+k) —VBB(G-I'I{?)]} . (15)

The next notations are accepted in (12)-(15): G are the reciprocal lattice vectors,
and @) — the force constant matrix of the reference system. The correlated average
crystal (CAC) in the rigid lattice approximation is used as a reference system. One
can get familiarized with the CAC term value in [2,6]. The expression for ®© is
given in [6], also see appendix 2 in [5].

The grand partition sum (11) is calculated by the collective variables (CV)
method [2,7]. Equation (11) is rewritten in the following way within the CV method
(2,7,8].

keBZ keBZ

ZzeXp N/ﬁ"Vo / /exp [——B S Valk, Ag)prp- k:] ) II dpw (16)

where

J(0) = Triomy I (o, o) exp [—ﬁmu) > aR] an)

is the transition Jacobian to the CV space and

1
p, O'R H ) < P — —F— ZO’R exp(—sz)) (18)
keBz VN ‘R
with 0, the Dirac delta function.

The general ideas of the CV method are presented in [2,7]. We omit them
here and pay attention to the original moments of the given paper. Including
potential Vi(u) (13) into the transition Jacobian (17) is an important feature of
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the approach considered here. It allows one to achieve an adequate description of
the alloy physical properties within the simplest Gaussian approximation of the
CV method and the rigid lattice approximation [8].

Calculation of the grand partition sum (16) can be performed analytically in
the Gaussian approximation. Details of the consideration are omitted because they
are similar to those, given in [5,8]. Then the grand potential per one atom equals

. s - _ 1 Va(0)M?
F(T, ) = —kgTN'InZ =Vo(p) — B (In2 + M) + ——=2—L
(T 1) B o(p) =B ( 0) 21 + 8V5(0) My
+(2NB)™ Y Infl + BTa(k, Ag) M) | (19)
keBZ
Here
M, = 0 In cosh n=20,1,2... (20)

Oz z=BV1 (1)

are cumulants [2,7]. It is seen from (20) and (13) that M, (n = 0, 1,2) are complex
functions of temperature, potential V; and alloy component chemical potentials.
Equation
OF  OF
Cp—Cpg=—-— — — 21

R P (21)
determines the difference of alloy components chemical potentials at the given
alloy concentration. The explicit form for equation (21) is presented in [8].

One has to perform the Legandre transformation

F(T.C)= F(T,m) + Y wC (22)

i=A,B
and solve equation (21) to find the alloy free energy F(T,C) as a function of

temperature and component concentration. Then,

-1 Va(0)M? . 1
F(T,C)=Vo+-——221 4 372+ My — — In[1+
=t 21+ BV2(0) M, "2N keZBZ |

2 2
1 BVa(k, Av) l BV5(0)M, ]
N ez 1+ 5‘72(’37 Ay) M, AL 1+ 5‘72(0)]\42 ’ (23)
where
Vo = Vo(p) + %(MA + ps),
Vi = Vi) + 5 (s — ), (24)
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and = = BVi(u), see (13), is the solution of the system of equations
OF(T,C)
A 2
8Ak O’ ( 5)

and (21). Solution of equation (25) is given in [5]. We present the final result
omitting details

Pyeéxn

Ay = Z (_2 >€k,\ . (26)
T Wi,

Here e\ and Wi, are eigenvectors and eigenvalues of the force constant matrix

®©) | respectively, A = 1,2, 3 — the polarization index and

i=A,B

is the average ion mass, see [2,6] for details. Analyse result (26). One can conclude
from (15) and (26) that the ASD amplitudes Ay are small if the pair interatomic
potentials V44 and Vpp Fourier components are similar: V44(q) =~ Vpgp(q). Really,
Py, =0 at Vaa(q) = Vpp(q) and then A, = 0. This conclusion allows one to clear
up the nature of the well-known phenomenological Hume-Rothery rules [9] on the
microscopic level. Using equations (13), (24) and condition (25) one can prove that

Vi=W. (28)

It means that the potential V; as well as the cumulants Mn (20) do not depend
explicitly on the ASD amplitudes A. This result simplifies very much the calcu-
lation of the alloy free energy (23). Let us analyse more carefully equation (23)
for the alloy free energy. The third term in (23) proportional to 37! is entropy
(S), while the rest of the terms define the alloy internal energy (F). One can get
the next formulae for F and S considering equations (23) and (21) in the high
temperature limit: SV5(k) < 1.

