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During recent years the interest to frustrated magnets has grown considerably. Such systems reveal very pe-

culiar properties which distinguish them from standard paramagnets, magnetically ordered regular systems (like 

ferro-, ferri-, and antiferromagnets), or spin glasses. In particular great amount of attention has been devoted to 

the so-called spin ices, in which magnetic frustration together with the large value of the single-ion magnetic an-

isotropy of a special kind, yield peculiar behavior. One of the most exciting features of spin ices is related to 

low-energy emergent excitations, which from many viewpoints can be considered as analogies of Dirac's mono-

poles. In this article we review the main achievements of theory and experiment in this field of physics.  

PACS: 75.10.Jm Quantized spin models, including quantum spin frustration; 

75.10.Kt Quantum spin liquids, valence bond phases and related phenomena; 

75.30.–m Intrinsic properties of magnetically ordered materials; 

75.75.–c Magnetic properties of nanostructures. 
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1. Introduction 

Magnetic materials are among the oldest systems that 

have been studied by physicists [1]. The interest to mag-

netic systems is connected with their special properties. 

Also the application of magnetic materials in modern tech-

nology put the study of such systems to the one of the main 

aims of modern condensed matter physics. On the other 

hand, theoretical models, that originally were developed to 

describe magnetic properties of matter, like the famous 

Ising model, are often used in other fields of theoretical 

and experimental physics. The opposite is also true: Many 

approaches of modern physics are successfully used in the 

theory and experiment of magnetism. 

One of the advantages of the theory of magnetism is the 

well-developed during years conceptual approach there [2]. 

For example, at the classical level, Maxwell's electrody-

namics has successfully described the main features of the 

response of magnetic materials to the external electric and 

magnetic fields. On the other hand, the quantum nature of 

magnetism manifests itself, e.g., in properties of nonin-

teracting with each other magnetic ions in paramagnets. 

Schottky anomalies in the behavior of magnetic contribu-

tion to the specific heat are the prime example of the quan-

tum nature of (para)magnetic ions due to the crystalline 

electric field of ligands. The theory of such paramagnets is 

well-developed [3–6]. In general, we know how interac-

tions between magnetic ions change their properties (start-

ing with present in any magnetic system magnetic dipole–di-

pole interactions, short-range exchange interactions [7,8], 

which mostly define magnetic ordering, and long-range 

magnetic interactions in metals [9–11], which can often be 

the reason for inhomogeneity in magnetic structures). 

For standard many-body magnets we know how to take 

into account interactions. As a rule one successfully use 

the mean-field-like theory [12], or at low temperatures, the 

spin wave approximation [13,14]. Such theories can be 

used without principal difficulties for systems, in which we 

can well determine the ground state, i.e., the optimal state 

with the minimal energy, like in ferromagnets or two-

sublattice antiferromagnets [15,16]. However, if the situa-

tion with inter-ionic magnetic interactions becomes more 

complicated than in standard bipartite magnetic systems, 

where the nearest neighbor antiferromagnetic interactions 

can be satisfied for each pair of magnetic particles, like in 

the square lattice Ising antiferromagnet, see Fig. 1, stand-

ard mean field and spin wave methods cannot be applied 

successfully, and we need different approaches. 

In bipartite lattices we can divide the total system in 

two subsystems so that particles, belonging to the first sub-

system, are nearest neighbors to particles, belonging to the 

other subsystem. If the interaction is between only nearest 

neighbors, the pair antiferromagnetic bonds have minimal 

energies and the global optimal state of the system can be 

realized by minimizing coupling energies for each pair. 

However, there exist many lattices, which we cannot di-

vide into two sublattices. For such systems we have a prob-

lem with the use of mean-field-like approximation or spin 

wave theory: The optimal state with the minimal energy is 

either not determined there, or there are so many such 

states (too many, their number is of order of number of 

magnetic particles in the system), that we cannot realize 

the knowledge of the ground state. The simple example is 

the triangular two-dimensional lattice (Fig. 2). The elemen-

tary cell of the triangular lattice is a triangle. 

Another example of such a lattice is the so-called Ka-

gome lattice (Fig. 3), known due to traditional Japanese 

bamboo baskets. It is composed of the arrangement of in-

terlaced triangles, which are organized so that each point 

where two paths cross has four neighboring pattern of a tri-

hexagonal tiling. The elementary cell of the Kagome lattice 

is the star of David. 

Fig. 2. The example of non-bipartite two-dimensional lattice: 

triangular lattice. 

Fig. 3. The example of non-bipartite two-dimensional lattice: 

Kagome lattice. 

Fig. 1. The ground state for the spin-1/2 antiferromagnetic Ising 

model on the square lattice. 
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Notice that the crossing points of the Kagome lattice do 

not form a mathematical lattice, unlike the triangular lattice 

[17]. It has the symmetry p6m (or p3m1), like the triangu-

lar lattice. We can see that antiferromagnetic nearest-

neighboring couplings cannot minimize the total energy of 

such a system. Hence, the standard approach, that brought 

so much success in studies of bipartite (antiferro)magnetic 

systems, fails for such lattices. Such magnetic systems are 

known nowadays as magnetically frustrated ones. In many 

magnetically frustrated systems magnetic ions do not de-

velop long-range magnetic ordering for the reasons, which 

will be explained below. In that sense frustrated magnetic 

systems belong to the class of “spin-liquids” [18,19]. The 

quantum spin liquid state is disordered, like in liquids, 

comparing to magnetically long-range ordered states. 

However, unlike other disordered states, a spin liquid state 

can be preserved down to very low temperatures (compar-

ing to the values of spin–spin interactions). The interest to 

magnetically frustrated systems is caused not only by their 

interesting physical properties; such materials are perspec-

tive from the point of view of their use as data storage and 

memory, or as possible realization of topological quantum 

computation. 

2. Frustration 

We call the system as frustrated if it cannot minimize 

its total energy (the macroscopic state) by minimizing the 

interaction between each pair involved into the interaction, 

i.e., to perform such a minimization pair by pair [20,21]. 

On the other hand, it is often used to call the system frus-

trated if its ground state is highly degenerate, and the level 

of degeneracy is of order of the number of particles in the 

system. Magnetic systems are the most known example of 

the manifestation of frustration. However, naturally, the 

phenomenon of frustration is not limited to magnetic sys-

tems. For example, among frustrated systems we can count 

liquid and molecular crystals (like solid N2), arrays of Jo-

sephson junctions, as well as the so-called “nuclear pasta 

state” of spatially modulated nuclear density inside stars 

(caused by the competition between Coulomb interactions 

and short-range nuclear couplings). 

It is useful to distinguish between random and geomet-

rical frustrations. Let us, first, discuss in short the former, 

because our review is mainly devoted to the latter. The 

random frustration, in turn, can be divided into dynamical 

and quenched one, by the origin. The characteristic feature 

of the dynamical (annealed) random frustration is related 

to multiple length scales, which are developed in time for 

spatially inhomogeneous systems with competing interac-

tions. If such dynamical processes are frozen out, the ran-

domness, and, in turn, frustration, is quenched. To remind, 

in statistical physics we usually call some parameters as 

quenched when they are random variables which do not 

evolve in time. Quenched frustration appears in systems, 

where frozen degrees of freedom are not homogeneous, 

e.g., they cannot be periodically translated. Such a phe-

nomenon can be observed in many metallic alloys with 

magnetic ingredients, that interact with each other via the 

long-range sign-changing Rudermann–Kittel–Kasuya–Yo-

shida (RKKY) coupling [9–11]. The main example of the 

manifestation of the random frustration in magnetic sys-

tems is a spin glass [22–27], i.e., an ordered magnet with 

stochastic positions of spins with competing possible fer-

romagnetic and antiferromagnetic interactions between 

them, see the example in Fig. 4. 

The spontaneous magnetization of spin glasses is zero, 

however the magnetic ordering exists in the form of long-

ranged spin–spin correlations. 

In this review we will deal mostly with the geometric 

frustration. Here particles sit on the sites of regular lattices, 

unlike the situation with random frustration. However, 

local pair particle–particle interactions are in a conflict 

with each other: Each bond favors its own spatial correla-

tion. Then it is impossible to satisfy all local interactions. 

The most known example is related to Ising spins 1/2 

(which can be directed only up and down); they interact 

antiferromagnetically only with nearest neighbors on a 

two-dimensional equilateral triangular lattice. Clearly, anti-

ferromagnetic bonds tend each neighboring spins to be 

antiparallel to each other, but it is impossible to realize, 

hence frustration. An example of the elementary cell of 

such a system is presented in Fig. 5. 

Fig. 4. Illustration of a spin glass state: Spins are randomly dis-

tributed on a regular lattice. 

Fig. 5. Elementary cell of the antiferromagnetic spin-1/2 Ising model 

on the two-dimensional equilateral triangular lattice. It is impossible 

to satisfy all three antiferromagnetic bonds simultaneously. 

AF AF

AF ?
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Geometrical frustration is possible not only if spins are 

collinear, but for spins arranged non-collinearly. Geomet-

rically frustrated systems often manifest a residual entropy. 

The residual entropy, by definition, is the amount of entro-

py present even if the system is cooled arbitrary close to 

zero temperature. It exists for systems, in which many dif-

ferent microscopic states can persist when cooled to zero 

temperature, e.g., if the system has many different ground 

states with the same energy: degenerate ground states. 

Such a situation can also exist if such states have slightly 

different energies, but the system is prevented from settling 

in the “real” ground state with the lowest energy. The latter 

can be realized, e.g., if the system is very fast cooled. The 

most known example for systems possessing residual en-

tropy is any amorphous system, like a glass. There the rea-

son for residual entropy is caused by a great number of 

different ways of realization of microscopic structures in a 

macroscopic system. The interesting property of geometri-

cally frustrated magnetic systems, like spin ice (see below) 

is that the level of residual entropy can be controlled by the 

application of an external magnetic field. This property of 

geometrically frustrated magnetic systems can be used for 

creation of refrigeration systems. In fact, geometrically 

frustrated magnetic systems had been studied earlier than 

the term “frustration” has been used [28–30]. For the review 

on frustrated spin systems, consult, e.g., the interesting 

books [31,32]. Perhaps, it is worthwhile to discuss here the 

convenient measure of the level of frustration in geometri-

cally or randomly frustrated magnetic systems. So-called 

frustration index f  has been proposed [33]. It is deter-

mined as C= | | /W cf T , where CW  is the Curie–Weiss 

temperature, which can be extracted from the temperature 

behavior of the inverse magnetic susceptibility, and cT  is 

the (critical) temperature at which the magnetic system 

possesses the long-range order (say, the Néel temperature 

for antiferromagnets, or freezing temperature for spin 

glasses). Clearly, for magnetically disordered frustrated 

spin systems we would have f  . However, in the 

most of real magnetic systems spin–spin interactions (for 

example, magnetic dipole–dipole interactions, which are 

present in any magnetic system) should develop magnetic 

ordering, though at very low temperatures. Geometrically 

frustrated magnetic systems have been reviewed in [34–39]. 

Probably, the oldest example of the geometrically frus-

trated system is the usual water ice. 

