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At present, a number of models are available describing the adsorption of a fluid in a random porous medium.
In this paper, some exact and analytical results are presented. All the results are obtained for an ideal gas
adsorbed in various porous matrices. It is shown that the calculations are not always trivial. In some cases of
complicated matrices, it is impossible to obtain any analytical results even for an ideal gas.
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1. Introduction

Porous materials have important technological applications such as molecular sieve, catalyst,
chemical sensor, etc. A thorough understanding of the structure of these materials as well as the
behavior of substances confined in them is very helpful in designing porous materials endowed with
specific properties. Much effort (both experimental and theoretical) has been devoted to the study
of porous materials. In their pioneering work, Madden and Glandt proposed a very simple model for
the fluid adsorption in random porous media [1]. A large number of investigations have been devoted
to Madden-Glandt model [1–82]. Recently, we have proposed some sponge-like models [31,32] and
a new type of templated matrix model [33]. All these models involve quenched disorders. Although
this makes such systems quite complex, some exact results can be still found. In the present paper,
I will give the exact results found for the adsorption of an ideal gas in a variety of models. In
the next section, I deal with Madden-Glandt model. In section 3, the templated matrix model of
Van Tassel will be considered. Our recent results for the hard sponge model will be presented in
section 4. In section 5, we also present our recent results for the new templated matrix model. The
concluding remarks are given in section 6.

2. Some general features

We start with the discussion of some general features of the adsorption of an ideal gas in a
matrix. The equations derived in this section are valid for any matrix model to be considered in
this work. The fluid is denoted as species 1 and the matrix is denoted in general by species 0.
Since only an ideal gas will be considered in this work, the fluid-fluid interaction is always set to
be zero, i.e.,

H11 = 0. (1)

In what follows we show that the fluid-matrix interaction potential for all the models considered
in this work can be written in the following form,

H10 =

N1
∑

i=1

v10

(

ri;X
M

)

, (2)
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where N1 is the number of fluid particle and XM is an abbreviated notation of the whole set of
variables needed for specifying the configuration of a given matrix realization. There can be several
subsets of variables completely specifying the matrix configuration, i.e.,

XM =
{

X
(1)
1 ,X

(1)
2 , . . . ,X

(1)
M1

; . . . ;X
(i)
1 ,X

(i)
2 , . . . ,X

(i)
Mi

; . . . ;X
(m)
1 ,X

(m)
2 , . . . ,X

(m)
Mm

}

.

For example, two sets of configuration variables are needed in order to describe the templated
matrices: one is needed for matrix particles and the other one for the template. In this work, all
the calculations are carried out using the grand canonical ensemble. The partition function for a
particular matrix realization is given by

Ξ1(X
M ) =

∞
∑

N1=0

zN1
1

N1!

∫

drN1e−βH10 =

∞
∑

N1=0

zN1
1

N1!

[∫

dr1 exp
(

−βv10

(

r1;X
M

))

]N1

= exp

{

z1

∫

dr1 exp
[

−βv10

(

r1;X
M

)]

}

, (3)

where

z1 =
eβµ1

Λ3
1

, (4)

is the fugacity of the fluid. In equation (4), µ1 and Λ1 are respectively the chemical potential and
the thermal wavelength of the fluid and β = 1/kT (k: Boltzmann constant; T : temperature). The
grand potential for a particular matrix realization is given by

Ω1(X
M ) = −kT ln Ξ1

(

XM
)

= −kTz1

∫

dr1 exp
[

−βv10

(

r1;X
M

)]

. (5)

Taking the average over matrix realizations, one obtains,

Ω =
〈

Ω1(X
M )

〉

M
= −kTz1

∫

dr1

〈

exp
[

−βv10(r1;X
M )

]〉

M

= −kTz1V
〈

exp
[

−βv10

(

r1;X
M

)]〉

M
, (6)

where 〈· · ·〉M denotes the average over matrix realizations. When the matrix samples are statisti-

cally homogeneous,
〈

exp
[

−βv10

(

r1;X
M

)]〉

M
is independent of r1. That is why the integration

over r1 can be carried out in equation (6). The thermodynamic pressure is defined as

P =
−Ω

V
= kTz1

〈

exp
[

−βv10

(

r1;X
M

)]〉

M
. (7)

The one-body fluid distribution function for a particular matrix realization is given by

ρ
(1)
1

(

r;XM
)

=

〈

N1
∑

i=1

δ(ri − r)

〉

1

=
1

Ξ1 (qN0)

∞
∑

N1=0

zN1
1

N1!

∫

drN1e−βH10

N1
∑

i=1

δ(ri − r)

=
exp

[

−βv10

(

r;XM
)]

Ξ1 (qN0)

∞
∑

N1=0

zN1
1

(N1 − 1)!

(∫

dr2 exp
[

−βv10

(

r2;X
M

)]

)N1−1

= z1 exp
[

−βv10

(

r;XM
)]

. (8)

Averaging over matrix realizations, we obtain the following expression for the fluid density

ρ1 =
〈

ρ
(1)
1

(

r;XM
)〉

M
= z1

〈

exp
[

−βv10

(

r;XM
)]〉

M
. (9)
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Taking the derivative of the pressure given in equation (7) with respect to the fluid chemical
potential, one verifies straightforwardly that Gibbs-Duhem equation holds, i.e.,

(

∂P

∂µ1

)

T

= ρ1 . (10)

Combining equations (7) and (9), one obtains

P = kTρ1 . (11)

Although this equation of state has formally the same form as that for a bulk ideal gas, it will
be shown that ρ1 is the averaged fluid density inside a porous matrix which depends on the matrix
characteristics.

For a particular matrix realization, the exact expression of the free energy of an inhomogeneous
ideal gas is well known as a functional of the fluid one-body distribution function,

=id(XM ) =

∫

drρ
(1)
1

(

r;XM
)

v10

(

r;XM
)

+ kT

∫

drρ
(1)
1 (r;XM )

{

ln
[

Λ3
1ρ

(1)
1

(

r;XM
)]

− 1
}

.

(12)
Using equations (4) and (8), one can rewrite the above expression as,

=id
(

XM
)

= kT (βµ1 − 1)

∫

drρ
(1)
1

(

r;XM
)

. (13)

The free energy averaged over the matrix realizations is given by

F id =
〈

=id
(

XM
)〉

M
= kT (βµ1 − 1)

〈

ρ
(1)
1

(

r;XM
)〉

M
V. (14)

Equations (11) and (14) clearly show that the determination of the thermodynamic properties

relies essentially on the calculation of the averaged fluid density in the matrix, i.e.,
〈

ρ
(1)
1

(

r;XM
)〉

M
.

Different distribution functions give us the structural information. The fluid-fluid two-body
distribution function for a particular matrix realization is given by clearly

ρ
(2)
11

(

r, r′;XM
)

=

〈

N1
∑

i=1

N1
∑

j=1,j 6=i

δ(ri − r)δ(rj − r′)

〉

1

= z2
1 exp

{

−β
[

v10

(

r;XM
)

+ v10

(

r′;XM
)]}

= ρ
(1)
1

(

r;XM
)

ρ
(1)
1

(

r′;XM
)

. (15)

The averaging over matrix realizations leads to

ρ
(2)
11 (|r − r′|) =

〈

ρ
(2)
11

(

r, r′;XM
)〉

M
=

〈

ρ
(1)
1

(

r;XM
)

ρ
(1)
1

(

r′;XM
)〉

M
. (16)

It is worth noting that no fluid-fluid correlation appears at the level of a particular matrix
realization [see equation (15)]. Nevertheless, the fluid-fluid correlation appears after averaging over
matrix realizations, i.e.,

ρ
(2)
11 (|r − r′|) 6= ρ2

1 . (17)

The correlation results from the fluid-matrix interaction and the loss of detailed structural
information on the matrix related to the averaging over matrix realizations.