1
Eig=Vo+Vi(Cy —Cp) + 5‘/2(0)(CA —Cg)?, (29)
Sz'd == —kB Z Cz lIlCZ . (30)
i—A.B

Equation (29) determines the energy of an average crystal: all the lattice sites are
occupied by mean ions which interact via the mean potential.

v =v404 +vpCE

with v; — the potential of an i-kind ion. Equation (30) defines the configura-
tional entropy of an ideal binary solution. Thus, the high temperature limit of
the CV method Gaussian approximation is equivalent to the well-known W.Bragg
— E.Williams theory which ignores the pair atomic correlations. By the way, the
difference

AF =F(T,C)— Ejq+ TS

with F/(T,C) (23) indicates contribution of the SRO effects to the alloy free energy.
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3. Pair correlation functions and short-range order in alloys of
K-Cs and Ca-Ba systems

The Fourier components of the binary correlation function are important alloy
characteristics. They are needed for the calculation of the X-ray (neutron) diffuse
scattering intensity [1,3]. Besides, they are related to the SRO parameter

1
R 40y,

> (prp-k) exp(ikR) . (31)

€BZ

Here ap is the value of the SRO parameter on the R-coordination sphere, (pgp_g) —
the Fourier components of the binary correlation function. Calculation of (pgp_k)
does not face any difficulties within the Gaussian approximation of the CV method
[2,7]

(pup-s) =~ (6 MZ 1)t BTk, Ag) M) (32)

L3Va(k))
Potential V;(k, A) (14), renormalized by the ASD, takes the form [10]

Va(k, Ag) = Va(k) — %Z (Prein)®

e, (33)
which is ‘72 < V5 in the whole first Bril-
louin zone except for the points of high
symmetry where vector Py = 0 [5].
One can notice from (32), (33), (20)
and (26) that the binary correlation
function Fourier components directly
depend on the ordering potential, tem-
perature and the ASD. Besides, they
are complicated functions of potential
V1 and the alloy concentration via cu-
mulant M5 and the equilibrium atomic
volume.

In the present paper the theoreti-
cal results are illustrated by numeri-
cal calculations performed for the al-
Figure 1. Behaviour of the ordering po- loys of K — C's and Ca — Ba systems.
tential Fourier transform V3(k) in the  Solid solutions of the body centred cu-
[111] direction in alloys of K —C's system  pjic (bee) structure exist in wide ranges
at T' = 250K. Dashed and f.ull CULves — of temperature and alloy concentration
show résults obtained, respectw?ly, with in the both systems [11]. The renormal-
and without the ASD taken into ac- ized potential %(k,Ak) (33) for K—C's

count. Curves 1 refer to alloy K 7C'sg.3
while the curves 2 correspond to alloy and Ca—Ba alloys are shown by dashed

Ko.1Cso.9. lines in figures 1 and 2, respectively.
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The bare ordering potentials V;(k) are
depicted by full lines. Details of the cal-
culations are omitted because they are
the same as those in [2,5,8]. The po-
tential Vy(k, Ag) has the absolute min-
imum in the [111] direction in the al-
loys of the systems investigated. The
ASD smooth the dispersion of the or-
dering potential V(k) in the first Bril-
louin zone, especially in the [100] di-
rection. It is seen from figures 1 and
2 that an additional minimum appears
owing to the ASD in the [111] direction
in the alloys of K — C's and C'a — Ba
systems. Potential V;(k, Ay) (33) is one
tenth of Vi(k, Ag) in K — Cs alloys,
compare figures 1 and 2. Dependence of
Va(k, Ag) on the atomic concentration
is more pronounceed in K — C's alloys
than in Ca — Ba ones.