3. Water ice 

It is well known that the molecule of water consists of 

two hydrogen atoms connected with the help of a covalent 

bond to the oxygen atom. Water ice is the frozen water, 

i.e., it is the water in the solid state. Depending on the ex-

ternal temperature and pressure water molecules in (water) 

ice can be organized in a different forms. At ambient pres-

sure the water ice can exist in three common forms: the ice 

Ih, or the hexagonal ice, which possesses the hexagonal 

symmetry, the most common phase of the water ice; the ice 

Ic, or the cubic ice, in which the cubic symmetry persists, 

and the ice XI with the orthorhombic symmetry (the space 

group Cmc21) [40]. The ice Ic or sphalerite, is the metasta-

ble phase existing, as a rule, between 130 and 220 K, in 

which oxygen atoms organize a cubic diamond structure 

[41]. The ice XI is the proton (hydrogen)-ordered low-

temperature (below 72 K) form of the hexagonal ice. It 

contains eight water molecules per unit cell. The internal 

energy of the ice XI is about 0.17 times lower that the one 

for the hexagonal ice Ih. It is a ferroelectric, see, e.g., [42]. 

The hexagonal ice, also known as ice one, or wurtzite, 

is the water ice, which properties permitted to give the 

name to spin ices. It is stable down to approximately 73 K. 

Its symmetry is hexagonal with nearly tetrahedral bonding 

angles ( arccos ( 1/ 3) 109.5   ) of the crystal structure. 

The latter consists of crinkled (alternating in the ABAB 

pattern) planes composed of tessellating hexagonal rings 

(a repetition of rings without gaps and overlaps, like in 

Escher's pictures). B planes are reflections of A planes 

along the same axes as the planes themselves. Oxygen sits 

in each vertex, and edges of rings are formed by hydrogen 

bonds [43,44]. 

Two molecules of water can form a hydrogen bond be-

tween them. In a liquid water more bonds are possible be-

cause oxygen in a single water molecule has two lone pairs 

of electrons, each can form a hydrogen bond with another 

molecule with the angle between hydrogen atoms 104.45° 

and with the distance from hydrogen to oxygen being 

95.84 pm. The side with oxygen atom in the water mole-

cule has a partial negative charge due to higher electroneg-

ativity of the oxygen comparing to hydrogen. It means that 

the hydrogen side is partially positive, i.e., the water mole-

cule is a dipole. The charge difference yields attraction 

between water molecules, which contributes to the hydro-

gen bonding. Every water molecule has hydrogen bonds 

with up to four other water molecules, because it can ac-

cept two and donate two hydrogens, see Fig. 6. The hydro-

gen bonding energy of the water molecule is relatively 

Fig. 6. Configuration of oxygens and hydrogens in the hexagonal 

water ice (oxygen: large spheres, hydrogen: small spheres). Each 

oxygen–oxygen bond has two steady-state positions of hydrogen. 

The configuration satisfies Bernal–Fowler ice rules: One hydro-

gen per oxygen–oxygen bond, and each oxygen neighbors two 

close hydrogens and two sitting far hydrogens. 

HO

H

O

H
O
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strong (it is weak, though, comparing to covalent bonds 

within the water molecule). Hydrogen bonds with almost 

tetrahedral bonding angles of the water molecule, cf. Fig. 6, 

help to organize an open hexagonal lattice of the hexagonal 

ice. The distance between oxygen atoms along each bond 

is about 275 pm, which is much larger than the distance 

between oxygen and hydrogen in the water molecule. 

Large hexagonal rings leave almost enough room for ano-

ther water molecule to exist inside, which yields the densi-

ty of ice being lower than of the water. 

Hydrogen atoms (in fact, almost protons) sit very close 

along hydrogen bonds in the crystal lattice of the hexago-

nal ice (Fig. 6), i.e., each water molecule is preserved 

there. It implies that in the hexagonal ice each oxygen has 

two adjacent hydrogens at about 101 pm (along the 275 pm 

hydrogen bond), i.e., not in the middle of the distance be-

tween two oxygens. Basically, two equivalent hydrogen 

positions exist in each oxygen–oxygen bond. Four-fold 

oxygen coordination yields one hydrogen per such a bond. 

In the structure of the hexagonal water ice that way is de-

termined by the Bernal–Fowler ice rules [45]. The first one 

is related to one hydrogen per oxygen–oxygen bond in 

average in the ice crystal. The second ice rule states that 

for each oxygen two hydrogens have to be close, and two 

protons sit far from the oxygen. It turns out that the second 

ice rule frustrates the low-energy problem of the water ice 

caused by the stability of water molecules in it. As a result, 

the crystal structure contains the residual (zero tempera-

ture) entropy inherent to the lattice. In other words, the 

hexagonal ice is expected to have the intrinsic randomness 

even if it was possible to cool it to zero temperature. In 

ideal situation the hexagonal (water) ice can never be com-

pletely frozen, seemingly violating the third law of ther-

modynamics! Such an entropy in the hexagonal water ice 

is defined by the number of possible configurations of hy-

drogen positions which can be formed (the requirement of 

two hydrogens to be related to each oxygen in the closest 

proximity with each hydrogen bond, which join two oxy-

gen atoms having only one hydrogen, holds). The residual 

entropy of the hexagonal ice is 0 3.5  J/(mol·K). That 

value has been measured in the set of experiments devoted 

to the investigation of the specific heat of the hexagonal 

water ice [46,47]. 

The structure of the hexagonal ice has been pioneered 

by Linus Pauling [the only person who was awarded by 

two unshared Nobel Prizes: Chemistry (1954) and Peace 

(1962) prizes] in 1935 [48]. He has noticed that the number 

of configurations with two hydrogens being close to the 

oxygen, and two hydrogens being far from it grows expo-

nentially with the system size. It implies the extensive 

character of the residual entropy of the hexagonal water 

ice. Pauling has estimated the value of the residual entropy 

in the hexagonal water ice. One mole of ice contains N  

oxygens, and therefore 2N  oxygen–oxygen bonds. Each 

such a bond can have two possible positions for a hydro-

gen, which implies 22 N  possible hydrogen positions for 

the total crystal. Only six configurations are energetically 

favorable out of 16 possible ones for each oxygen. The up-

per limit for a number of ground-state configurations, M , 

can be, therefore, estimated as 22 (6/16) = (3/2)N N N . Corres-

ponding entropy can be calculated as 0 = ln (3 / 2)BNk , 

which gives ·3.37 J/(mol K 0.3 3) 2 Bk . That value agrees 

very well with the experimentally measured [46,47]. De-

spite calculations performed by Pauling missed the global 

constraint of the number of hydrogens and local constraints 

caused by closed loops in the lattice of the hexagonal water 

ice, its accuracy is of order of 1–2% [49]. It has been cal-

culated numerically for the two- and three-dimensional ice 

model (see below). 

3.1. Ice models 

Ice-type models, i.e., the ones, that obeys ice rules, are 

often studied in statistical mechanics: They are the particu-

lar case of vertex models, namely, the six-vertex models. 

Any ice model is defined on a lattice with the coordination 

number 4, i.e., each vertex is connected to four nearest 

neighbors by an edge. Each bond is represented by an ar-

row, so that the number of arrows pointing to the vertex is 

two (as well as the number of arrows pointing outwards), 

which constitutes the ice rule in the vertex model. So far, 

mostly two- and three-dimensional ice vertex models 

has been studied. For instance, for the square ice model 

six configurations are valid. The energy of the state E  is 

given by 6
=1= i iiE n , where in  is the number of verti-

ces with ith configuration (of six possibilities), and i  be-

ing the energy associated with the vertex configuration i . 

Figure 7 shows six possible configurations of the six-ver-

tex square model, which satisfy the ice rule. 

The six-vertex model on a square lattice can model a 

ferroelectric [50], where 1,2,3,4 > 0  and 5,6 = 0 . If there 

is no external field, the condition 1 2=  , 3 4=   and 

5 6=   holds. The six-vertex model on a square lattice 

has been solved exactly by E. Lieb [51–53]. He has found 

the residual entropy there 0 = (3/ 2) ln (4 / 3)BNk , and 

the value 3/2(4 / 3) 1.5396  is known as the Lieb's square 

ice constant. Later Lieb's solution has been generalized for 

the cases with [54] and without external field [55]. Natu-

rally, one can consider more realistic models, than the two-

dimensional six-vertex model on the square lattice. How-

ever, for the three-dimensional ice-type model the exact 

solution has been obtained [56] only for the special tem-

Fig. 7. Six possible configurations of the square ice model, pos-

sessing ice rules: In each vertex two arrows point inwards and 

two arrows point outwards. 

1 2 3 4 5 6
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perature interval, where the model is called to be “frozen”. 

It means that in the thermodynamic limit the energy and 

entropy per vertex are zero in such a range of T . Ice-type 

vertex models in statistical mechanics are generalized for 

the eight-vertex model, which also possesses exact solu-

tion [57]. 

4. Spinels: Cation ordering and antiferromagnetic 

models 

The similarity of the water ice problem to the ordering 

of cations in the so-called inverse spinel material has been 

pointed out by E.J.W. Verwey [58,59], and then has been 

discussed in detail by P.W. Anderson [60]. Spinels (called 

due to the natural mineral spinel MgAl2O4) are the class of 

materials with the general chemical formula AB2O4 with 

the cubic crystal system. A and B cations occupy octahed-

ral and tetrahedral sites of the lattice, and can be divalent, 

trivalent or quadrivalent. In inverse spinels two kinds of ca-

tions on the B sites of the spinel lattice are situated so that 

the total numbers of cations of each kind are equal. The B 

sites of the spinel lattice form the so-called pyrochlore lat-

tice. The latter [called after pyrochlore, the natural mineral 

with the chemical formula (Na,Ca)2Nb2O6(OH,F)] has 

3Fd m  space group, is often related to systems with the 

chemical formulas A2B2O6 or A2B2O7. The pyrochlore 

lattice is organized of corner-sharing tetrahedra, which are 

alternating “upward” and “downward”, see Fig. 8. 

The minimum energy is related to the case, in which the 

number of pairs consisting of two different kinds of cations 

is maximal. Such a condition is satisfied if each elementary 

tetrahedron of the B lattice of the inverse spinel material 

has two cations of one kind and two cations of the other 

kind, so-called tetrahedron rule, analogous to the ice rule 

for the hexagonal water ice. Notice that in the spinel lattice 

centers of tetrahedra are situated on the same lattice as 

oxygens in the cubic Ic water ice. It implies that cation 

ordering in this problem could have residual entropy, like 

in the Pauling water ice. 

Among spinels with different cations at B sites we can 

distinguish the situation, in which the valency of ions is 

different from integer, like in the first non-rare earth based 

heavy-fermion system LiV2O4 see, e.g., [61–70], or in, 

probably, the oldest known magnetic material, magnetite, 

Fe3O4 see, e.g., [1,58,59]. There the formal valence of 

V ion is 3.5, and the one of Fe on B sites is 2.5 (the va-

lence of Fe ions on A sites is 3), i.e., they have to exist in 

equal combinations of V3+  and V4+ , or Fe2+  and Fe3+ . 

Notice, however, that recent studies contradict the direct 

application of the ice (tetrahedron) rule to LiV2O4 and 

Fe3O4 [61–75]. For the recent reviews on spinel materials 

consult, e.g., [76–79]. 

Similar situation appears if we consider the spin Ising 

antiferromagnetic model on the pyrochlore lattice. Here 

spin up and spin down correspond to two kinds of cations 

in the above mentioned spinel situation, or to “close hy-

drogen” or “far hydrogen” for the water ice. However, 

there is no realization of such an Ising model on the 

pyrochlore lattice. Why is it so? The pyrochlore lattice has 

the cubic symmetry. Hence, there is no reason for the 

unique direction of Ising spins in such a system. On the 

other hand, the situation with antiferromagnetic Heisen-

berg spins on a pyrochlore lattice is realistic. It was J. Vil-

lain, who pointed out that the classical Heisenberg 

antiferromagnet cannot be magnetically ordered on the 

pyrochlore lattice [80] due to the geometrical frustration 

down to zero temperatures. He called such system collec-

tive paramagnet to stress both the absence of ordering and 

collective nature of magnetic properties. 