Now, we consider the correlation function of fluid with one set of matrix configuration variables
for a particular matrix realization,

ρ
(2)
1mk

(

r,X;XM
)

=

〈

N1
∑

i=1

Mk
∑

j=1

δ (ri − r) δ
(

X
(k)
j − X

)

〉

1

=

〈

N1
∑

i=1

δ (ri − r)

〉

1

Mk
∑

j=1

δ
(

X
(k)
j − X

)

= ρ
(1)
1

(

r;XM
)

Mk
∑

j=1

δ
(

X
(k)
j − X

)

. (18)
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Taking the average over matrix realizations, we obtain

ρ
(2)
1mk

(|r − X|) =
〈

ρ
(2)
1mk

(

r,X;XM
)〉

M
=

〈

ρ
(1)
1

(

r;XM
)

Mk
∑

j=1

δ
(

X
(k)
j − X

)

〉

M

. (19)

3. Madden-Glandt model

A. The overlapping hard-sphere matrix

The overlapping hard-sphere matrix model is sketched in figure 1. The interaction potentials
between different species (0 and 1 denoting respectively matrix and fluid species) are as follows:

H00 = 0, (20)

H11 = 0, (21)

H10 =

N1
∑

i=1

N0
∑

j=1

u10

(∣

∣ri − qj

∣

∣

)

, (22)

with

u10(
∣

∣ri − qj

∣

∣) =

{

∞,
∣

∣ri − qj

∣

∣ < σ0/2,
0,

∣

∣ri − qj

∣

∣ > σ0/2.
(23)

σ0 in equation (23) is the diameter of the matrix hard sphere and qj denoting the position of
the j-th matrix particle. One obtains the partition function for a particular matrix realization by

replacing v10

(

r1;X
M

)

in equation (3) by
N0
∑

j=1

u10

(∣

∣r1 − qj

∣

∣

)

,

Ξ1(q
N0) = exp







z1

∫

dr1 exp



−β

N0
∑

j=1

u10

(∣

∣r1 − qj

∣

∣

)











. (24)

The grand potential after taking the average over matrix realizations is as follows:

Ω = −kT
〈

ln Ξ1

(

qN0
)〉

0
=

−kTz1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dqN0

∫

dr1 exp



−β

N0
∑

j=1

u10

(∣

∣r1 − qj

∣

∣

)





=
−kTz1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dr1

(

V −
πσ3

0

6

)N0

=
−kTz1V

Ξ0
exp

[

z0

(

V −
πσ3

0

6

)]

, (25)

where

z0 =
eβµ0

Λ3
0

, (26)

is the fugacity of the matrix species and Ξ0 the partition function of the matrix which is given by,

Ξ0 =

∞
∑

N0=0

(z0V )N0

N0!
= ez0V . (27)

Substituting equation (27) into equation (25), we obtain

Ω = −kTz1V exp

(

−
πσ3

0z0

6

)

. (28)
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Figure 1. Sketch of the overlapping hard-sphere matrix model.

The thermodynamic pressure is given by

P =
−Ω

V
= kTz1 exp

(

−
πσ3

0z0

6

)

. (29)

Now, we consider the one-body distribution functions. For a particular matrix realization, we
have

ρ
(1)
1

(

r;qN0
)

= z1 exp



−β

N0
∑

j=1

u10

(∣

∣r − qj

∣

∣

)



 . (30)

The fluid density after the averaging over matrix realizations is given by

ρ1 =
〈

ρ
(1)
1

(

r;qN0
)

〉

0
=

z1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dqN0 exp



−β

N0
∑

j=1

u10

(∣

∣r − qj

∣

∣

)





=
z1

Ξ0

∞
∑

N0=0

zN0
0

N0!

(

V −
πσ3

0

6

)N0

= z1 exp

(

−
πσ3

0z0

6

)

. (31)

Now, we will show that this result for ρ1 has a very appealing meaning. In equation (31), z1 is
the density of a bulk ideal gas at the same chemical potential as the confined ideal gas (i.e., the gas
in a reservoir outside the porous medium being in equilibrium with the confined ideal gas). It is
easy to prove that exp

(

−πσ3
0z0/6

)

is nothing else but the probability that a fluid particle is in the
void space. This probability can be found by considering a given ideal gas particle (a point one) as
follows. If no center of any matrix particle falls in the sphere of a diameter equal to σ0 centered at
the position of the given fluid particle, the considered fluid particle is obviously in the void space.
This sphere will be called exclusion sphere. The probability of finding M matrix particles inside
the exclusion sphere, Pes(M), is a Poisson distribution in the case of overlapping HS matrix and

Pes(M = 0) = exp

(

−
πσ3

0ρ0

6

)

, (32)

where ρ0 is the density of matrix particles. Noting that z0 = ρ0 for the overlapping HS matrix,
we see that the density of the confined ideal gas is given by the density of the bulk ideal gas (in
equilibrium with the confined one) multiplied by the probability of a fluid particle being in the
void space.

Substituting equation (31) into equation (14), we obtain the following result for the Helmholtz
free energy,

F

V
= kT (βµ1 − 1) z1 exp

(

−
πσ3

0z0

6

)

. (33)
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In terms of densities, the free energy takes the following form,

F

V
= kTρ1

[

ln
(

ρ1Λ
3
1

)

+
πσ3

0ρ0

6
− 1

]

. (34)

Now, we will discuss different joint two-body distribution functions. The fluid two-body distri-
bution function is given by

ρ11 (|r − r′|) =
〈

ρ
(1)
1

(

r;qN0
)

ρ
(1)
1

(

r′;qN0
)

〉

0

=
z2
1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dqN0 exp







−β

N0
∑

j=1

[

u10

(∣

∣r − qj

∣

∣

)

+ u10

(∣

∣r′ − qj

∣

∣

)]







=
z2
1

Ξ0

∞
∑

N0=0

zN0
0

N0!
[V − Vdb (|r − r′|)]

N0z2
1 exp [−z0Vdb (|r − r′|)] , (35)

where Vdb(|r − r′|) is the volume of a dumbbell with its two spheres centered at r and r′ respectively
and

Vdb(x) =







πσ3
0

3 −
π(x3−3σ2

0x+2σ3
0)

12 , 0 6 x 6 σ0 ,

πσ3
0

3 , x > σ0 .
(36)

As for the one-body distribution function, the result given in equation (35) for ρ11(|r − r′|) has
also a clear probabilistic meaning. z2

1 is the two-body distribution function of the bulk ideal gas
in equilibrium with the confined one and exp [−z0Vdb (|r − r′|)] = exp [−ρ0Vdb (|r − r′|)] is nothing
else but the probability that the two considered particles are both in the void space. In this case,
the exclusion region is a dumbbell instead of a cavity in the case of one-body distribution. The
total correlation function can be obtained straightforwardly,

h11 (|r − r′|) =
ρ
(2)
11 (|r − r′|)

ρ2
1

− 1 = exp

{

z0

[

πσ3
0

3
− Vdb (|r − r′|)

]}

− 1. (37)

The matrix-fluid two-body distribution function after averaging over matrix realizations is
given by

ρ01(|q − r|) =

〈

ρ
(1)
1

(

r;qN0
)

N0
∑

i=1

δ(qi − q)

〉

0

=
z1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dqN0 exp



−β

N0
∑

j=1

u10(
∣

∣r − qj

∣

∣)





N0
∑

i=1

δ(qi − q)

=
z1e

−βu10(|r−q|)

Ξ0

∞
∑

N0=0

zN0
0

(N0 − 1)!

(

V −
πσ3

0

6

)N0−1

= ρ0ρ1 exp [−βu10(|r − q|)] , (38)

where equations (27), (31) and z0 = ρ0 were used in obtaining the last equality in equation (38).
The total matrix-fluid correlation is given by

h01(|q − r|) =
ρ01(|q − r|)

ρ0ρ1
− 1 =

{

−1, 0 6 |q − r| 6 σ0/2,

0, |q − r| > σ0/2 .
(39)

It is clear (see equation (38)) that the particles of the ideal gas are excluded from the hard
core of the matrix particle and distributed uniformly outside it. The matrix-fluid and fluid-fluid
correlation functions can be also obtained by using the diagrammatic method. Since there is only
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fluid-matrix interaction in the overlapping HS matrix, there can be only bonds between fluid and
matrix points. For the fluid-matrix correlation, only one diagram subsists,

h01(|q − r|) = c01(|q − r|) = , (40)

where the bond represents the Mayer function, i.e.,

f(|r − q|) = exp [−βu10(|r − q|)] − 1. (41)

Equation (40) together with equation (41) give the same result as equation (39). The total
fluid-fluid correlation function is given by

h11(|r − r′|) = + + + . . . = exp
( )

− 1. (42)

It can be easily checked that equation (42) gives the same result as equation (37). The direct
fluid-fluid correlation function is given by

c11(|r − r′|) = + + . . . = h11(|r − r′|) −

= exp

{

z0

[

πσ3
0

6
− Vdb(|r − r′|)

]}

− 1 − z0

[

πσ3
0

6
− Vdb(|r − r′|)

]

. (43)

Equations (42) and (43) clearly show that only the blocked part gives no vanishing contribu-
tion, i.e.,

h11 (|r − r′|) = hb
11 (|r − r′|) , (44)

and

c11 (|r − r′|) = cb
11 (|r − r′|) . (45)

Therefore, any approximate theory in which it is imposed that hb
11(|r − r′|) = cb

11(|r − r′|) = 0
does not make it possible to obtain the correct result for an ideal gas. The capability of recovering
the ideal gas result can serve as a criterion for judging the quality of an approximate theory. It is
to be pointed out that the well-know Percus-Yevick approximation (extended for confined fluids)
does not satisfy this criterion.