Behaviour of the binary correlation
function Fourier components (pgp_g) in
some principal symmetry directions has
been investigated according to equation
(32) for K—C's and C'a— Ba alloys. Cal-
culations have been performed with the
ASD taken into consideration (dashed
curves), and without them: A = 0
for k € BZ (full curves), see figures
3-6. Drastic effect of the ASD on the
(pp—k) = f(k) behaviour is observed,
especially for C'a— Ba alloys, see figures
3 — 6. The ASD encourage the gain-
ing of the (prp_k) values in the whole
first Brillouin zone. They smooth dis-
persion of (pgp_g) in the alloys stud-
ied. Thus, the alloys become more sim-
ilar to the ideal solutions owing to the
ASD, especially at high temperatures.
The {(prp_x) = f(k) functions strongly
depend upon the atomic concentration
and temperature in alloys of the both
systems investigated, see figures 3-6.
Dispersion of (pgp_r) becomes more

Figure 2. Behaviour of the ordering po-
tential Fourier transform Vi(k) in the
[111] direction in alloys of Ca — Ba sys-
tem at T = 750K. Notations are the
same as in figure 1. Curves 1 refer to
alloy CagsBags and the curves 2 cor-
respond to alloy CagoBags.

0.50

0.35 Frrrrrrre S S — S

Figure 3. Temperature effects on the bi-
nary correlation function Fourier compo-
nents in the Ky 7C'sg 3 alloy. Dashed and
full curves show results obtained, respec-
tively, with and without the ASD taken
into account. Curves 1 refer to T' = 300K
and curves 2 correspond to T = 200K.
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visible at the decrease of temperature, see figures 3-5. The (prp_r) = f(k) func-
tions display the most interesting behaviour in the [111] direction. The largest
effect of the ASD on (pgp_g) is observed in the [110] direction of the first Brillouin

zone, see figures 3 — 6.

0.52

0.48 -~

<pk£—k >
S
1

040 {— - -~~~ " T T T T - - -~

0.36 Srrrrreee T AR AR RARRRRRRR  ERRRRA T

Figure 4. The same for the Ky 1Csgg al-
loy.

The values of the SRO parameter
ar on the first coordination sphere R;
have been calculated according to (31).
Tables 1 and 2 demonstrate depen-
dence of ap, upon temperature and
alloy concentration for K — C's and
Ca— Ba systems. The ag, negative val-
ues indicate a trend to ordering in the
alloys of the both systems. The ASD
favour this tendency: the values of ap,
are smaller within the rigid lattice ap-
proximation, see tables 1 and 2. Tem-
perature has a stable effect on ap,.
The SRO parameter ap, increases with
the decrease of temperature. This ten-
dency is most pronounced in alloys with
r=0.65=-0.7and z =0.5in K,Csy_,

and Ca,Ba;_, systems, respectively, see tables 1 and 2. The obtained results the-
oretically agree with the conclusions about the temperature effect on the SRO
parameter in alloys, drawn in [3] and based on the experimental investigations of

the X-ray diffuse scattering.

1.7

[100]

[111]

Figure 5. The same for the Cag 5Bag 5 alloy. Curves 1 refer to 850K while curves

2 correspond to T'= 650K.
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Figure 6. Dependence of the binary correlation function on atomic concentration
in the Ca — Ba system alloys. Direction [111] of the Brillouin zone. Notations
are the same as in figure 3. Curves 1 refer to the Cag2Bag.g alloy and curves 2
correspond to the CaggBag.o alloy.

Table 1. Dependence of the short-range order parameter values on the first coor-
dination sphere upon temperature and alloy concentration in K,C's;_, system.

Abreviations RLA and ASD denote respectively that calculations have been per-
formed within the rigid lattice approximation or with the atomic static displace-
ments taken into account.