5. Spin ice 

Magnetic systems, in which magnetic ions reside on lat-

tices of corner-sharing tetrahedra (pyrochlore lattice), be-

long to the most known examples of magnetic systems 

with geometrical frustration. Among them, maybe the most 

interesting properties are revealed by the cubic pyrochlore 

oxides of the family A2B2O7 with magnetic A ions and 

nonmagnetic B ones [81–84]. Such systems can be metallic, 

or insulating. The space group for those systems is 3Fd m. 

It is usual to use another chemical formula, namely 

A2B2O6O' to emphasize the difference in positions of oxy-

gen ions. Here A ion is placed in 16d position in the Wyc-

koff classification [minimal coordinates are (1/2,1/2,1/2)], 

B ion is in 16c placed at the origin [i.e., minimal coordi-

nates are (000)], O is in 48f (x,1/8,1/8) and O' is in 8b 

(3/8,3/8,3/8). Here the parameter x is of range 0.32–0.345. 

Fig. 8. A (light tetrahedra) and B (dark tetrahedra) cites of A2B2O7 

in the vertices of corner-sharing tetrahedra form the pyrochlore 

lattice. From J.S. Gardner et al., Physical Review B 70, 180404(R) 

(2004). http://link.aps.org/abstract/PRB/v70/p180404 Copyright 

2004 by the American Physical Society. 
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All six B–O bonds have equal lengths, and O–B–O angles 

have almost ideal octahedral values of 90°, i.e., oxygens 

surround B ion at vertices of the perfect octahedron. As for 

A ion, oxygen ions form the perfect cube, but with strong 

distortions. In fact, the surrounding of the A site can be 

considered as six-membered ring of O with two O' atoms, 

which form a stick, oriented perpendicular to the ring, see 

Fig. 9. 

This is why, A ions have a large axial symmetry, with 

the axes parallel to [111] directions (diagonals of the cu-

be). Basically, such an axial symmetry produces a large 

crystalline electric field at A site, which is the origin of the 

Ising-like properties of magnetic ions situated at the A po-

sition. 

Probably, the most interesting representatives of 

pyrochlore oxides are the ones with A being trivalent rare 

earth ions, like Gd, Tb, Dy, Ho, Yb, etc., or Y, and with a 

tetravalent ion in B position: Ti, Sn, Mo, Mn, etc. Both A 

and B ions can be magnetic or nonmagnetic. 

We will concentrate now on insulating titanates of Dy 

and Ho [85] (Dy2Ti2O7 and Ho2Ti2O7), and on similar 

compounds, stannates, with the replacement of nonmag-

netic Ti 4+  by the nonmagnetic Sn 4+ . In this case only 

A sublattice (the fcc lattice of corner-sharing tetrahedra, 

directed up and down) is responsible for magnetic proper-

ties. The primitive basic cell has four rare earth ions sitting 

at the vertices of each tetrahedron. However, the conven-

tional cubic unit cell of pyrochlore oxides has the size 

10a  Å with 16 rare earth ions, i.e., it consists of four 

primitive tetrahedron cells directed “up” and “down”. The 

distance between nearest neighboring rare earth ions is 

= 2 / 4 3.5x a  Å. 

It is also interesting to notice that the pyrochlore lattice 

for A sites can be considered as two sets of orthogonal 

chains, the one being parallel to [110] direction (called 

 chains) and the other one parallel to [1 10] direction 

(refered to   chains, see Fig. 10). 

5.1. Single ion properties 

Dy (Ho) ions have [Xe]6S
2
4f

9
 (4f

10
) ground-state elec-

tron configuration. Rare earth ions due to strong spin-orbit 

coupling form the total moment = +J L S, where L  ( S) is 

the total orbital (spin) moment. According to Hund's rules, 

we can find =15/ 2J  for Dy3+  ion with = 3L  and 

= 9 / 2S , and = 8J  with = 3L  and = 5S  for Ho3+. The 

(2 1)J +  degeneracy of the configuration is lifted due to 

the crystalline electric field of ligands (oxygens). The crys-

tal field Hamiltonian can be written for 3m  ( 3dD ) point 

symmetry of the A site as [86–90]  

0 0 0 0 3 3
c 2 2 4 4 4 4

, ,

= 4
2 1

m m
m ml l

f l l
l m l m

B Y
B B B B

l
     


 

 0 0 3 3 6 6
6 6 6 6 6 6 ,B B B+ + +  (1) 

where m
lB  are crystal field coefficients, m

lY  are spherical 

harmonics, and m
l  are Stevens operators [6,91], related 

to the projections of the total moment. For = 3L  we limit 

ourselves to 6l  , due to the Wigner–Eckart theorem. Fur-

ther restriction comes about because the crystalline electric 

field environment is symmetric under operations of the 

point group 3dD . Here we use [6,91–93]  

0 2
2 = 3 ( 1)zJ J J  , 

0 4 2 2 2
4 = 35 [30 ( 1) 25] 3 ( 1) 6 ( 1)z zJ J J J J J J J       , 

3 3 3 3 3
4 = (1/ 4)[3( ) 2( ) ]zJ J J J J      ,  

Fig. 9. (Color online) The environment of the A site of pyro-

chlore oxides. Large (blue) spheres denote rare earth ions, medi-

um (green) spheres denote nonmagnetic metal ions, and small 

(red) spheres are oxygens. Six oxygens (O) lie in plane, and two 

(O') are situated on the line, perpendicular to basal plane. From 

A. Yaouanc et al., Physical Review B 84, 172408 (2011). 

http://link.aps.org/abstract/PRB/v84/p172408 Copyright 2011 by 

the American Physical Society. 

R

M

O

Fig. 10. (Color online)   and   chains in the pyrochlore lattice. 

From J.P. Clancy et al., Physical Review B 79, 014408 (2009). 

http://link.aps.org/abstract/PRB/v79/p014408 Copyright 2009 by 

the American Physical Society. 
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where 

 = x yJ J iJ  , 

0 6 4
6

2 2 2

3 3 2 2

= 231 [315 ( 1) 735]

[105 ( 1) 525 ( 1) 294]

5 ( 1) 40 ( 1) 60 ( 1) ,

z z

z

J J J J

J J J J J

J J J J J J

   

     

       

6 6 6
6 = (1/ 2)( )J J  ,  

and  

3 3 3
6

3 3 3 3 2 3 3 3

= (1/ 4)[3(40 3 ( 1))( ) (179 6 ( 1))

( ) 99( ) 22( ) ] .z z z

J J J J J J

J J J J J J J J J

 

     

      

     
 

From the experiments on inelastic neutron scattering [86–90] 

we can find that for Ho2Ti2O7 (Dy2Ti2O7) the ground state 

can be described as the Kramers doublet with 

| = 8, = 8JJ m   (| =15 / 2, = 15 / 2JJ m   ) with negligi-

ble contributions from components with other values of 

Jm  [higher multiplets are divided by the gap of order of 

300  K from the ground-state Kramers doublet (in 

fact, the gap was estimated from 140 to 380 K [86–90])]. 

This is why, at low temperatures we can consider Ho2Ti2O7 

and Dy2Ti2O7 as the systems of effective Ising spins 1/2. 

However, the situation is different from the case of a 

standard uniaxial anisotropy, because most often the “easy 

axis” is homogeneous for magnetic systems [3–5], and in 

the considered case we have four equivalent “easy axes” 

for each tetrahedron parallel to [111] directions, see 

Fig. 11. 

We can introduce unit vectors directed along the “easy 

axes” 0,1 = ( ) / 3± ±e x y z , 2,3 = ( ) / 3 e x y z , where 

x , y  and z  are the unit vectors along the coordinate axes. 

Then at low temperatures T   we can approximate  

 | | ,z
n z n nJ   J e  (2) 

where z
n  are Pauli matrices, which have eigenvalues 1± , 

| | 15 / 2zJ    for Dy2Ti2O7 and | | 8zJ    for Ho2Ti2O7. 

There are no other components ,x y
n  in the low-

temperature approximation, and, therefore, the low-energy 

physics can be approximated by the Ising model. Some-

times this situation is called classical, to stress that there is 

no spreading of excitations in the Ising model, and varia-

bles commute with each other. However, it can be mislead-

ing, because the Ising system has a discrete spectrum, the 

hallmark of quantum physics. 

The external magnetic field B at low temperatures acts as 

 

= ( ) | | ( ) ,z
Z B n B z n n

n n

g g J          B J B e  (3) 

where B  is Bohr magneton equal to 9.27
24·10  J/T, or, 

more convenient for us, 0.671 K/T, if we measure all ener-

gies in Kelvins, and g  is the Landé g-factor equal to 4/3 

for Dy 3+  and 5/4 for Ho3+. Then the characteristic energy 

scale for the Zeeman interaction of pyrochlore oxides is 

10 | | 6.71| |B B B  K, where the magnitude of the mag-

netic field | |B  is measured in Tesla. Obviously, for the 

values of the field | | 45B   T such an energy is lower than 

300  K, and the Ising approximation is justified. For 

higher values of the field we have to take into account 

higher-energy multiplets due to crystalline electric field. 

We can also neglect the van Vleck contribution to the 

magnetic susceptibility of the considered pyrochlore ox-

ides, and the contributions from the high-energy multiplets, 

caused by the crystalline electric field, to the susceptibility 

at low temperatures. 

5.2. Realization of the ice rule 

Now we are in position to explain why these pyrochlore 

oxides are known as spin ices. Namely, let us consider the 

Hamiltonian of exchange interactions between rare earth 

magnetic ions ex ,,= (1/ 2) ( )i j i ji j  J J , where i  

and j  denote positions of magnetic ions, and ,i j  are the 

exchange integrals. The prefactor (1/2) is introduced to 

avoid double counting of sites. Here we limit ourselves to 

the isotropic version of the exchange coupling. Notice, 

however, that the symmetry allows four distinct types of 

anisotropic exchange interactions in a pyrochlore lattice 

[94,95]. For rare earth systems 4f orbitals are screened by 

5s and 6p orbitals, and, therefore, the exchange interaction 

(both, the direct exchange between rare earth ions them-

selves, and the indirect exchange via oxygen ions O2) is 

expected to be small. Then at low temperatures we can 

approximate that expression as  

 
2

ex ,
,

| | ( ) .z z
z i j i j i j

i j

J       e e  (4) 

The value of the exchange integrals for nearest neighbor-

ing Dy 3+  in Dy2Ti2O7 has been estimated [96,97] as 

0.66ij  mK. We can introduce 
2

,| |z i jJ J   . For 

Ho-based titanate its value is estimated as 4.22J  K, 

and for Dy-based titanate it is 3.71J  K, i.e., in both 

cases J . Notice that > 0J , i.e., it corresponds to the 

ferromagnetic nearest neighbor coupling in the initial ex-

Fig. 11. Elementary cell for the A-site pyrochlore oxide lattice. 

Vectors labeled 0, 1, 2, 3 are unit vectors directed along [111] axes, 

which are distinguished by the magnetic “easy-axis” anisotropy. 