B. Hard-sphere matrix

The HS matrix model is sketched in figure 2. The only difference from the previous model is
that the matrix particles are not allowed to overlap. The interaction potentials between different
species are given by

H11 = 0, (46)

H00 =
1

2

N0
∑

i=1

N0
∑

j=1,j 6=i

u00(
∣

∣qi − qj

∣

∣), (47)

with

u00(
∣

∣qi − qj

∣

∣) =

{

∞,
∣

∣qi − qj

∣

∣ < σ0 ,
0,

∣

∣qi − qj

∣

∣ > σ0 .
(48)

The fluid-matrix interaction potential is still described by equations (22) and (23)
The partition function for a particular matrix realization is given by

Ξ1(q
N0) = exp



z1

∫

dr1 exp



−β

N0
∑

j=1

u10(
∣

∣r1 − qj

∣

∣)







 = exp

[

z1

(

V −
N0πσ3

0

6

)]

. (49)
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Figure 2. Sketch of hard-sphere matrix model.

In contrast to the overlapping HS model, the partition function obtained in Equation (49) is
in fact independent of matrix configurations. Thus, we have the following:

Ω =
〈

Ω(qN0)
〉

0
= Ω(qN0) = −kT ln Ξ1(q

N0). (50)

Then, one immediately finds the following expression for the thermodynamic pressure,

P =
−Ω

V
= kTz1

(

1 −
πσ3

0ρ0

6

)

, (51)

where

ρ0 =
1

Ξ0

∞
∑

N0=0

zN0
0

(N0 − 1)!

∫

dqN0−1e−βH00 , (52)

and

Ξ0 =

∞
∑

N0=0

zN0
0

N0!

∫

dqN0e−βH00 , (53)

are respectively the density and the partition function of the matrix.

The one-body distribution function for a particular matrix realization has exactly the same
expression as that given in equation (31). Taking the average over matrix realizations, we find the
following expression for the fluid density inside the matrix,

ρ1 =
〈

ρ
(1)
1 (r;qN0)

〉

0
=

z1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dqN0e−βH00 exp



−β

N0
∑

j=1

u10(
∣

∣r − qj

∣

∣)



. (54)

At first glance, it does not seem possible to work out analytically the integral on the right hand
side of the second equality of equation (54). However, it is worthwhile noting that the effect of

exp



−β

N0
∑

j=1

u10

(∣

∣r − qj

∣

∣

)





in the integrand is just to exclude a spherical region (denoted by Vc(r)) with a radius equal to
σ0/2 centered at r from the integration domain of each qj . Thus, equation (54) can be rewritten

516



Fluids confined in porous media: An ideal gas in different matrices

as follows:

ρ1 =
z1

Ξ0

∞
∑

N0=0

zN0
0

N0!







∫

V

dq1 −

∫

Vc(r)

dq1













∫

V

dq2 −

∫

Vc(r)

dq2






. . .







∫

V

dqN0
−

∫

Vc(r)

dqN0






e−βH00

=
z1

Ξ0

∞
∑

N0=0

zN0
0

N0!







∫

V

dqN0 − N0

∫

Vc(r)

dq1

∫

V

dqN0−1 +
N0(N0 − 1)

2

×

∫

Vc(r)

dq1

∫

Vc(r)

dq2

∫

V

dqN0−2 + · · ·






e−βH00

= z1






1 −

∫

Vc(r)

dq1ρ0 +
1

2

∫

Vc(r)

dq1

∫

Vc(r)

dq2ρ
(2)
00 (|q1 − q2|) + · · ·






= z1

(

1 −
πσ3

0ρ0

6

)

. (55)

The expansion on the RHS of the third equality of equation (55) involves successively

ρ
(n)
00...0(q1,q2, . . . ,qn). For the HS matrix model under consideration, all the terms containing

ρ
(n)
00...0(q1,q2, . . . ,qn) with n > 2 have a vanishing contribution since the integration domain (which

has the volume of Vc(r)) cannot contain two and more hard spheres of a diameter of σ0. The
Helmholtz free energy has the following expression in terms of ρ1 and ρ0,

F

V
= kTρ1

[

ln
ρ1Λ

3
1

1 − πσ3
0ρ0/6

− 1

]

. (56)

It should be noted that the Helmholtz free energy for this model cannot be expressed in a closed
form in terms of µ1 and µ0.

The fluid-fluid two-body distribution function after averaging over matrix realizations is gi-
ven by

ρ11(|r − r′|) =
〈

ρ
(1)
1

(

r;qN0
)

ρ
(1)
1

(

r′;qN0
)

〉

=
z2
1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dqN0eβH00 exp







−β

N0
∑

j=1

[

u10

(∣

∣r − qj

∣

∣

)

+ u10

(∣

∣r′ − qj

∣

∣

)]







=
z2
1

Ξ0

∞
∑

N0=0

zN0
0

N0!







∫

V

dqN0 − N0

∫

Vdb(|r−r′|)

dq1

∫

V

dqN0−1

+
N0(N0 − 1)

2

∫

Vdb(|r−r′|)

dq1

∫

Vdb(|r−r′|)

dq2

∫

V

dqN0−2 + · · ·






e−βH00

= z2
1






1 − ρ0Vdb (|r − r′|) +

1

2

∫

Vdb(|r−r′|)

dq1

∫

Vdb(|r−r′|)

dq2ρ
(2)
00 (q1,q2)






, (57)

where

ρ
(2)
00 (q1,q2) =

1

Ξ0

∞
∑

N0=0

zN0
0

(N0 − 2)!

∫

dqN0−2e−βH00 , (58)
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is the matrix-matrix two-body distribution function. In equation (57), a technique similar to the
one used in equation (55) is used to remove

exp







−β

N0
∑

j=1

[

u10

(∣

∣r − qj

∣

∣

)

+ u10

(∣

∣r′ − qj

∣

∣

)]







from the integrand by modifying the integration domains. In the present case, the exclusion region
is a dumbbell with the two spheres centered at r and r′ with centered at r and r′ with a volume of
Vdb(|r − r′|). The the term of three-body distribution function for the HS matrix model since the
exclusion volume, Vdb(|r − r′|), cannot contain three and more hard spheres.

The matrix-fluid distribution function after averaging over matrix realizations is given by

ρ01 (|q − r|) =

〈

ρ
(1)
1

(

r;qN0
)

N0
∑

i=1

δ (q − qi)

〉

0

=
z1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dqN0eβH00 exp



−β

N0
∑

j=1

u10

(∣

∣r − qj

∣

∣

)





N0
∑

i=1

δ (q − qi)

=
z1 exp [−βu10 (|r − q|)]

Ξ0

∞
∑

N0=0

zN0
0

(N0 − 1)!

∫

dqN0−1eβH00 exp



−β

N0
∑

j=2

u10

(∣

∣r − qj

∣

∣

)





=
z1 exp [−βu10(|r − q|)]

Ξ0

∞
∑

N0=0

zN0
0

(N0 − 1)!

×







∫

V

dqN0−1eβH00 − (N0 − 1)

∫

Vc(r)

dq2

∫

V

dqN0−2eβH00 + · · ·







= z1 exp [−βu10 (|r − q|)]






ρ0 −

∫

Vc(r)

dq2ρ
(2)
00 (q,q2)






. (59)

The expansion in the fourth equality of equation (59) truncates itself beyond the term of

ρ
(2)
00 (q,q2). For the HS matrix model, we cannot find entirely analytic expressions for different

two-body distribution functions since we do not know the exact analytic expression of a HS fluid,

ρ
(2)
00 (q,q′).

4. Sponge models

A. Random hard sponge model

A sketch of the random hard sponge model is shown in figure 3. Recently, Zhao, Dong and Liu
[31] have shown that the fluid-matrix interaction potential for this model can be described by

H10 =

N1
∑

i=1

v10

(

ri;q
N0

)

, (60)

where

v10(ri;q
N0) = −kBT ln



1 − e
−β

N0�

j=1

u10(|ri−qj|)


 . (61)
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u10(
∣

∣ri − qj

∣

∣) in equation (61) is the potential given in equation (23). The other interaction po-
tentials are specified by

H00 = 0, (62)

H11 = 0. (63)

Figure 3. Sketch of the random hard sponge model.