Concentration of potassium, x
Temperature 0.1 0.3 0.5 0.7 0.9
T, K RLA | ASD | RLA | ASD | RLA | ASD | RLA | ASD | RLA | ASD
300 -.216 | -.228 | -.279 | -.294 | -.307 | -.336 | -.298 | -.328 | -.292 | -.281
250 -.239 | -.252 | -.298 | -.320 | -.348 | -.379 | -.346 | -.385 | -.337 | -.366
200 -.258 | -.272 | -.324 | -.345 | -.378 | -.432 | -.382 | -.453 | -.368 | -.421

Table 2. Values of the short-range order parameter on the first coordination
sphere in Ca,Baj_, system and their dependence upon temperature and alloy

concentration.
Concentration of calcium, x
Temperature 0.1 0.3 0.5 0.7 0.9
T, K RLA | ASD | RLA | ASD | RLA | ASD | RLA | ASD | RLA | ASD
850 -.203 | -.213 | -.269 | -.281 | -.307 | -.331 | -.298 | -.321 | -.225 | -.226
750 -.219 | -.237 | -.287 | -.309 | -.348 | -.376 | -.295 | -.344 | -.238 | -.254
650 -.244 | -.264 | -.316 | -.341 | -.378 | -.413 | -.322 | -.352 | -.259 | -.286
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4.

Conclusions
The given results can be summarized in the following statements.

1. The ASD have a drastic effect on the binary correlation function Fourier
components (pgp_g) behaviour in the first Brillouin zone. They smooth the
dispersion of the (pgp_r) = f(k)-function.

2. Tendency to ordering becomes more pronounced owing to the ASD in the

alloys of K — C's and C'a — Ba systems.

3. Dependence of the SRO parameter on temperature obtained theoretically

agrees with the conclusions drawn from the treatment of X-ray diffuse scat-
tering experiments.
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CtaTuyHi 3MiLLLEeHHA aTOMIB Ta IXHiA BNAMB Ha 0/1IN3bKUNA
nopsAoK y cnnasax

3.lypcbkuin, KO.Xoxnos

IHCTUTYT @i3nkn koHaeHcoBaHnx cuctem HAH YkpaiHu,
290011 m. JlbBiB, ByN. CBEHLjLBKOrO, 1

OTtpumaHo 26 civHa 1998 p.

B pamkax MikpoCKoniyHOI Teopii AOCNIOKYETLCH BIMJIMB NNOKAJIbHUX CTa-
TUYHUX 3MiLLLeHb aToMiB (C3A) Ha popMyBaHHS 61M3bKOro NopsaKy B Oi-
HapHWX cnnasax. MeToa4oM KONEKTUBHUX 3MIHHUX OTPUMAHO SIBHUI BU-
pas ans dyp’e-kOMNOHEHT GiHapHOI KopenauinHoi yHKUIT (prp—k) . Pe-
3ynbTaTy TEOPII INIOCTPYIOTLCS YACOBUMM PO3PAXyHKAMN, BAKOHAHUMM
Ans HesnopsakoBaHux cnnaeis cuctem K-Cs ta Ca-Ba. CnocTtepiraetbcs
cunbHuii ecpbekT C3A Ha NOBERIHKY (prp—k) —DYHKLUITY NnepLui 3oHi bpun-
noeHa. C3A 3rnafxyloTb ANCNEPCIIO (prp—k) ~-DYHKLI. Big’€MHi 3HaveH-
HA napameTpa 6M3bKOro NopsaKy Ha NepuLlin KoopAuHauinHiA chepi
BKa3yl0Tb Ha TEHOEHLIIO [0 BMOPSAKYBAHHSA Yy ciiaBax AOCHioKYBaHMX
cucteM. lNokaszaHo, wo C3A cnpusaioThb Ui TeHAEHLii. BUCHOBKK Teopii
CTOCOBHO BMJIMBY TeMMepaTypu Ha napameTp 6M3bKOro NopsaKy Ayxe
Dobpe y3roaxyloTbCsl i3 eKCrnepMMeHTanbHUMU JaHUMW, OTPUMaHUMMU i3
06p0o6KN ANDY3HOrO PO3CISHHA PEHTIreHIBCbKUX NMPOMEHIB Yy BiHapHUX
cnnaeax.

KniouoBi cnoBa: atomMHi ctatnyHi 3miLLieHHs1, 651M3bKui rMopsaok,
HeBropsigkoBaHwi criias, GiHapHa KopensuiiHa QyHKLIS, BilbHa
eHeprisi

PACS: 05.70.Ce; 65.50.+m
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