1

3

2

z

x

y
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change Hamiltonian. For nearest neighbors we can write 

cf. [98]  

 ex
, ,

( ) = ( / 3) ,z z z z
i j i j i j

i j i j

J J

   

       e e  (5) 

where we limit ourselves with the nearest neighbors ,i j , 

and used the equality ( ) = 1/ 3i j e e  for the tetrahedron, 

which follows from the definition of the unite vectors ne . 

Using the definition 0 1 2 3= ( )z z z z
t tS      as the total 

effective Ising spin for the tetrahedron, we can get [99]  

 2
ex

2
,

6 3

t
t

t

N JJ
S   (6) 

where the summation is over each tetrahedron primitive 

cell, tN  is the total number of cells. It is important to em-

phasize that the ferromagnetic exchange between real total 

moments in such pyrochlore oxides produces the effective 

antiferromagnetic coupling between effective Ising spins. 

Then, it is clear from Eq. (6) that for > 0J  the lowest 

energy has the state with = 0tS . It is equivalent to the ice 

rule in the water ice, or to Verwey's tetrahedron rule: The 

lowest energy is related to states of each tetrahedron with 

two Ising spins directed inside, and two others directed 

outside the tetrahedron which means two of z
n  have +1 

eigenvalue, and other two have –1 eigenvalue (notice that 

all spins have directions parallel to [111] axes, cf. Fig. 12). 

The fulfillment of the ice rule implies the frustration, total-

ly equivalent to the water ice Ih. That suggested the name 

for such systems: Spin ices! It is interesting to remark that 

the antiferromagnetic exchange between total moments has 

to manifest the nonfrustrated state with all effective Ising 

spins having the same signs of their eigenvalues. In other 

words, the real antiferromagnetic exchange produces the 

ground state with all effective Ising spins directed either in 

or outside of each tetrahedron. 

At low-temperatures additional spin–spin interaction 

may manifest itself, the magnetic dipole–dipole interac-

tion, which Hamiltonian is (the importance of the magnetic 

dipole–dipole interactions for spin ices has been pointed 

out, e.g., in [100])  

 

2 2
0

3 3 3 5 3
,

( ) 3( )( )
=

4 2 | | / | | /

i j ij i ij jB
d

i j ij ij

g

x x x

    
   


J J r J r J

r r
 

2 2 2
0

3 3 3 5 3
,

( ) 3( )( )| |
,

4 2 | | / | | /

i j ij i ij jz zB z
i j

i j ij ij

g J

x x x

      
     


e e r e r e

r r
  

  (7) 

where =ij i jr r r , and 7
0 / 4 =10   N/A

2
 ( 0  is the 

vacuum permeability), and for convenience we have nor-

malized every contribution to the value for the nearest 

neighbors. Then the magnetic dipole–dipole contribution to 

the nearest neighbor interaction between effective Ising 

spins in the primitive cell is 2 2 2 3
0= | | /8B zD g J x     . 

We can estimate this value as 1.4 K. Hence, the nearest 

neighbor part of the magnetic dipole–dipole interaction 

renormalizes the exchange interaction [96,101], and the 

conclusions made above using the only exchange coupling 

seem to hold for the nearest neighbor dipole–dipole inter-

actions. However, it is not the total story. Unlike exchange 

couplings, magnetic dipole–dipole interactions are long-

ranged (the model, which take into account long-ranged 

dipole–dipole coupling is called the dipole spin ice). This 

has been taken into account in several ways. First, some 

truncation for the dipole–dipole interaction was used 

[96,102]. Then Ewald summation [103], usually used for 

the estimation of the long-range dipole–dipole coupling 

[104], Monte Carlo simulations [104–107], and mean-field 

calculations [108–110] were also performed. They found 

that the long-range part of the magnetic dipole–dipole in-

teraction can produce the long-range Néel-like ordering 

(via the first order phase transition) at very low tempera-

tures. Hence, the dipolar spin ice is characterized by order-

ing with the commensurate propagation wave vector of the 

order parameter, and, therefore, the long-range dipole–di-

pole coupling removes the degeneracy, caused by the frus-

tration. From this perspective, spin ices are equivalent to 

the water ice, which manifests the transition from the frus-

trated hexagonal and cubic phases to the orthorhombic ice 

XI phase. Such a phase transition in spin ices has not been 

observed yet see, e.g., [111]. From the theoretical view-

point, it was unclear why the ice rule is satisfied in dipolar 

spin ices. The reason has been clarified in [112]. The 

autors of [112] have pointed out that the tetrahedron (ice) 

rule = 0tS , or more general, , = 0t ii S , where the sum is 

performed over all tetrahedra, is equivalent to some “spin 

field” ( )sB r , with zero divergence, ( ) = 0sB  (notice 

that we deal with the lattice case). Nonzero flux of that 

field means broken tetrahedron (ice) rule. Then the correla-

tion functions for the field are 

 

2
,

5

3
( ) (0) ,

x x r
B B

r

   
 

 
 r  (8) 

where , = , ,x y z  . The dipolar Hamiltonian on the 

pyrochlore lattice can be presented as the projector, and the 

Fig. 12. Realization of the ice rule in the primitive cell of a spin 

ice. 
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correlations of the projector are equivalent to the projector 

itself [112]. That means that the local constraint, i.e., the 

tetrahedron rule, yields dipolar-like correlations at large 

distances. These Coulomb correlations are the signature of 

the so-called “Coulomb phase” in dipole spin ices, see, 

e.g., [110,113–115]. 

5.3. Experimental discovery of spin ices 

In fact, spin ices were discovered experimentally in 

[116–119]. The authors of [116] (who, actually, first used 

the term “spin ice”) performed the neutron scattering ex-

periment to investigate low (down to 0.05 K) temperature 

properties of Ho2Ti2O7. At zero magnetic field they have 

observed no magnetic ordering by the neutron scattering 

(down to 0.35 K) and by muon spin rotation (down to 

0.05 K). They have found positive 1.9CW   K, indicat-

ing ferromagnetic interactions. It is interesting that CW  is 

of the same order of values as both D  and J . Naturally, 

the absence of cT  (or, similar, c CWT  ) implies very 

high level of frustration in this compound. The magnetic 

field affected the neutron scattering depending on the pre-

history of the sample (see also [120–122]). It is similar to 

the situation in spin glasses [22–27,123], despite absent (or 

very weak) randomness in Ho2Ti2O7. Such experiments 

have been tried to be explained [124] by considering the 

ferromagnetic Ising spins directed along [111] in the 

pyrochlore lattice. 

Even more important for the analogy between the hex-

agonal water ice and the spin ice was the measurement of 

the specific heat ( )c T  in Dy2Ti2O7 [119]. The authors of 

[119] followed the strategy of Refs. 46, 47 to get the value 

of the residual entropy in spin ice material, similar to what 

had been performed for the water ice. The entropy for the 

water ice has been calculated by integration of ( ) /c T T  

starting from 10 K till the gas phase,  

 
2

1,2 1 2

1

( )
= ( ) ( ) = ,

T

T

c T dT
T T

T
    (9) 

with an addition of the latent heat at the melting and vapor-

ization. Then, calculated in such a way value has been 

compared with the expected from calculations (see above) 

absolute value for the hexagonal water ice. In Ref. 119 it 

has been measured the magnetic specific heat of Dy2Ti2O7 

between the temperatures 1 = 0.3T  K and 2 =10T  K. The 

former, according to estimations, is related to the spin ice 

phase (its value was lower than the temperature of the 

maximum in the dependence ( )c T  at 1.24 K, identified as 

the crossover temperature [119]), while the latter expected 

to be already in the paramagnetic regime, where one can 

neglect spin–spin interactions. The Schottky-like maxi-

mum in ( )c T  was connected to the energy gap between 

the states satisfying the ice rule (two spins directed “in” 

the tetrahedron, and two “out”) and the excited state with 

one spin “in” and three spins directed “out” (or vice versa). 

In the low-temperature regime, < 1.24T  K, the spin flip 

rate has been calculated to be exponentially decaying 

[104], because of the steady-state settling to the ice rule 

“phase”. The restored that way value of the magnetic en-

tropy in the limit 2T T  was obtained as 3.9 J/(mol·K), 

which is very close to the difference between the magnetic 

entropy in the paramagnetic regime (free effective Ising 

spins), ln 2 5.76B Ak N =  J/(mol·K) (here AN  is the Avoga-

dro number), and the Pauling value ln 3 / 2B Ak N =  

1.68 (J/ mo )l·K= . The results of later experiments [125–127] 

have shown even better agreement between the measured 

value of the entropy and the one, predicted by Pauling, see 

Fig. 13. Moreover, by studying Dy2–xYxTi2O7, i.e., by 

replacing the magnetic Dy
3+

 ion by the nonmagnetic Y
3+

, 

[127] has proven that the considered entropy is related 

namely to magnetic subsystem of spin ices. Performed 

Monte Carlo simulations [96] show a very good agreement 

with the observed temperature behavior of the specific heat 

and entropy in Dy2Ti2O7. 

On the other hand, Ho2Ti2O7 does not show such a di-

rect evidence of the low-temperature specific heat and en-

tropy, as Dy2Ti2O7. The reason for such a difference in the 

Fig. 13. (Color online) Entropy of Dy2–xYxTi2O7 as a function of 

temperature without (upper panel) and with (lower panel) the exter-

nal magnetic field. We can see that the entropy is related to magnetic 

ions 
3Dy +, because higher concentration of 3Y + ions decreases the 

value of  in the system. From X. Ke et al., Physical Review Letters 

99, 137203 (2007). http://link.aps.org/abstract/PRL/v99/p137203 

Copyright 2007 by the American Physical Society. 
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behaviors of two representatives of the spin ice group is 

connected with the anomalously large hyperfine interaction 

between nuclear and electron spins, characteristic for 
3Ho +. 

Such an interaction manifests itself in a Schottky anomaly 

in the temperature dependence of the magnetic specific 

heat of Ho2Ti2O7 at about 0.3 K. If one subtracts the nuclear 

contribution, the residual Pauling entropy in Ho2Ti2O7 can 

be manifested [101,128]. Similar observations [121,129–131] 

were made for stannates Ho2Sn2O7 and Dy2Sn2O7. 

Magnetic Coulomb phase in spin ices has been obser-

ved in [115] via the polarized neutron scattering. 

5.4. Spin ices in an external magnetic field 

First magnetic measurements in Dy2Ti2O7 have been 

performed in [132,133] and the dc magnetic susceptibility 

and magnetic moment have shown a strong magnetic 

(Ising) anisotropy along [111]. 