The partition function for a particular matrix realization is given by

Ξ1(q
N0) = exp

{

z1

∫

dr1 exp
[

−βv10

(

r1;q
N0

)]

}

= exp







z1

∫

dr1



1 − exp



−β

N0
∑

j=1

u10

(∣

∣r1 − qj

∣

∣

)















. (64)

It should be noted that the partition function in equation (64) can be rewritten as

Ξ1(q
N0) =

ΞBulkIG
1

Ξ
IG/OHSM
1 (qN0)

, (65)

where

ΞBulkIG
1 = ez1V , (66)

is the partition function of a bulk ideal gas and Ξ
IG/OHSM
1 (qN0) is the partition function of an

ideal gas in a particular realization of an overlapping hard-sponge matrix [see equation (24)]. We
obtain the following expression for the thermodynamic pressure,

P =
kT

V

〈

ln Ξ1(q
N0)

〉

0
= kBTz1

[

1 − exp

(

−
πσ3

cz0

6

)]

= PBulkIG − P IG/OHSM, (67)

where

PBulkIG = kTz1 , (68)

is the pressure of a bulk ideal gas and P IG/OHSM is the pressure of an ideal gas confined in an
overlapping hard-sponge matrix (see equation (29) for its expression).

ρ
(1)
1

(

r;qN0
)

= z1 exp
[

−βv10

(

r;qN0
)]

= ρBulkIG
1 − ρ

(1)IG/OHSM
1

(

r;qN0
)

, (69)

where

ρBulkIG
1 = z1, (70)
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is the density of an bulk ideal gas and ρ
(1)IG/OHSM
1 (r;qN0) is the one-body distribution function of

the fluid for a particular matrix realization given in equation (30). Taking the average over matrix
realizations, we obtain

ρ1 = z1

〈

exp
[

−βv10(r;q
N0)

]〉

0
= ρBulkIG

1 − ρ
IG/OHSM
1 , (71)

where ρ
IG/OHSM
1 is the density of an ideal gas confined in the overlapping HS matrix whose ex-

pression is given in equation (31). The Helmholtz free energy has the following expression,

F

V
=

FBulkIG

V
−

F IG/OHSM

V
, (72)

where

FBulkIG

V
= kT (βµ1 − 1)z1 , (73)

is the Helmholtz free energy of a bulk ideal gas and F IG/OHSM is the Helmholtz free energy of an
ideal gas confined in the overlapping HS matrix [see equation (33)]. In the above, we have seen
that several thermodynamic functions, e.g., pressure, density and free energy, can be written as a
contribution of a bulk ideal gas minus that of an ideal gas confined in the overlapping HS matrix
[see equations (67), (71) and (72)]. Nevertheless, it should be pointed out that such decompositions
hold only when these thermodynamic functions are expressed in terms of chemical potentials, i.e.,
µ1 and µ0. In terms of ρ1 and ρ0, we have

P = kTρ1 , (74)

and

F

V
= kTρ1

[

ln
ρ1Λ

3
1

1 − e−πσ3
0ρ0/6

− 1

]

. (75)

None of equations (74) and (75) has a form which can be decomposed into the contribution of
a bulk ideal gas and that of an ideal gas confined in the overlapping HS matrix.

The fluid-fluid two-body distribution function averaged over matrix realizations is given by

ρ11 (|r − r′|) =
〈

ρ
(1)
1

(

r;qN0
)

ρ
(1)
1

(

r′;qN0
)

〉

= z2
1 − 2z1

〈

ρ
(1)IG/OHSM
1 (r;qN0)

〉

0

+
〈

ρ
(1)IG/OHSM
1 (r;qN0)ρ

(1)IG/OHSM
1 (r′;qN0)

〉

0

= z2
1 − 2z1ρ

IG/OHSM
1 + ρ

IG/OHSM
11 (|r − r′|) = z2

1

[

1 − 2e−πσ3
0z0/6 + e−z0Vdb(|r−r′|)

]

, (76)

where Vdb(|r − r′|) was given in equation (36).

The fluid-matrix two-body distribution function averaged over matrix configurations has the
following expression,

ρ01(|q − r|) =

〈

ρ
(1)
1 (r;qN0)

N0
∑

i=1

δ(q − qi)

〉

0

=

〈

ρBulkIG
1

N0
∑

i=1

δ(q − qi)

〉

0

−

〈

ρ
(1)IG/OHSM
1 (r;qN0)

N0
∑

i=1

δ(q − qi)

〉

0

= ρBulkIG
1 ρBulkIG

0 − ρ
IG/OHSM
01 (|q − r|) = z0z1

[

1 − e−πσ3
0z0/6e−βu01(|q−r|)

]

. (77)
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B. Soft-sponge model

Recently, Dong, Krakoviack and Zhao have proposed a soft sponge model [32]. A sketch of this
model is presented in figure 4.

We consider here the simple case of a soft-sponge matrix with totally randomly distributed
cavities. The fluid-matrix interaction potential is

H10 = ε

N1
∑

i=1

θ
(

ri;q
N0

)

, (78)

where the generalized Heaviside function is given by

θ
(

r;qN0
)

= e
−β

N0�

j=1

u10(|r−qj|)
. (79)

u10(|r − q|) in equation (79) is the potential given in equation (23). The partition function in the
grand canonical ensemble for a particular matrix realization is given by

Ξ1(q
N0) = exp

[

z1

∫

dr1e
−βεθ(r1;q

N0 )

]

. (80)

Figure 4. Sketch of soft sponge matrix with a solid medium (represented in grey) permeable to
fluid particles (small circles).

The grand partition function for a particular matrix realization is

Ω1(q
N0) = −kT ln Ξ1(q

N0) = −kTz1

∫

dr1e
−βεθ(r1;q

N0 ). (81)

Averaging over matrix realizations, we have

Ω =
〈

Ω1

(

qN0
)〉

0
= −kTz1

∫

dr1

〈

e−βεθ(r1;q
N0)

〉

0
. (82)

To be able to carry out the average in equation (82), we rewrite e−βεθ(r1;q
N0 ) in the following

form,

e−βεθ(r1;q
N0) = 1 − βεθ

(

r1;q
N0

)

+
1

2

[

βεθ
(

r1;q
N0

)]2
−

1

3!

[

βεθ(r1;q
N0)

]3
+ · · ·

= 1 + θ(r1;q
N0)

[

−βε +
1

2
(βε)2 −

1

3!
(βε)3 + · · ·

]

= 1 + (e−βε − 1)θ
(

r1;q
N0

)

. (83)
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When going to the second equality of equation (83), the following property of Heaviside function
was used,

[

θ
(

r1;q
N0

)]n
= θ

(

r1;q
N0

)

, (n = 1, 2, 3, . . . ). (84)

Substituting equation (83) into equation (82), we obtain

Ω = −kTz1

[

V + (e−βε − 1)

∫

dr1

〈

θ
(

r1;q
N0

)〉

0

]

. (85)

The average of θ(r1;q
N0) over matrix realizations can be carried out analytically in the case of

totally randomly distributed cavities.

〈

θ(r1;q
N0)

〉

0
=

1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dqN0e
−β

N0�

j=1

φ10(|r1−qj|)

=
1

Ξ0

∞
∑

N0=0

zN0
0

N0!

(

V −
πσ3

10

6

)N0

= e−
πσ3

10z0
6 . (86)

Substituting equation (86) into equation (85), we obtain

Ω = −kTz1V

[

1 +
(

e−βε − 1
)

e−
πσ3

10z0
6

]

. (87)

Then, we immediately obtain the following result for pressure,

P = −
Ω

V
= kTz1

[

1 +
(

e−βε − 1
)

e−
πσ3

10z0
6

]

. (88)

The one-body distribution function for a particular matrix realization is given by

ρ
(1)
1

(

r;qN0
)

= z1e
−βεθ(r;qN0) = z1

[

1 +
(

e−βε − 1
)

θ
(

r1;q
N0

)]

. (89)

The averaging over matrix realizations leads to

ρ1 =
〈

ρ
(1)
1

(

r;qN0
)

〉

0
= z1

[

1 +
(

e−βε − 1
)

e−
πσ3

10z0
6

]

. (90)

The Helmholtz free energy has the following expressions,

F

V
= kT (βµ1 − 1) z1

[

1 +
(

e−βε − 1
)

e−
πσ3

10z0
6

]

, (91)

and
F

V
= kTρ1

[

ln
ρ1Λ

3
1

1 + (e−βε − 1) e−πσ3
10z0/6

− 1

]

. (92)

Unlike in the hard sponge model, the mean potential energy in the soft sponge model is non-zero
and is given by

E = 〈〈H10〉1〉0 =

〈

1

Ξ1(qN0)

∞
∑

N1=0

zN1
1

N1!

∫

drN1H10e
−βH10

〉

0

=

〈

ε

∫

dr1θ(r1;q
N0)ρ

(1)
1 (r1;q

N0)

〉

0

= εz
1e

−βε

∫

dr1

〈

θ(r1;q
N0)

〉

0
= εV z1e

−βεe−
πσ3

10z0
6 . (93)
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The fluid-fluid two-body distribution function is given by

ρ
(2)
11 (|r − r′|) =

〈

ρ
(1)
1

(

r;qN0
)

ρ
(1)
1

(

r′;qN0
)

〉

0

= z2
1

〈

1 +
(

e−βε − 1
)

θ
(

r;qN0
)

+
(

e−βε − 1
)

θ
(

r′;qN0
)

+
(

e−βε − 1
)2

θ
(

r;qN0
)

θ
(

r′;qN0
)

〉

0

= z2
1

[

1 + 2
(

e−βε − 1
) 〈

θ
(

r;qN0
)〉

0
+

(

e−βε − 1
)2 〈

θ
(

r;qN0
)

θ
(

r′;qN0
)〉

0

]

= z2
1

[

1 + 2
(

e−βε − 1
)

e−
πσ3

10z0
6 +

(

e−βε − 1
)2

e−z0Vdb(|r−r′|)
]

, (94)

where Vdb (|r − r′|) is the volume of a dumbbell whose expression is already volume of a dumb-
bell whose expression is already given in equation (36). The result for the matrix-fluid two-body
distribution function is

ρ
(2)
01 (|r − q|) =

〈

ρ
(1)
1

(

r;qN0
)

N0
∑

j=1

δ
(

qj − q
)

〉

0

=

〈

z1

[

1 +
(

e−βε − 1
)

θ
(

r1;q
N0

)]

N0
∑

j=1

δ
(

qj − q
)

〉

0

= z1

[

ρ0 +
(

e−βε − 1
)

z0e
−

πσ3
10z0
6 e−βφ01(|q−r|)

]

. (95)

It is straight to check that all the above results reduce to those of the hard-sponge model, i.e.,
the results given in the last subsection.

5. Models of templated matrices

A. Zhao-Dong-Liu model

The sketch of the templated matrix model proposed by Zhao, Dong and Liu recently [33] is
given in figure 5. Starting with a primitive matrix (e.g., a Madden-Glandt matrix), one builds the
templated matrix by piercing some spherical cavities in the primitive one (see figure 5).

Figure 5. Sketch of Zhao-Dong-Liu model of templated matrices: matrix particles represented
by black spheres and cavities represented by grey empty spheres.

Here, we consider the simplest case of the above templated matrix in which the matrix particles
and the cavities are distributed completely randomly, i.e.,

H00 = 0, (96)

and
H0′0′ = 0, (97)
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where the index 0 denotes the matrix species as before and the index 0′ denotes the cavity species.
We denote this templated matrix as RHS/RC matrix (random HS with random cavities). The
fluid-matrix interaction potentials is given by

H10 =

N1
∑

i=1

N0
∑

j=1

u10(|ri − qj|)θ(qj ;Q
N0′ ), (98)

where

θ(qj ;Q
N0′ ) = exp



−β

N0′
∑

k=0

u00′(|qj − Qk|)



 , (99)

is a generalized Heaviside function which is equal to 1 when qj is outside a cavity and to 0 when
qj is inside a cavity (Qk specifies the position of the center of the k-th equation (23) and u00′ is
given by

u00′(|qj − Qk|) =







∞, |qj − Qk| < σ0′/2,

0, |qj − Qk| > σ0′/2,
(100)

where σ0′ is obviously the cavity diameter.
First, we describe some quantities characterizing the empty matrix. By the construction of the

model, some matrix particles are removed (those falling in cavities). Thus, the matrix particle
number fluctuates in different matrix and cavity realizations. The matrix particle density for a
particular cavity realization is given by

ρ
(1)
0

(

q;QN0′
)

=

〈

N0
∑

i=1

δ (qi − q) θ
(

qi;Q
N0′

)

〉

0

=
1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dqN0

N0
∑

i=1

δ(qi − q)θ(qi;Q
N0′ )

=
θ(q;QN0′ )

Ξ0

∞
∑

N0=0

zN0
0

(N0 − 1)!
V N0−1 = z0θ(q;QN0′ ) = ρ̃0θ(q;QN0′ ), (101)

where ρ̃0 is the density of the primitive matrix. In the definition of ρ
(1)
0 (q;QN0′ ) given in equa-

tion (101), we must multiply δ(qi − q) by θ(qi;Q
N0′ ) so that the matrix particles falling in a

cavity are not counted in the calculation of matrix density. Equation (101) clearly shows that the
one-body matrix distribution function in the templated matrix for a particular cavity configuration
is equal to zero inside the cavities and to ρ̃0 elsewhere, which is precisely what one can anticipate

for this model. We obtain the mean matrix density by taking the average of ρ
(1)
0 (q;QN0′ )0 over

cavity realizations,

ρ0 =
〈

ρ
(1)
0 (q;QN0′ )

〉

0′

= ρ̃0

〈

θ(q;QN0′ )
〉

0′
, (102)

where

〈

θ(q;QN0′ )
〉

0′
=

1

Ξ0′

∞
∑

N0′=0

z
N0′

0′

N0′ !

∫

dQN0′ exp



−β

N0′
∑

j=1

u00′(|q − Qj |)





=
1

Ξ0′

∞
∑

N0′=0

z
N0′

0′

N0′ !

(

V −
πσ3

0′

6

)N0′

= e−πσ3
0′

z0′/6. (103)

Substituting equation (103) into equation (102), we finally obtain,

ρ0 = ρ̃0e
−πσ3

0′
ρ0′/6. (104)

The result given by equation (104) has an appealing physical meaning: the average matrix
particle density is given by the product of the density of the primitive matrix and the probability
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of a matrix particle not falling into a cavity. It should also be noted that the density of RHS/RC
matrix is given by the same expression as the one for the fluid density in a RHS matrix [compare
equation (104) with equation (31)].

Then we calculate the matrix-matrix two-body distribution function. For a particular cavity
realization, it is given by

ρ
(2)
00

(

q,q′;QN0
)

=

〈

N0
∑

i=1

N0
∑

j=1,j 6=i

δ (qi − q) δ (qj − q′) θ
(

qi;Q
N0

)

θ
(

qj ;Q
N0

)

〉

0

=
1

Ξ

∞
∑

N0=0

zN0
0

N0!

∫

dqN0

N0
∑

i=1

N0
∑

j=1,j 6=i

δ (qi − q) δ (qj − q′) θ
(

qi;Q
N0′

)

θ
(

qj ;Q
N0

)

=
θ(q;QN0′ )θ(q′;QN0′ )

Ξ0

∞
∑

N0=0

zN0
0

(N0 − 2)!
V N0−2 = z2

0θ(qQN0′ )θ(q′;QN0)

= ρ̃2
0θ(q;QN0′ ) = ρ

(1)
0 (q;QN0′ )ρ

(1)
0 (q′;QN ′

0). (105)

The averaging over cavity realizations leads to

ρ
(2)
00 (|q − q′|) =

〈

ρ
(2)
00 (q,q′;QN0′ )

〉

0
= ρ̃2

0

〈

θ(q;QN0′ )θ(q′;QN0′ )
〉

0′
, (106)

and

〈

θ(q;QN ′

0)θ(q′;QN′

0)
〉

0′

=
1

Ξ

∞
∑

N0′=0

z
N0′

0′

N0!

∫

dQN0′ exp







−β

N0′
∑

j=0

[u00′(|q − Qj | + u00′ |q′ − Qj |)]







=
1

Ξ0′

∞
∑

N0′=0

z
N ′

0

0′

N0′ !
(V − Vdb(|q − q′|))

N0′ = e−z0′Vdb(|q−q′|)

= e−ρ0′Vdb(|q−q′|) , (107)

where Vdb(|q − q′|) is the volume of a dumbbell formed by two spheres with a diameter of σ0′

located at q and q′ (see equation (36) for its expression). Substituting expression). Substituting
equation (107) into equation (106), we obtain

ρ
(2)
00 (|q − q′|) = ρ̃2

0e
−ρ0′Vdb(|q−q′|). (108)

The above result has also a very appealing physical meaning. ρ
(2)
00 (|q − q′|) is given by the two-

body distribution of the primitive matrix, i.e., ρ̃2
0, multiplied by the probability that none of the

two points (at q and q′) falls into a cavity.
The matrix-cavity two-body distribution function for a particular cavity realization is given by

ρ
(2)
00′(q,Q;QN0′ ) =

〈

N0
∑

i=1

N0′
∑

j=1

δ(qi − q)θ(qi;Q
N0′ )δ(Qj − Q)

〉

0

=

〈

N0
∑

i=1

δ (qi − q) θ
(

qi;Q
N0′

)

〉

0

N0′
∑

j=1

δ (Qj − Q)

= ρ
(1)
0

(

q;QN0′
)

N0′
∑

j=1

δ (Qj − Q) = ρ̃0θ
(

q;QN0′
)

N0′
∑

j=1

δ (Qj − Q) . (109)

Taking the average over cavity realizations, we obtain

ρ
(2)
00′(|q − Q|) = ρ̃0

〈

θ(q;QN0′ )

N0′
∑

j=1

δ(Qj − Q)

〉

0

, (110)
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where

〈

θ(q;QN0′ )

N0′
∑

j=1

δ(Qj − Q)

〉

0

=
1

Ξ0′

∞
∑

N0′=0

z
N0′

0′

N0′ !