The temperature and magnetic field dependencies of 

thermodynamic characteristics of spin ice systems can be 

calculated in the simplest way, e.g., by performing recently 

developed approach [134], in which the Bethe–Peierls ap-

proximation on a Bethe lattice was used. It assumes that 

effective fields acting on effective Ising spins of the primi-

tive cell, Fig. 11, are the same as the ones, acting on cell's 

nearest neighbors, which does not, actually, hold in pyro-

chlore system. However, results, obtained in this approxi-

mation, show a good qualitative agreement with the expe-

rimentally observed data, see below. In the Bethe–Peierls 

approach the free energy of the spin ice system per rare 

earth ion can be written as  

3

=0

= ln [2 cosh (2 )] ln [2 ( )] ,
4 2

B B
n n

n

k T k T
F f b Z  f  (10) 

where  

 
22

2 /

=0

( ) = ( ) e .Bm J k T
m

m

Z Z


f f  (11) 

The index n  denotes four directions (cf. Fig. 11) for the 

“easy axes” of the magnetic anisotropy (considered here to 

be much larger than the effective interactions between ef-

fective Ising spins) in each tetrahedron in the spin ice sys-

tem, see above, | | ( ) /n B z n Bb g J k T    e B  are the pro-

jections of the external magnetic field B  normalized by 

the temperature, and nf  are the projections of the effective 

magnetic field, that acts on the effective Ising spins in the 

considered tetrahedron from other effective Ising spins in 

the system. In Eq. (11) J  denotes the value of the effec-

tive exchange interaction between spins in each tetrahe-

dron, and  

 0 0 1 2 3 0 1 2 3( ) = cosh ( ) 2 cosh ( ) cosh ( ) ,Z f f f f f f f f     f   

3 3

1
=0 =0

( ) = cosh 2 ,k n
n k

Z f f
 

 
 
 

 f  

 
3

2
=0

= cosh n
n

Z f
 
 
 
 
  (12) 

are related to the three possible spin configuration in each 

tetrahedron: two spins directed inside tetrahedron and two 

spins directed outside (“two in and two out”); “three in and 

one out” (or vice versa, “one in and three out”); and “four 

in” (or “four out”), so that for larger J  the most favorable 

configuration in the absence of the external field is “two in 

and two out”. It turns out that the sign of J  in the ap-

proach is taken such that “two in and two out” configura-

tion has the lowest energy. The value of the effective ex-

change constant J  can be chosen to satisfy the experi-

mental data in spin ice systems. Basically, we consider the 

spin ice model (with the nearest neighbor exchange cou-

pling between effective Ising spins) in the external magnet-

ic field, i.e., we study the low-temperature Hamiltonian 

ex Z+  in the Bethe–Peierls approximation. Notice, 

however, that the mean-field-like Bethe–Peierls approxi-

mation becomes better for long-range interactions, i.e., it 

can be applied to dipole spin ices as well. The values of the 

projections of the effective field nf  satisfy the following 

set of equations  

 
ln ( )

tanh (2 ) = .n n
n

Z
f b

f






f
 (13) 

The value of the average effective Ising spin moment (re-

lated to the low-temperature magnetization per rare earth 

ion divided by | |B zg J   ) in this approximation can be 

written as  

 
3

=0

1
= tanh (2 ) ,

4
n n n

n

M f be  (14) 

and the magnetic susceptibility is  

 0 = .
M

B





 (15) 

The entropy per rare earth ion can be written as = /F T  , 

and the specific heat is = ( / )c T T  . 

Let us consider three directions of the magnetic field, 

namely [111]B , [100]B  and [011]B .  

In the first direction 0= BB e , so that 

0 = | | /B z Bb g J B k T   , 1,2,3 = | | /3B z Bb g J B k T    . 

For the second direction of the field we have = BB x, and 

0,1 = | | / 3B z Bb g J B k T   , 2,3 = | | / 3B z Bb g J B k T    . 

For the third direction = ( )/ 2B +B x y , i.e., 

0 1= = 2/3 | | /B z Bb b g J B k T    , and 2 3= = 0b b . 

It is important to notice that for all field directions the 

results depend on the order of limitations 0T   and 

0B   (“field cooling” or “zero field cooling”) [134]. Let 

us start with 0B   case, or, “zero field cooling”. For such a 
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condition we have = 0M  and 2= 2( | |) /3B z Bg J k T    , 

with the Pauling value of the remnant entropy, as it must 

be, and = 0c . 

The “field cooled” case, 0T   first, implies for the 

field directed along [111], = = 0c  and =1/ 3M , with 

= (1/4) ln (4/3)Bk . The entropy is reduced with respect 

to the Pauling value, because the ground-state degeneracy 

is partly lifted due to the field directed along [111]. Such a 

field fixes the direction of the effective spin with the index 

0, while three others are free. This phase is related to the 

“Kagome ice” state of the pyrochlore lattice, see Fig. 14. 

Such a reduction of the entropy due to the external field 

directed along [111] has been observed [135,136] in 

Dy2Ti2O7. 

At the critical values of the external magnetic field, di-

rected along [111], the field behavior of the average spin 

moment shows the jump-like features from the state with 

the value of the spin moment zero to the value with the 

average moment 1/3 of the nominal one (1), and then, to 

the state with the value 1/2 of the nominal (this jump takes 

place at | | = 6B z cg J B J   ), see Fig. 15. 

The growing temperature “smears out” those features, 

slightly shifting the positions of them to higher values of 

the field. The features near = 0B  are related to the step-

like feature of the magnetic field behavior of the magneti-

zation. It is, in fact, the manifestation of the transition be-

tween the spin ice and Kagome ice phases in the external 

magnetic field directed along [111]. For another approach 

to the calculation of magnetization in spin ices in the ex-

ternal [111]-directed magnetic field consult [137]. 

Now let us consider the [100] direction of the applied 

magnetic field. Here the solution of Eqs. (13) implies the 

following behavior for the characteristics of the spin ice 

system. In the “field-cooled” case the degeneracy is comple-

tely lifted and at = 0T  we should have = 0 . Then the 

increase of the value of the field results in the “pseudo-tran-

sition” [138,139] from the spin ice state to the “saturated” 

state. Indeed at = = 3 ln (2) / 2 | |K B B zB B k T g J   , a 

Kasteleyn transition [140,141], first predicted for the mo-

del of dimers on a two-dimensional lattice, takes place from 

the spin ice phase with the Pauling residual entropy to the 

“saturated” state with zero entropy and the average effective 

spin moment a little larger than 1/2 of the nominal value. It 

happens because one of six spin configurations of “two in–

two out” spin ice becomes preferable in such a field, which 

completely lifts the ground-state degeneracy. Notice that this 

transition is seen in the external magnetic field at the tem-

perature = = 2 | | / 3 ln 2K B z BT T g J B k   : For < KT T  

the average effective spin moment is about 1/2 of the no-

minal value, see Fig. 16, and the magnetic susceptibility is 

zero, see Fig. 17. At = KT T  the temperature dependence 

of the magnetic susceptibility shows a jump-like feature (a 

cusp in the temperature behavior of the average effective 

Fig. 14. (Color online) Left panel: A sites of the pyrochlore lat-

tice. Right panel: Kagome lattice formed by layers perpendicular 

to [111]. From K.A. Ross et al., Physical Review Letters 103, 

227202 (2009). http://link.aps.org/abstract/PRL/v103/p227202 

Copyright 2009 by the American Physical Society. 
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Fig. 15. (Color online) The average effective spin moment per 

rare earth ion M  (i.e., it is the magnetization per rare earth ion 

divided by | |B zg J   ) (left panel) and the magnetic suscepti-

bility   (divided by | | /B z Bg J k   ) (right panel) as a function 

of the external field B  parallel [111] [for = 0.8J  K and 

= 0.2 KT  (solid black curves), and for = 0.3T  K (dashed red 

curves) calculated within the Bethe–Peierls approximation for the 

spin ice model]. 
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Fig. 16. The average effective spin moment per rare earth ion M  

as a function of temperature and external magnetic field B  di-

rected along [100], calculated for the spin ice model within the 

Bethe–Peierls approximation. The small features on the surface 

are artifacts of the numerical computation/drawing. 
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spin moment), and for > KT T  both the average moment 

and the magnetic susceptibility decay with the growth of 

temperature. The magnetic contribution to the specific heat 

also manifests features at the Kasteleyn-like transition in its 

temperature and magnetic field behavior, see Fig. 18. Such a 

transition has been observed, e.g., [142] in Ho2Ti2O7. 

The field along [011] does not affect effective Ising spins 

2 and 3 that form   chains, and act only on spins, belonging 

to   chains, see Fig. 10. In the ground state for the “field 

cooled” case the spin at the position 0 is directed “out”, and 

the spin at the position 1 is directed “in”, while directions of 

effective spins from the   chain are not fixed. We have at 

= 0T  for the “field cooled” case = = = 0c   and 

= | | / 6 0.41 | |B z B zM g J g J       . The results of 

calculations of the temperature and magnetic field depend-

ences of the average effective Ising spin and magnetic sus-

ceptibility for [011] field direction are shown in Figs. 19 and 

20. The crossover between the spin ice state and “ordered 

chain” states has been also observed experimentally 

[143,144]. 

Fig. 17. The magnetic susceptibility per rare earth ion   (divided 

by 2 2 2| | /B z Bg J k   ) as a function of temperature and external 

magnetic field B  directed along [100], calculated for the spin ice 

model within the Bethe–Peierls approximation. The small fea-

tures on the surface are artifacts of the numerical computa-

tion/drawing. 
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Fig. 18. The magnetic contribution to the specific heat per rare 

earth ion c as a function of temperature and external magnetic 

field B directed along [100], calculated for the spin ice model 

within the Bethe–Peierls approximation. The small features on 

the surface are artifacts of the numerical computation/drawing. 
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Fig. 19. The magnetic moment per rare earth ion M  divided by 
2 2 2| | /B z Bg J k    as a function of temperature and external 

magnetic field B  directed along [011], calculated for the spin ice 

model within the Bethe–Peierls approximation. 

Fig. 20. The magnetic susceptibility per rare earth ion   (divided 

by 2 2 2| | /B z Bg J k   ) as a function of temperature and external 

magnetic field B  directed along [011], calculated for the spin ice 

model within the Bethe–Peierls approximation. 
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The behavior of thermodynamic characteristics of the 

spin ice model for other external field directions can be 

calculated in a similar way [134]. It is important to point 

out that at nonzero values of the field the magnetization of 

spin ice systems becomes essentially nonzero, which im-

plies the necessity to take into account demagnetization 

factors of the samples, when comparing theoretical results 

with the experimentally observed data. 

Figure 21 shows the magnetic field behavior of the 

magnetization of Dy2Ti2O7 at low temperatures for three 

different directions of the field. One can see a good agree-

ment of the theory and experimental observations. 

Other important experimental results for the magnetic 

field behavior of Dy2Ti2O7 and Ho2Ti2O7 the reader can 

find, e.g., in [142,145–159]. 

5.5. Dynamics of spin ices 

The dynamical properties of Dy and Ho pyrochlore oxi-

des in the spin ice phase have been intensively studied dur-

ing the last decade [111,151,158,160–172]. 

Low-temperature (down to 0.06 K) low-frequency 

(about 10 Hz) measurements of the ac magnetic suscepti-

bility indicate that the real part of the dynamical suscepti-

bility becomes lower below about 1 K, while its imaginary 

part manifests a maximum, see Fig. 22. Below 0.5 K both 

real and imaginary parts of the dynamical susceptibility 

have almost zero value, which can be explained by absence 

of a long-range ordering. Such a behavior is reminiscent of 

the behavior of the dynamical characteristics of spin glass-

es [22–27,123], for which the difference in the “zero field 

cooling” and “field cooling” behavior is usual (cf. also the 

previous section, where we considered static characteristics 

of spin ices in the external magnetic field). The example of 

the “zero field cooled” and “field cooled” behavior of the 

magnetization of Dy2Ti2O7 is shown in Fig. 23. Similar 

features in the temperature behavior is seen in the real and 

imaginary part of the dielectric constant, where the exter-

nal magnetic field strongly affects dynamics [151]. 

Fig. 21. Magnetization of Dy2Ti2O7 as a function of the magnetic 

field applied along [100], [111], and [110] at low temperatures. 