∫

dQN0′

N0′
∑

j=1

δ(Qj − Q) exp



−β

N0′
∑

i=1

u00′(|q − Qi|)





=
e−βu00′ (|q−Q|)

Ξ0

∞
∑

N0′=0

z
N0′

0′

(N0′ − 1)!

∫

dQN0′−1 exp



−β

N0′
∑

i=2

u00′(|q − Qi|)





=
e−βu00′ (|q−Q|)

Ξ0

∞
∑

N0′=0

z
N0′

0′

(N0′ − 1)!

(

V −
πσ3

0′

σ

)N0′−1

= z0′e−βu00′ (|q−Q|)e−πσ3
o′

z0′/6 = ρ0′e−βu00′ (|q−Q|)e−πσ3
o′

ρ0′/6. (111)

We finally find

ρ
(2)
00′(|q − Q|) = ρ̃0ρ0′e−βu00′ (|q−Q|)e−πσ3

0′
ρ0′/6. (112)

Now, we proceed to the calculation of various properties when an ideal is adsorbed in the matrix.
The partition function for a particular matrix and a particular cavity realization is given by

Ξ1(q
N0 ,QN0′ ) =

∞
∑

N1=0

zN1
1

N1!

∫

drN1e−βH10

=

∞
∑

N1=0

zN1
1

N1!





∫

dr exp



−β

N0
∑

j=1

u10(|r1 − qj |)θ(qj ;Q
N0′ )









N1

= exp







z1

∫

dr1 exp



−β

N0
∑

j=1

u10(|r1 − qj |)θ(qj ;Q
N0′ )











. (113)

For this model, we need to carry out the averages over matrix and cavity configurations. We will
perform these averages in two steps, first over the matrix configurations and then over cavity
configurations. The averaging over matrix realizations leads to,

Ω1(Q
N0′ ) = −kT

〈

ln Ξ1

(

qN0 ,QN0′
)〉

0

=
−kTz1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dqN0

∫

dr1 exp



−β

N0
∑

j=1

u10(|r1 − qj |)θ(qj ;Q
N0′ )





=
−kTz1

Ξ0

∫

dr1 exp

{

z0

∫

dq1 exp
[

−βu10(|r1 − q1|)θ(q1;Q
N0′ )

]

}

. (114)

The average over cavity realizations is more involved. With the help of the property of the Heaviside
function given in equation (84), we first rewrite the integrand on the RHS of the third equality of
equation (114) as,

exp[−βu10(|r1 − q1|)θ(q1;Q
N0′ )] = 1 − θ(q1;Q

N0′ ) + θ(q1;Q
N0′ ) exp [−βu10 (|r1 − q1|)] . (115)
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Using equation (115), we can rewrite the integral over q1 in equation (114) as

∫

dq1 exp[−βu10 (|r1 − q1|) θ
(

q1;Q
N0′

)

] = V −

∫

V

dq1θ
(

q1;Q
N0′

)

=

∫

V

dq1θ(q1;Q
N0′ ) exp[−βu10(|r1 − q1|)]

= V −

∫

V

dq1θ(q1;Q
N0′ ) +







∫

V

dq1 −

∫

Vσ0(r1)

dq1






θ(q1;Q

N0′ )

= V −

∫

Vσ0(r1)

dq1θ(q1;Q
N0′ ). (116)

With the help of equation (116), equation (114) is simplified to

Ω1(Q
N0′ ) = −kTz1

∫

dr1 exp






−z0

∫

Vσ0(r1)

dq1θ(q1;Q
N0′ )






. (117)

Now, we proceed to perform the average over the cavity realizations,

Ω =
〈

Ω1(Q
N0′ )

〉

0′
= −kTz1

∫

dr1

〈

exp






−z0

∫

Vσ0(r1)

dq1θ(q1;Q
N0′ )







〉

0′

. (118)

To continue the calculation, we expand the exponential on the RHS of equation (118),

〈

exp






−z0

∫

Vσ0(r1)

dq1θ(q1;Q
N0′ )







〉

0′

=
1

Ξ0′

∞
∑

N0′

z
N0′

0′

N0′ !

∫

dQN0′

(−z0)
M

∑

M=0







∫

Vσ0(r1)

dq1θ(q1;Q
N0′ )







M

.

(119)
It should be pointed out that the analytical result cannot be obtained for the above expression in
the general case of an arbitrary value of σ0. Nevertheless, here we show that a close result can be
obtained when σ0 is infinitesimal, i.e., σ0 → δ0. In this case, we have







∫

Vσ0(r1)

dq1θ(q1;Q
N0′ )







M

=

=

∫

Vσ0(r1)

dq1

∫

Vσ0(r1)

dq2 . . .

∫

Vσ0(r1)

dqM

[

θ(q1;Q
N0′ )θ(q2;Q

N0′ ) . . . θ(qM ;QN0′ )
]

=
[

Vσ0
(r1)θ(r1;Q

N0′ )
]M

= θ(r1;Q
N0′ )

(

πσ3
0

6

)M

, (M = 1, 2, 3, . . .). (120)
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Substituting equation (120) into equation (119), we finally obtain,

〈

exp






−z0

∫

Vσ0
(r1)

dq1θ(q1;Q
N0′ )







〉

0′

=

= 1 +

∞
∑

M=1

(−z0)
M

M !

(

piσ3
0

6

)M
1

Ξ0′

∞
∑

N0′=0

z
N0′

0′

N0′ !

∫

dQN0′ θ(q1;Q
N0′ )

= 1 +
(

e−πσ3
0z0/6 − 1

) 1

Ξ0′

∞
∑

N0′=0

z
N0′

0′

N0′ !

(

V −
πσ3

0′

6

)N0′

= 1 +
(

e−πσ3
0z0/6 − 1

)

e−πσ3
0z0/6. (121)

Substituting equation (121) into equation (118), we finally obtain,

Ω = −kTz1V
[

1 +
(

e−πσ3
0z0/6 − 1

)

e−πσ3
0z0/6

]

= −kTz1V
[

1 +
(

e−πσ3
0ρ0/6 − 1

)

e−πσ3
0ρ0/6

]

, (122)

and

P = −
Ω

V
= kTz1

[

1 +
(

e−πδ3
0ρ0/6 − 1

)

e−πσ3
0′

ρ0′/6
]

. (123)

As one can anticipate intuitively, equation (123) reduces to the result of the random hard sponge
model [see equation (67)] in the limit of δ3

0ρ0 → ∞. The density and the diameter of the cavity in
the templated matrix model are ρ0′ and σ0′ respectively.

The fluid one-body distribution function for a particular matrix realization and a particular
cavity realization is given by,

ρ
(1)
1 (r1, q

N0 ,QN0′ ) = z1 exp



−β

N0
∑

j=1

u10(|r1 − qj |)θ(qj ; Q
N0′ )



 . (124)

Again, first we carry out the average over matrix realization,

ρ
(1)
1 (r1,Q

N0′ ) =
〈

ρ
(1)
1 (r1, q

N0 ,QN0′ )
〉

0

=
z1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dqN0 exp



−β

N0
∑

j=1

u10(|r1 − qj |)θ(qj ; Q
N0′ )





=
z1

Ξ0

∞
∑

N0=0

zN0
0

N0!

{∫

dq1 exp
[

−βu10(|r1 − q1|)θ(q1; Q
N0′ )

]

}N0

=
z1

Ξ0
exp

{

z0

∫

dq1 exp
[

−βu10(|r1 − q1|)θ(q1; Q
N0′ )

]

}

= z1 exp






z0

∫

Vσ0
(r)

dq1θ(q1; Q
N0′ )






. (125)

To get the result in equation (125), equation (116) is used again. Now, averaging over the cavity
realizations, we obtain

ρ1 =
〈

{ρ
(1)
1 (r1,q

N0

〉

0′

= z1

〈

exp






−z0

∫

Vσ0
(r1)

dq1θ(q1;Q
N0′ )







〉

0′

. (126)
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Again we encounter the same quantity as that in equation (119). Only in the limit of the diameter
of matrix particle being infinitesimal, σ0 → δ0, can we obtain the following closed analytical result,

ρ1 = z1

[

1 +
(

e−πσ3
0ρ0/6 − 1

)

e−πσ3
0ρ0/6

]

. (127)

The Helmholtz free energy is given by

F

V
= kTρ1

[

ln
ρ1Λ

3
1

1 + (e−πδ3
0ρ0/6 − 1)e−πσ3

0′
ρ0′/6

− 1

]

. (128)

We proceed now to calculate the two-body fluid-matrix distribution function. For a particular
matrix realization and for a particular cavity realization, we have

ρ
(2)
10 (r,q;qN0 ,QN0′ ) = ρ

(1)
1 (r;qN0 ,QN0′ )

N0
∑

j=1

δ(qj − q)θ(qj ;Q
N0′ ). (129)

The averaging over the matrix realizations leads to

ρ
(2)
10 (r,q;QN0′ ) =

〈

ρ
(2)
10 (r,q;qN0 ,QN0′ )

〉

0

=
1

Ξ0

∞
∑

N0=0

zN0
0

(N0 − 1)!