From H. Fukazawa et al., Physical Review B 65, 054410 (2003). 

http://link.aps.org/abstract/PRB/v65/p054410 Copyright 2003 by 

the American Physical Society. 

Fig. 22. The temperature dependence of the ac magnetic suscepti-

bility of Dy2Ti2O7. From H. Fukazawa et al., Physical Review B 

65, 054410 (2002). http://link.aps.org/abstract/PRB/v65/p054410 

Copyright 2002 by the American Physical Society. 

Fig. 23. (Color online) The temperature dependence of the mag-

netization of Dy2Ti2O7 on warming after field cooling (light 

red curves) and zero field cooling (dark blue curves). From 

J. Snyder et al., Physical Review B 69, 064414 (2004). 

http://link.aps.org/abstract/PRB/v69/p064414 Copyright 2004 by 

the American Physical Society. 
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The analysis of the temperature behavior of the real and 

imaginary parts of the dynamical magnetic susceptibility 

implies the Arrhenius law (while opposite conclusions 

were also made) [158,160,162–172]. It turns out that the 

freezing dynamics of spin ice systems differs from the one, 

associated with spin glasses, where randomness plays, 

probably, the essential role [22–27,123]. For example, the 

behavior of dynamical characteristics in the external mag-

netic field for spin ices is very different from the one in 

spin glasses, where the ordering temperature decreases 

with the growth of the field value. In Dy2Ti2O7 the tem-

perature of the feature in the dynamical magnetic suscepti-

bility increases with the external field. Also, as expected, 

the measurements of the dynamical characteristics of spin 

ices have manifested the anisotropy of properties for the 

field applied along [111] and [100]. 

For higher temperature ( > 4T  K) dynamical character-

istics of spin ices also manifest the “freezing” feature about 

15 K [158,160,162–172]. The analysis of that behavior 

implies the presence of the relaxation process with the typ-

ical time scales satisfying Arrhenius law exp ( / )aE T  

with activation energies 200aE  K, in agreement with 

recent muon spin relaxation studies [173,174], which give 

the muon relaxation rate of similar form exp ( / )aE T   

with 220aE  K. It means that such a relaxation involves 

transitions to the higher-energy single-ion multiplets of 

rare earth ions. On the other hand, another dynamical pro-

cesses in spin ices in the temperature range between 5 and 

10 K did not show any significant temperature dependence 

[173–175], which has been interpreted as caused by the 

quantum tunneling effect between up- and down-directed 

states of effective Ising spins. Notice that SR (muon spin 

relaxation) and ac susceptibility measurements observed 

relaxation rates different from each other up to three orders 

of magnitude, perhaps, because of the local character of the 

SR probe. Depolarization of muons is caused mostly by 

the development on cooling of strong inhomogeneous in-

ternal fields (almost static). At very low temperatures, in-

side the spin ice phase, the residual spin dynamics persists 

mostly due to the mixture of electron and nuclear energy 

levels. Spin dynamics in spin ices persists down to lowest 

temperatures, and was observed by several experimental 

techniques [158,160,162–174,176]. Magneto-caloric stud-

ies of Dy2Ti2O7 revealed extremely slow relaxation [177]. 

We would like also to mention here the studies of the dy-

namics of spin ices via the nuclear spin excitation [178], 

and studies of elastic properties of spin ices [176,179]. The 

latter [176] manifested features in the sound characteristics 

of spin ice systems (sound velocity and attenuation) differ-

ent for increasing and decreasing external field value. This 

also implies different relaxation processes in spin ices at 

low temperatures of order of 0.03 K. 

Studies of other representatives of the spin ice family, 

namely, of stannates, Dy2Sn2O7 and Ho2Sn2O7 were per-

formed in [121,180–182]. 

6. Monopoles as emergent quasiparticles 

The interest in spin ices has been considerably grown 

after the pioneering suggestion that magnetic monopoles 

can exist as emerging quasiparticles there [183]. 

In physics, the term “emergence” is used to describe a 

phenomenon, that can exist at macroscopic scales (in space 

or time) but not at microscopic scales, despite such a mac-

roscopic system can be considered as a large ensemble of 

microscopic systems. It is used to distinguish which laws 

can be applied to macroscopic scales, and which ones only 

to microscopic scales. Examples of emergent macroscopic 

characteristics can be a temperature in statistical mechan-

ics, a convection in liquids or gases. Even a mass, space 

and time in some field theories can be considered as emer-

gent phenomena caused by more fundamental concepts, as 

strings, branes, or Higgs boson. For the recent example of 

emergent phenomenon in frustrated magnetic systems, see, 

e.g., [184,317]. 

6.1. Magnetic monopoles 

By magnetic monopoles we usually mean a particle that 

is an isolated magnet with only one magnetic pole. Already 

in 19th century P. Curie pointed out that magnetic mono-

poles could exist. However, the problem of magnetic mo-

nopoles is associated mainly with P.A.M. Dirac, who has 

constructed the quantum theory of magnetic monopoles 

[185]. He has emphasized that quantum mechanics did not 

preclude the existence of magnetic monopoles, and shown, 

in particular, that if magnetic monopoles existed, then the 

electric charge had to be quantized. We know, naturally, 

that the electric charge is quantized, however this fact, un-

fortunately, does not prove the existence of magnetic mo-

nopoles. 

Standard Maxwell's equations describe magnetism as 

related to the motion of electric charges (take into account 

that in quantum mechanics particles can have “intrinsic” 

magnetic moment related to their spin). The multipole ex-

pansion produces first monopole, then dipole, quadrupole, 

etc. For the electric field the multipole expansion can have 

the monopole term (charge), while for the magnetic field 

there is no such a term. That is why, Maxwell's equations 

describe electric charges, but not magnetic charges, despite 

they are symmetric with respect to the interchange of mag-

netic and electric fields (except of the absence of magnetic 

charges). On the other hand, we can formally write sym-

metric Maxwell's equations, with magnetic monopoles. 

Two of Maxwell's equations, Gauss's law, and Ampére's 

law, are not changed (here we use SI units)  
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where e  and ej  are the electric charge density and electric 

current density, respectively (notice that the vacuum per-

mittivity is 2 1 12
0 0= = 8.85·10c     F/m, and 0= B H ). 

We can re-write Gauss's law for magnetism and Faradey's 

law of induction in such a way that they become similar to 

Eqs. (16), namely,  

 0( ) = ,m  B
 

 

 0[ ] = ,m
t


  



B
E j  (17) 

where the magnetic charge density and magnetic current 

density are introduced. Then the Lorentz force can be pre-

sented as  

 
2

1
= ( [ ]) [ ] ,e mq q

c

 
     

 
F E v B B v E  (18) 

where eq  ( mq ) are the electric (magnetic) charge of a 

particle, which moves with the velocity v. For the quan-

tum system, that consists of a single stationary electric 

charge and a single stationary magnetic charge (mono-

pole), the electromagnetic field, surrounding them, has 

the  momentum density, equal to the Poynting vector 

0= (1/ )[ ] G E B . It also has the total angular moment, 

proportional to [ ]d  r r G , proportional to e mq q . The 

latter is quantized in units of  in quantum mechanics. 

Then Dirac considered a magnetic charge at the origin, 

which generates the magnetic field 2/mq r , directed in the 

radial direction (analogous to Coulomb's law). The diver-

gence of B  is equal to zero almost everywhere, except for 

the origin at = 0r . We can locally define the vector poten-

tial such that the curl of the vector potential is [ ] =A B. 

Such vector potential cannot be defined exactly every-

where, because the divergence of the magnetic field is pro-

portional to the Dirac delta function at the origin. Dirac 

defined one vector potential on the “northern hemisphere” 

(above the particle), and another one for the “southern 

hemisphere”. These two vector potentials are matched at 

the “equator”, and they differ by a gauge transformation. 

The wave function of an electrically-charged particle that 

moves around the origin along the “equator” is changed by 

a phase as in the Aharonov–Bohm–Casher effect. This 

phase is proportional to the electric charge eq  of the mov-

ing particle and to the magnetic charge mq  of the source. 

The electric charge returns to the same point after the total 

trip around the sphere. The phase of its wave function must 

be unchanged. It implies that the phase added to the wave 

function must be a multiple of 2. Hence, Dirac's quantum 

theory means quantization of electric and magnetic charges 

 
0

2
= ,e m

n
q q




 (19) 

where n  is an integer. Actually, Dirac's theory describes 

an infinitesimal line solenoid as in the Aharonov–Bohm–

Casher effect [186,187], ending at a point. The location of 

the solenoid is the singular part of the Dirac solution. This 

line is known now as Dirac string. A Dirac string connects 

monopoles and antimonopoles (magnetic particles with 

opposite to monopole's magnetic charge). Dirac strings 

cannot be seen, because we can put them anywhere. For 

two coordinate patches, we can made the field in each 

patch non-singular by sliding the Dirac string to the place, 

where we cannot observe it. For the recent status of theory 

and experiment in physics of magnetic monopoles consult 

[188]. 

6.2. Magnetic monopoles in spin ices 

In condensed matter, and, in particular, in spin ices, we 

have, of course, ( ) = 0B  for the magnetic induction, 

i.e., no real magnetic monopoles should exist. However, 

there is no such a restriction on the microscopically deter-

mined magnetic field H. Hence, we can consider quasi-

particles, which cannot be constructed as combinations of 

elementary charges; they can carry fractional charges. 

Namely such quasiparticles can be monopoles in the terms 

of H. 

The ground state of the spin ice can be considered as all 

tetrahedra obeying ice rule (two effective Ising spins are 

directed “inside” and two directed “outside” of each tetra-

hedron). Effective spins are constrained to be directed 

along their local Ising axes ne , which form the diamond 

lattice (dual to the original pyrochlore lattice with vertices 

at the centers of tetrahedra, see Fig. 24) bonds [189]. To 

remind, the diamond lattice consists of two inter-penetrat-

ing fcc sublattices. There is a huge degeneracy of such a 

state, related to the Pauling entropy. Excitations above 

such a ground-state manifold are defects, violating locally 

the ice rule. Using the analogy between the water ice and 

spin ice [190] we can replace the energy of Ising spins liv-

ing on pyrochlore lattice sites by the energy of dipoles 

(dumbbells consisting of equal in value and opposite in 

sign magnetic charges) that live at the ends of diamond 

Fig. 24. (Color online) Right panel: Original pyrochlore lattice [A 

sublattice in light (red); B sublattice in dark (black)]. Left panel: 

Dual diamond lattice with bonds defining “easy axes” for total 

moments of rare earth ions in spin ices. From O. Benton, O. 

Sikora, and N. Shannon, Physical Review B 86, 075154 (2012). 

http://link.aps.org/abstract/PRB/v86/p075154 Copyright 2012 by 

the American Physical Society. 
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bonds. Let us denote the diamond lattice constant as 

3/2da a . 

Let us describe how magnetic monopoles can exist in 

dipolar spin ices following [183]. Consider the Hamiltoni-

an ex d+ , see Eqs. (4) and (7). A dipole can be thought 

as a pair of equal and opposite charges q±  separated by 

the distance a , = qa . Let us choose = da a , then mag-

netic charges are = / dq a , where = | |B zg J    . The 

limit 0a   reproduces exactly the Hamiltonian (7). The 

magnetic Coulomb interaction energy between charges 

situated at different sites of the diamond lattice is given by  

 0( ) = ,
4

i j
ij

ij

q q
v r

r




 (20) 

where ijr  is the distance between charges, and we can 

write such an energy for two charges situated at the same 

site as  

 0(0) = ,i jv v q q  (21) 

where we tune the value of 0v  to match the interaction 

energy between two neighboring effective Ising spins on 

the pyrochlore lattice, eff = ( 5 ) / 3J J D± +  (the latter can 

be obviously obtained when considering one primitive 

cell). For two neighboring effective spins directed inside 

the tetrahedron, we get  

 eff 12 23 13= (0) 2 ( ) 2 ( ) ( )J v v r v r v r    , (22) 

where 1, 2, and 3 define the positions of spins (we have 

12 23= = dr r a  and 13 = 2r a ), while for two spins, one of 

which is directed “in” and the other one “out” we obtain  

 eff 12 23 13= (0) 2 ( ) 2 ( ) ( ) .J v v r v r v r      (23) 

From these equations we obtain  

 eff 12 13(0) = 2 ( ) ( ) ,v J v r v r   (24) 

which yields (using the values for charges ,| | = /i j dq a )  

 

2

0
4 2

= 1 .
3 3 3

da J D
v

   
     

    
 (25) 

Then we can introduce the total magnetic charge on each 

site n  of the diamond lattice 1 2 3 4=n i i i iQ q q q q+ + +  for 

four charges with the coordinates ,1,2,3,4 =i nr r . Then for 

the Coulomb energy of magnetic charges we can write for 

n m   

 0( ) = ,
4

n m
nm

nm

Q Q
V r

r




 (26) 

and for =n m  we get 2
0( ) = / 2nn nV r v Q , which agrees 

with the above values for ( )v r  up to overall constant term 
2( / )dN a , where N  is the number of dipoles. The ener-

gy 0 / 2v  is necessary to reproduce correctly the net near-

est neighbor interaction. We emphasize that this energy is 

equivalent to the energy of magnetic dipole–dipole interac-

tion between effective Ising spins, d . 

Let us first consider the ground state of the dipolar spin 

ice using the language of such magnetic charges. The total 

energy has its minimum if each diamond lattice site is neu-

tral, which corresponds to the orientation of dipoles such 

that = 0nQ  for each site of the diamond lattice. It is noth-

ing else than the realization of the ice (tetrahedron) rule. 

Naturally, such a state is degenerate, which yields the Pau-

ling remnant entropy. Then, let us turn to excited states 

[189]. Naively the most elementary excitation corresponds 

to the reversing of a single dipole, that generates a local net 

dipole moment 2. However, such a simple picture is mis-

leading. The reversed dipole is related to two adjacent sites 

with the net magnetic charge  

 
2

= ,n
d

Q
a


±  (27) 

which is the nearest neighbor monopole–antimonopole pair. 

It is easy to see that monopoles can be separated from 

antimonopoles without violation of the ice rule by reversing 

a chain of adjacent dipoles, or changing the direction of ef-

fective Ising spins on the original pyrochlore lattice [189], 

see Fig. 25. 

A pair of monopoles separated by the distance r  expe-

rience a Coulomb magnetic coupling 2
0 / 4mq r  . It takes 

only a finite energy to separate monopoles to infinity, 

which means that monopoles are deconfined. Hence, mag-

Fig. 25. (Color online) Upper panel: Spin ice, that satisfies 

the spin ice (tetrahedron) rule. Lower panel: Monopole (blue 

circle)–antimonopole (red circle) pair. Light (green) arrows 

show possible Dirac's string. From Y. Wan and O. Tcherny-

shyov,  Physical Review Letters 108, 247210 (2012). 

http://link.aps.org/abstract/PRL/v108/p247210 Copyright 2009 

by the American Physical Society. 
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netic monopoles are true elementary excitations of the spin 

ice. They are emergent quasiparticles, because of the frac-

tionalization of their charge, see above. The fact that a 

string of dipoles realizes a monopole–antimonopole pair at 

its ends is known from the classical electrodynamics [191]. 

However, it is important that the energy cost of creating 

such a string of dipoles remains bounded with the growth 

of its length (the relevant string tension vanishes) to obtain 

deconfined monopoles. Of course, such a condition cannot 

be realized in a vacuum, where by growing the length of 

the string of dipoles we need the energy for creation of 

additional dipoles. The ice rule can be considered as the 

requirement that two dipole strings enter and exit each site 

of the diamond lattice. No domain walls are created along 

the string in the dipolar spin ice (unlike, e.g., an ordered 

ferromagnet), which results in the deconfinement of mo-

nopoles there. 

According to the Dirac quantization condition, the 

charge of real magnetic monopoles has to be quantized. 

This is in the close relation to the condition that Dirac's 

string is unobservable. On the other hand, the net of (di-

pole) strings in the dipolar spin ice, which are energetically 

unimportant, makes dipole strings in such spin ices observ-

able, and the magnetic charge there is not quantized. We 

can define a density of “smeared” magnetic charges in the 

dipolar spin ice as  

 
2 23 | | /( ) = ( ) e ,m d
    

r r
r r H  (28) 

where the monopole at the origin = 0r  separated by 

L a  from other monopoles yields (0) =m mq ± . 

For the magnetic induction B , the compensating flux 

moves along “non-quantized Dirac's string” of flipped di-

poles, created together with each monopoles. 

6.3. Properties of magnetic monopoles in spin ices 

The external magnetic field applied along [111] acts as 

a staggered chemical potential for monopoles [183]. We 

can approximate the low-energy physics of dipolar spin 

ices as the one of the gas of magnetic monopoles and 

antimonopoles on the diamond lattice. Hence, one can use 

the results for such a gas with Coulomb coupling [192]. By 

changing the value of the chemical potential in that case 

one can see the temperature crossover between high- and 

low-density phases at high temperatures, while at low tem-

peratures there must be the first order phase transition be-

tween those phases. The line of that phase transition termi-

nates in a critical point in the phase diagram. Notice that 

for nearest-neighbor spin ice such a liquid–gas transition 

cannot exist [193], there defects interact only entropically. 

The low-density phase of the gas of monopoles is related 

to the Kagome phase in [111] magnetic field, while the 

high-density phase corresponds to the ordered state with 

the maximal magnetization along the field direction. No-

tice that monopoles, which appear in the anomalous Hall 

effect [194], are not excitations, and involve a real physical 

magnetic field. 

Let us now calculate the equilibrium concentration of 

monopoles [189]. Each vertex in the diamond lattice at low 

energies can be in one of 14 states: six monopole-free 

states (satisfying the ice rule), four states with a monopole, 

and four states with an antimonopole (three effective Ising 

spins directed “in” and one “out”, and vice versa). Two 

states with all effective spins directed “inside” or “outside” 

the tetrahedron can be ignored in the low-energy theory. If 

tN  is the number of tetrahedra, and the number of vertices 

for each of such states is iN  ( =1, ,14i ), then the total 

number of configurations is /t iiN NХ . The configurations 

with parallel and antiparallel effective spins at the mid-

points of nearest neighbor bonds (in other words, with cor-

related and anti-correlated vertices) must not be counted. If 

the probability of a correlated state is 1/2 then the number 

of correlated states is 
2

= (1/2) /
Nt

t iiw N N± Х . If monopoles 

and antimonopoles are created in pairs, and all states with 

monopoles and antimonopoles are equivalent 1 6= =N N , 

7 14= =N N , the entropy per rare earth ion is 

(2 ln ( ) (1 2 ) ln [2(1 2 ) / 3])Bk x x x x     where = / tx N N±  

is the concentration of monopoles (antimonopoles) per 

vertex. The free energy per vertex is then ( ±  are the ener-

gies of the monopole/antimonopole configurations)  

 
2(1 2 )

= 2 ln ( ) (1 2 ) ln ,
3

B
x

f x k T x x x
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which implies the equilibrium concentration of monopoles 

being  
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At low temperatures, which is relevant for the experi-

mental situation in spin ice materials, we have x 
 

(2/3) exp ( /2 )Bk T  . On the other hand, at high 

enough temperatures we get, obviously, = 2 / 7x± . 

The monopole picture of spin ices is different from the 

conventional one in the theory of quasiparticles, because 

the ground state, as well as excited states for monopoles 

are highly degenerate. However, for many purposes the 

information about local configurations is redundant. 

Using the analogy between the system of monopoles in 

the spin ice and water ice it is possible to write the “conti-

nuity” equation for the magnetization M   

 = ( ) ,
Q

N N
t V

   





M
v v  (31) 

where nQ Qє  is the monopole magnetic charge, V  is the 

macroscopically small volume around the point r, and ±v  

are the velocities of the monopole and antimonopole. No-

tice that = /N V± ± ±j v  are densities of currents for mo-

nopoles (antimonopoles). The rate of the entropy produc-

tion due to monopoles (antimonopoles) can be written as  
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= .
3

Bak T
T Q

t Q




  
   

   


M
j H  (32) 

On the other hand, it is equal to   j f , where ±f  are ge-

neralized driving forces. It follows that  

= ( 8 / 3 )BQ ak T Q± ±f H M .  

The second term describes possible magnetic ordering: 

When effective spins are partly ordered there exists a non-

zero monopole current even without the external field. 

Then the monopole (antimonopole) currents can be written 

as  

 
8

= ,
3

B
t

ak T
u x N Q

Q
  

 
  

 

M
j H  (33) 

where u±  are the monopole/antimonopole mobilities, so that 

= u x Q± ± ±  are the monopole/antimonopole conductivi-

ties. Then it is easy to obtain, taking into account the “conti-

nuity equation”, that in the linear regime = ( )  M H  

with the longitudinal dynamical magnetic susceptibility  

 
23 /8

( ) = ,
1

BQ ak T

i
 

 
 (34) 

where   is the relaxation time. The static magnetic sus-

ceptibility can be then obtained as  

 
2 2 2

3

3 | |
= .B z

T

B

g J

a k T

  
  (35) 

The absolute value of the static susceptibility is twice the 

value of the susceptibility of the standard paramagnet C  

of the same spin density. This expression for the homoge-

neous susceptibility has been generalized recently for the 

inhomogeneous case [195], when taking into account the 

diffusion of monopoles, as  

 
2 2

( , ) = ,
1 ( /6 )

T

a q gx i


 

  
q  (36) 

where q  is the wave vector, 
3= 8 / 3 3x a c  is the total 

dimensionless monopole density ( c  is the total concentra-

tion of monopoles) and = /C Tg    is the ratio of the stat-

ic susceptibilities for the spin ice and standard paramagnet; 

it is equal to 1/2 in the above calculations, however, in 

general, it can vary from 1 at high temperatures to 1/2 at 

low temperatures. It implies the correlation length  =
 

/ 6a gx= . 

If we take into account the demagnetization factor D  

via int ext= H H M , the effective susceptibility has to 

be renormalized as ext/ = /( 1)r T T    M H . Then the 

“field cooled” magnetization is just ext=FC rM H , however, 

the “zero field cooled” one is ext= [1 exp ( / )]ZFC r t   M H  

(valid at small t ±), where the time-dependent multi-

plier comes from the integration of the “continuity equa-

tion” for magnetization when we take into account relaxa-

tion time   and demagnetization factor . The behavior 

of the magnetization derived from that theory [195] is rem-

iniscent of the experimentally observed in spin ices data, 

presented in Fig. 23. 

Closely related problem of magnetic relaxation in spin 

ices as a “monopole electrolyte” has been studied in [196–

198]. Non-Ohmic conductivity, the Wien effect [199] for 

a weak “monopole electrolyte” has been studied theoreti-

cally and experimentally by the transverse field low-

temperature SR [200,201] (notice, though [202]). Other 

recent theoretical studies of the dynamical characteristics 

of monopoles include [203–209]. 