∫

dqN0δ(q1 − q)θ(q1;Q
N0′ )ρ

(1)
1 (r;qN0 ,QN0′ )

=
z1θ(q;QN0) exp[−βu10(|r − q|)θ(q;QN0′ )]

Ξ0

×

∞
∑

N0=0

zN0
0

(N0 − 1)!

{∫

dq2 exp
[

−βu10(|r − q2|)θ(q2;Q
N0′ )

]

}N0−1

=
z1z0θ(q;QN0′ ) exp[−βu10(|r − q|)θ(q;QN0′ )]

Ξ0

× exp

{

z0

∫

dq2 exp
[

−βu10(|r − q2|)θ(q2;Q
N0′ )

]

}N0−1

= z1z0θ(q;QN0′ ) exp[−βu10(|r − q|)θ(q;QN0′ )] exp

[

−z0

∫

dq2θ(q2;Q
N0′ )

]

= z1z0θ(q;QN0′ ) exp[−βu10(|r − q|)] exp

[

−z0

∫

dq2θ(q2;Q
N0′ )

]

. (130)

In going from the fourth equality to the fifth one in equation (130), equation (116) was used
and from the fifth to the sixth, equation (84) was used. The averaging over the cavity realizations
now leads to

ρ
(2)
10 (r,q) =

〈

ρ
(2)
10 (r,q;QN0′ )

〉

0
= z1z0e

−βu10(|r−q|)

〈

θ(q;QN0′ ) exp






−z0

∫

Vσ0(r)

dq2θ(q2;Q
N0′ )







〉

0′

= z1z0e
−βu10(|r−q|)

〈

θ(q;QN0′ )

∞
∑

M=0

1

M !






−z0

∫

Vσ0(r)

dq2θ(q2;Q
N0′ )







M
〉

0′

= z1z0e
−βu10(|r−q|)















〈

θ(q;QN0′ )
〉

0
+

〈

θ(q;QN0′ )
∞
∑

M=0

1

M !






−z0

∫

Vσ0(r)

dq2θ(q2;Q
N0′ )







M
〉

0′
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= z1z0e
−βu10(|r−q|)

[

〈

θ(q;QN0′ )
〉

0
+

〈

θ(q;QN0′ )θ(r;QN0′ )

∞
∑

M=1

1

M !

(

−πδ3
0z0

6

)M
〉

0

]

= z1z0e
−βu10(|r−q|)

[

〈

θ(q;QN0′ )
〉

0
+

(

e−πδ3
0z0/6 − 1

)

〈

θ(q;QN0′ )θ(r;QN0′ )
〉

0

]

= z1z0e
−βu10(|r−q|)

[

e−πσ3
0′

z0′/6 +
(

e−πδ3
0z0/6 − 1

)

e−z0′Vdb(|r−q|)
]

. (131)

Equations (103) and (107) are used to obtain the last equality of equation (131).
Now, we consider the fluid-cavity two-body distribution function which has the following form

for a particular matrix and a particular cavity realization,

ρ
(2)
10 (r,Q;qN0QN0′ ) = ρ

(1)
1

(

r;qN0 ,QN0′

)

N0′
∑

j=1

δ(Qj − Q). (132)

Taking the average over matrix realizations, we have

ρ
(2)
10′(r,Q;QN0′ ) =

〈

ρ10
′(2)(r,Q;qN0 ,QN0′ )

〉

0
=

〈

ρ
(1)
1 (r;qN0 ,QN0′ )

〉

0

N0′
∑

j=1

δ(Qj − Q)

= z1 exp






−z0

∫

V σ0(r)

dq1θ(q1;Q
N0′ )







N0′
∑

j=1

δ(Qj − Q). (133)

The averaging over the cavity realizations yields,

ρ
(2)
10′(r − Q) =

〈

ρ10
′(2)(r,Q;QN0′ )

〉

0′

=
z1

Ξ0′

∞
∑

N0′

z
N0′

0′

(N0′ − 1)!

∫

dQN0′−1 exp






−z0

∫

V σ0(r)

dq1θ(q1;Q
N0′ )







=
z1

Ξ0′

∞
∑

N0′

z
N0′

0′

(N0′ − 1)!

∫

dQN0′−1
∞
∑

M=0

1

M !






−z0

∫

V σ0(r)

dq1θ(q1;Q
N0′ )







M

= z1



z0 +
∞
∑

M=0

1

M !

(

−
πδ3

0z0

6

)M
1

Ξ0′

∞
∑

N0′

z
N0′

0′

(N0′ − 1)!

∫

dQN0′−1θ(r;QN0′ )





= z1



z0 + (e−πδ3
0z0/6 − 1)

e−βu00′ (|r−Q|)

Ξ0′

∞
∑

N0′=0

z
N0′

0′

(N0′ − 1)!

(

V −
πσ3

0′

6

)N0′−1




= z1z0

[

1 + e−πδ3
0z0/6(e−πδ3

0z0/6 − 1)e−βu00′ (|r−Q|)
]

. (134)

In going from the third equality in equation (134) to the fourth one, we take the limit of infini-
tesimal matrix particle limit, i.e., σ0 → δ0. In the limit of δ3

0z0 → ∞, equation (83) reduces to the
result of fluid-matrix two-body distribution function of the hard sponge model (see equation (77)).

The fluid-fluid two-body distribution function for a particular matrix realization and a partic-
ular cavity realization is given by

ρ
(2)
11 (r1, r2;q

N0) = ρ
(1)
1 (r1;q

N0 ,QN0′ )ρ
(1)
1 (r2;q

N0 ,QN0′ ). (135)
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Taking the average over matrix realizations, we have

ρ
(2)
11 (r1, r2;Q

N0′ ) =
〈

ρ
(2)
11 (r1, r2;q

N0 ,QN0′ )
〉

0

=
z2
1

Ξ0

∞
∑

N0=0

zN0
0

N0!

∫

dqN0 exp



−β

N0
∑

j=1

θ(qj ;Q
N0)

2
∑

i=1

u10(|ri − qj |)





=
z2
1

Ξ0

∞
∑

N0=0

zN0
0

N0!

{

∫

dq1 exp

[

−βθ(q1;Q
N0′ )

2
∑

i=1

u10(|ri − q1|)

]}N0

=
z2
1

Ξ0
exp

{

z0

∫

dq1 exp

[

−βθ(q1;Q
N0′ )

2
∑

i=1

u10(|ri − q1|)

]}

. (136)

Using a technique similar to the one used in deriving equation (116), we straightforwardly
obtain,

∫

dq1 exp

[

−βθ(q1;Q
N ′

0)

2
∑

i=1

u10(|ri − q1|)

]

= V −

∫

Vdb(|r1−r2|)

∫

dq1θ(q1;Q
N0′ ), (137)

where Vdb(|r1 − r2|) is the volume of a dumbbell formed by two spheres with a diameter of σ0

located at r1 and r2. Substituting equation (137) into equation (136), we obtain

ρ2
11(r1r2;Q

N0′ ) = z2
1 exp






−z0

∫

Vdb(|r1−r2|)

dq1θ(q1;Q
N0′ )






. (138)

Finally, we take the average over the cavity realizations,

ρ
(2)
11 (|r1 − r2|) =

〈

ρ
(2)
11 (r1, r2;Q

N0′ )
〉

0′

= z2
1

〈

exp






−z0

∫

Vdb(|r1−r2|)

dq1θ(q1;Q
N0′ )







〉

0′

.(139)

We were not able to analytically calculate the average in equation (139) for an arbitrary value of
|r1 − r2|. In the limit of infinitesimal matrix particles and for |r1 − r2| = 0, equation (139) becomes

ρ
(2)
11 (|r1 − r2| = 0) = z2

1 lim
σ0→δ0

〈

exp






−z0

∫

V σ0(r)

dq1θ(q1;Q
N0′ )







〉

0′

= 1 +
(

e−πδ3
0z0/6 − 1

)

e−πδ3
0z0/6, (140)

where equation (121) was used in order to obtain the final result. Again, the result in equation (140)
reduces to that of the hard sponge model in the limit of δ3

0z0 → ∞ (see equation (76)).