Some low-temperature properties of spin ices were suc-

cessfully described by magnetic monopoles, e.g., in neu-

tron scattering [211,212], in the behavior of magnetic sus-

ceptibility [213] (the latter can be well described by the 

Debye–Hückel theory [214–216]), see also [158,217–219], 

in NMR (nuclear magnetic resonance) [220], and in the 

thermal conductivity [221]. 

7. Other spin ices 

So far we discussed properties of the standard spin ices. 

However, nowadays physicists consider other possibilities 

for spin ices. 

7.1. Quantum spin ice 

By the quantum spin ice we usually mean the similar 

rare-earth pyrochlore oxides, in which, unlike usual spin 

ices, the “easy axes” magnetic anisotropy is not so strong 

comparing to the spin–spin (total moment–total moment) 

interaction, like the exchange coupling, or the magnetic 

dipole–dipole interaction. That is why, there exists a possi-

bility of spreading of a local spin flip to other places due to 

non-Ising components of the particle–particle interaction 

[222–232]. In general, such a possibility can yield magne-

tic ordering, hence, the level of magnetic frustration for 

quantum spin ices is lower than for usual ones (sometimes 

called classical). Strong quantum fluctuations essentially 

affect statics and dynamics of quantum spin ices. Recent 

studies show that Yb-based titanate, Yb2Ti2O7, can serve 

as a good example of a quantum spin ice [233–245]. Crys-

talline electric field also well separates the low-energy 

doublet from other multiplets there. However, planar com-

ponents of g-tensor, = 4.18g  are larger than longitudinal 

Ising components (along [111]) = 1.77g . Notice that in 

this compound the anisotropy is also present in exchange 

interactions with the ferromagnetic (0.65 0.15) KCW   . 

The system reveals the phase transition at 0.24 K to the 

low-temperature phase (the value of the critical tempera-

ture depends on the applied magnetic field), which nature 

has not been totally identified yet, see, e.g., Fig. 26. 

Most of studies support ferromagnetic ordering in that 

compound. This phase transition has been recently deter-

mined as the Higgs transition from a magnetic Coulomb 
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liquid of monopoles to the ferromagnetic phase, which was 

viewed as a Higgs phase for magnetic monopoles 

[246,247]. 

7.2. Stuffed spin ice 

By stuffed spin ice [84] one means the situation, when mag-

netic rare earth ions alter chemically nonmagnetic Ti sites, for 

example Ho
3+

 “stuffs” B sites like in Ho2(Ti2–xHox)O7– 

(where > 0  implies the balance of oxygen content due to 

“stuffing”) [248–255]. Such a procedure, naturally, intro-

duces randomness to the spin ice, and one would expect 

enhancement of spin glass-like behavior, e.g., the transition 

to the ordered spin-glass state. The quantum relaxation 

time is enhanced there, i.e., spin–spin correlations are 

slower in stuffed spin ices. However, stuffed spin ices do 

not freeze down to the lowest temperatures, and have basi-

cally the same entropy as standard spin ices [248–255]. On 

the other hand, stuffed spin ice based on Dy does not mani-

fest residual entropy, i.e., spin fluctuations persist there 

down to lowest temperatures [219,256]. Extra spins of Dy-

based stuffed spin ice trap magnetic monopoles and ob-

struct flow of monopoles, introducing residual resistance. 

For Ho-based stuffed spin ice the ice rules are valid only 

over a short range. At longer range such a stuffed spin ice 

exhibits some characteristics of a “cluster glass”, with a 

tendency to more conventional ferromagnetic correlations. 

7.3. Metallic spin ice 

We considered above insulating spin ice systems, where 

the movement of electric charges was absent. Some rare 

earth pyrochlore oxides, on the other hand, reveal conduct-

ing properties. For example, Pr2Ti2O7 manifests Kondo-

like effects (like logarithmic increase of the resistivity and 

magnetic susceptibility at low temperature) [257–259]. It is 

strange, because Pr 3+  is the Ising ion, and the Ising anisot-

ropy reduces the Kondo screening. Theoretical studies pre-

dict that long-range RKKY interaction in metallic 

pyrochlore oxides should yield magnetic ordering; on the 

other hand, local spin correlations of the spin ice can pro-

duce non-Kondo mechanism of observed features in the 

temperature dependences [260–262]. The other metallic 

spin-liquid system, Pr2Ir2O7 with Ising-like spins along 

[111] reveals spontaneous Hall effect [258,263–265]. 

There spin ice correlations in the liquid phase lead to a 

non-coplanar spin texture forming a uniform but hidden 

order parameter, the spin chirality. 

8. Artificial spin ice 

Spin ice is a very interesting system, which, as we have 

shown above, manifests very rich physics. This is why the 

study of spin ices has not been limited to natural systems 

exhibiting spin ice properties. Several years ago the mod-

ern lithographic technique was used for the construction of 

artificial dipolar arrays of single-domain ferromagnetic 

permalloy Ni0.81Fe0.19 islands of a submicron size (with 

the length of 220 nm, width of 80 nm and thickness of 

25 nm) on a Si substrates with a native oxide layer [266]. 

The moment of each island was about 73·10 B . Notice 

that permalloy has effectively zero magnetic anisotropy, so 

that the anisotropy energy (of order of 10 4  K) of the is-

land's magnetic moment itself, which is controlled by it's 

shape, forced magnetic moments of islands to align along 

the longer axes, therefore magnetic islands can be consid-

ered as effective Ising-like spins. Such arrays of interacting 

monodomain nanomagnets provide important model sys-

tems of statistical mechanics, as they map onto well stud-

ied theoretically vertex models, see above. The intrinsic 

frustration on such a lattice is similar to spin ices. To see 

how it comes about, we can consider a vertex, where four 

islands meet. A pair of moments in the vertex can be di-

rected either to maximize or to minimize the magnetic di-

pole–dipole interaction. It is energetically favorable if the 

moments of pair of islands are directed in a such a way that 

one is pointing into the center of the vertex, and the other 

is directed out of the center of the vertex. On the other 

hand, the configuration with both moments pointing inside 

vertex (or outside it) demands additional energy. There are 

in general 16 configurations of vertices. Six configurations, 

satisfying the ice rule, with “two in” and “two out”, like 5 

and 6 of Fig. 7, have the lowest energy (the configurations 

1, 2, 3 and 4 have higher energies than 5 and 6). On the 

other hand, the configurations with three moments inside 

(outside) and four moments inside (outside) the vertex are 

energetically unfavorable at low temperatures. The energy 

Fig. 26. (Color online) The temperature dependence of the speci-

fic heat of Yb2Ti2O7 for powder samples (dark and light blue 

curves) and single crystals (red and black curves). From 

K.A. Ross et al., Physical Review B 84, 174442 (2011). 

http://link.aps.org/abstract/PRB/v84/p174442 Copyright 2011 by 

the American Physical Society. 
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difference between configurations can be, in principle, 

regulated by the size of the lattice constant. This approach, 

in particular, gives the possibility to study the state of the 

system with local probes, as the magnetic force micro-

scope, to see directly the situation with single constituent 

magnetic islands, see the example in Fig. 27. Magnetic 

monodomain permalloy islands provide that way the ana-

logue of effective Ising spins in pyrochlore oxides. 

The construction of artificial frustrated magnet has 

opened the door to the new approach for the researches 

with designed artificial systems rather than with natural 

ones. For example, artificial spin ice systems were pro-

posed to be constructed as arrays of optical traps 

[267,268]. A large number of experiments and theories 

since 2006 have considered artificial spin ice systems, in-

cluding planes of ferromagnetic islands with square, ho-

neycomb and Kagome lattices [269–295]. In particular, it 

has been shown using magneto-optical Kerr effect that 

disorder in the roughness (in shape) of magnetic islands 

plays essential role in the collective behavior of artificial 

spin ices [296,297]. The interesting study has investigated 

the behavior of entropy in artificial the spin ice system 

[298]. The analysis shows that nearest-neighbor correla-

tions drive the longer-range ones there. 

As a result of the magnetic frustration, these systems 

can exhibit magnetic monopole type states, which are an 

example of an exotic emergent quasiparticle [280–311]. 

For example, magnetic monopoles and associated Dirac-

like strings have been directly observed in the artificial ho-

neycomb (on Co films of 20 nm thickness) and Kagome 

spin ice (permalloy films) systems [312–314] using mag-

netic force microscopy and x-ray photoemission microsco-

py. To remind, the Kagome lattice can be realized in 

pyrochlore spin ices by applying [111] external magnetic 

field. In particular, for the visualization of magnetic mono-

poles in permalloy systems the x-ray magnetic circular 

dichroism was used. Dirac-like strings were observed as a 

history of propagating monopole–antimonopole pairs. Cre-

ation of such pairs as well as their movement has been re-

gulated by the external magnetic field in the reversed (with 

respect to the magnetic moments of islands) direction. 

Randomness, as for other artificial spin ices, see above, 

plays an important role for the physics of monopoles. In 

contrast to pyrochlore oxides, where magnetic monopoles 

form a gas and Dirac's strings are dynamically fluctuating, 

in an artificial spin ice one deals at large enough values of 

the external magnetic field with the effective low-

temperature case, in which after each field step (change of 

the magnetization of an island) random variations in the 

switching field pin monopoles and related Dirac's strings. 

Monopoles become trapped. Namely that property permits 

to image monopole–antimonopole configurations before 

increasing the value of the field, and to manipulate with 

such magnetic charges. Dirac's strings grow in the horizon-

tal or diagonal directions of the two-dimensional lattice as 

a result of one-dimensional avalanche processes [315]. 

Artificial spin ices reveal also the anomalous Hall effect 

[316], which, like in the ferromagnetic SrRuO3, is believed to 

be caused by the movement of magnetic monopoles [194]. 

9. Summary 

Studies of magnetic frustrated systems nowadays be-

long to the one of the most rapidly developing branches of 

the low-temperature condensed matter physics. It is deter-

mined by the great variety of new physical concepts, which 

were applied, and plenty of new physical effects, observed 

in this field. Spin ices, magnetic monopoles, Higgs effect, 

anomalous Kondo and Hall physics: All of them have been 

observed and explained during recent years in frustrated 

magnets. The studies of magnetic frustrated systems are far 

from being complete; many new important and interesting 

effects are waiting for their discoveries. Least but not the 

last: Frustrated magnets are important not only due to their 

fundamentally interesting physical properties, but also be-

cause of their perspective usefulness as data storages and 

memories for computers, or as possible realizations of the 

topological quantum computation. 

It is possible that, when reviewing such a swiftly devel-

oping field of physics with a great number of important 

works, and trying to mention all of them, I, perhaps, have 

not cited some interesting publications. I sincere apologize 

to those of authors, whose contributions to the field of spin 

ices and magnetic monopoles are not mentioned in my 

article. 

I thank R. Moessner for his very helpful comments and 

suggestions. Support from the Institute for Chemistry of 

V.N. Karazin Kharkov National University is acknow-

ledged. 

Fig. 27. Picture from the magnetic force microscope of the square 

array of single-domain permalloy magnetic nanoislands. White 

and black sides of each island show the direction of the magnetic 

moment of the island. From C. Nisoli et al., Phys. Rev. Lett. 98, 

217203 (2007). http://link.aps.org/abstract/PRL/v98/p217203 

Copyright 2009 by the American Physical Society. 
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