B. Van Tassel model

The construction of the templated matrix proposed by Van Tassel is illustrated in figure 6.
Since the matrix of Van Tassel model is generated from the configurations of an equilibrium fluid
mixture, the templated matrix thus generated is characterized by the matrix-matrix, H00, template-
template, H0′0′ , and matrix-template, H00′ , interactions.
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Figure 6. Sketch of Van Tassel’s model of templated matrices: matrix particles represented by
black spheres and template particles represented by grey spheres.

First, we consider the model generated from a binary HS mixture. In this case,

H00 =
1

2

N0
∑

i=1

N0
∑

j=1,j 6=i

u00(|qi − qj |), (141)

u00(|qi − qj |) =







∞, |qi − qj | < σ0 ,

0, |qi − qj | > σ0 ,
(142)

H0′0′ =
1

2

N0′
∑

i=1

N0′
∑

j=1,j 6=i

u0′0′(|Qi − Qj |), (143)

u0′0′(|Qi − Qj |) =







∞, |Qi − Qj | < σ0′ ,

0, |Qi − Qj | > σ0′ ,
(144)

H00′ =

N0
∑

i=1

N0′
∑

j=1,j 6=i

u00′(|qi − Qj |), (145)

u00′(|qi − Qj |) =







∞, |qi − Qj | < σ00′ ,

0, |qi − Qj | > σ00′ .
(146)

The fluid-matrix interaction is again described by equations (22) and (23) and we set the fluid-fluid
interaction to be zero since we always consider an ideal gas. Now, we see that the thermodynamic
properties of this model can be easily obtained but no closed analytical results can be easily
obtained for different two-body distribution functions. The partition function for a particular tem-
plated matrix realization has exactly the same form as that for an IG in a Madden-Gland HS
matrix, i.e., equation (49). Using equation (49), we find the following expression for the grand
potential averaged over matrix realizations,

Ω =
−kTz1

Ξ00′

∞
∑

N0=0

∞
∑

N0′=0

zN0
0 z

N0′

0′

N0!N0′ !

∫

dqN0

∫

dQN0′ e−β(H00+H0′0′+H00′ )

(

V −
N0πσ3

0

6

)

= −kTz1

(

V −
πσ3

0

6

∫

dq1ρ0

)

= −kTz1V

(

1 −
πσ3

0ρ0

6

)

, (147)

where

Ξ00′ =
∞
∑

N0=0

∞
∑

N0′=0

zN0
0 z

N0′

0′

N0!N0′ !

∫

dqN0

∫

dQ
N0′

e−β(H00+H0′0′+H00′ ) (148)

is the partition function of the templated matrix and

ρ0 =
1

Ξ00′

∞
∑

N0=0

∞
∑

N0′=0

zN0
0 z

N0′

0′

(N0 − 1)!N0′ !

∫

dqN0−1

∫

dQ
N0′

e−β(H00+H0′0′+H00′ ) (149)
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is the density of matrix particles. The pressure is given by

P =
−Ω

V
= kTz1

(

1 −
πσ3

0ρ0

6

)

. (150)

Although equation (150) looks formally identical to equation (51), the matrix density in these
two equations have different meanings [compare equations (52) and (149)]. Nevertheless, for the
same value of matrix density and the same matrix particle size, the thermodynamics of an IG
is the same no matter whether it is adsorbed in a HS Madden-Glandt matrix or in a Van Tassel
templated matrix generated from a binary HS mixture. We can also put this in another way. For its
thermodynamics, an IG does not see the structure difference between a HS Madden-Glandt matrix
and a Van Tassel templated matrix. The physical reason for this is that the thermodynamics of
an IG is uniquely determined by the volume of the pore space rather than by its shape. With the
same values of ρ0 and σ0, the shape pore space in the templated matrix is different from that of
HS Madden-Glandt matrix but the two matrices have the same pore volume.

The one-body fluid distribution function for a particular matrix realization is given by

ρ
(1)
1 (r;qN0) =

〈

N1
∑

i=1

δ(r1 − r)

〉

1

= z1 exp



−β

N0
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u10(|r − qj |)



 . (151)

The averaging over matrix realizations yields

ρ1 =
〈

ρ
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e−β(H00+H0′0′+H00′ ) = z1
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∫

Vσ0
(r)

dq1ρ0







= z1

(

1 −
πσ3
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6

)

. (152)

The result for the adsorbed fluid density as a function of the fluid chemical potential is also identical
to that obtained for a HS matrix [see equation (55)]. The Helmholtz free energy is given by

F

V
= kTρ1

[

ln
ρ1Λ

3
1

1 − πσ3
0ρ0/6

− 1

]

. (153)

This result is again identical to that for a HS matrix [compare equation (153) to equation (56)]. All
these are the further evidence that the thermodynamic properties of an ideal gas confined in porous
media depend only on the accessible pore volume rather than on the pore shape or the structure
of the pore space. Therefore, at the same chemical potential, the pressure, the adsorbed density
and the free energy of an ideal gas are the same if the matrix packing fraction, i.e., η0 = πσ3

0ρ0/6,
is fixed no matter whether the matrix is a HS one or a templated HS one.
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The fluid-matrix two-body distribution function averaged over matrix realizations is given by

ρ
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. (154)

In exactly the same way, we obtain the following result for the two-body fluid-template distri-
bution function,

ρ
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. (155)

The fluid-fluid two-body distribution averaged over matrix realizations is given by
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. (156)

The two-body distribution functions given in equations (154) and (156) are formally identical
to those for an IG in a HS Madden-Glandt matrix (see equations (59) and (57)). However, it should

be noted that matrix-matrix distribution function, ρ
(2)
00 (|q1 − q2|), in equations (154) and (156)
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is that for a HS mixture while that in equations (59) and (57) is that for an one-component HS
system.

Finally, we consider a Van Tassel templated matrix in which

H00 = 0, (157)

H0′0′ = 0, (158)

and H00′ is still described by equations (145) and (146). This matrix is generated by quenching
a Widom-Rowlinson mixture [83] and removing then one species (say species 0′). This case is the
closest to the RHS/RC model discussed in section 5.A. In this case, the partition function for a
particular matrix realization has the same expression as that given in equation (24). The grand
potential averaged over matrix realizations is given by

Ω = −kT
〈

ln Ξ1(q
N0)

〉

00′
=

−kTz1

Ξ00′

∞
∑

N0=0

∞
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×

∫
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∫
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0e−βH00′
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dr1 exp



−β

N0
∑

j=1

u10(|r1 − qj |)



 . (159)

I did not succeed in obtaining an analytical result in closed form for the grand potential in this
case. It seems that one should also recover the hard-sponge model from this Van Tassel’s model
(i.e., H00 = 0 and H0′0′ = 0) in the limits of σ0 → 0 and ρ0σ

3
0 → ∞. Since it is not even possible

to prove this in the case of an ideal gas, the above conjesture remains an open problem.

6. Concluding remarks

In this paper, the adsorption of an ideal gas in a variety of models for random porous media
is studied. When a matrix model is not too complicated, it is possible to obtain all the results for
thermodynamic functions, one- and two-body distribution functions in closed analytical forms. For
more complicated matrix models, even the study of an adsorbed ideal gas becomes quite difficult.
For example, analytical results in closed forms have been found for RHS/RC matrix (Zhao-Dong-
Liu model of templated matrices) only in the case of infinitesimal matrix particles. For Van Tassel
model of templated matrices, no analytical result has been found in the case that the matrix is
built from a Widom-Rowlinson mixture. The integral-equation theory based on Ornstein-Zernike
equations for the matrix models considered in the present paper is now available [1,31–33,37]. The
application of such a theoretical approach also requires approximate closures. A basic virtue of
any good approximation should be its capability of exactly recovering the results of an ideal gas
when the fluid-fluid interaction is set to zero. In this work, it is shown that the well-known Percus-
Yevick closure does not possess this virtue when it is applied to the fluids confined in a random
hard-sphere matrix. I hope that the compilation of the exact and analytical results for an ideal gas
adsorbed in the currently available various matrix models will provide a useful reference.
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Флюїди в пористих середовищах: iдеальний газ в рiзних

матрицях

В.Донг

Лабораторiя хiмiї, Лiонська вища нормальна школа, Францiя

Отримано 16 серпня 2007 р.

На даний час є розвинутi рiзнi моделi для опису адсорбцiї флюїдiв у пористих середовищах. В цiй
роботi представлено деякi точнi аналiтичнi результати, отриманi для iдеального газу в рiзних пори-
стих середовищах. Показано, що розрахунки не завжди є тривiальними. В деяких випадках складних

матриць неможливо отримати жодних аналiтичних результатiв навiть для iдеального газу.

Ключовi слова: пористi матерiали, адсорбованi флюїди

PACS: 61.20.Gy, 61.43.Gt
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