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Hydration free energy of hard-sphere solute over a wide
range of size studied by various types of solution
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The hydration free energy of hard-sphere solute is evaluated over a wide range of size using the method of
energy representation, information-theoretic approach, reference interaction site model, and scaled-particle
theory. The former three are distribution function theories and the hydration free energy is formulated to reflect
the solution structure through distribution functions. The presence of the volume-dependent term is pointed out
for the distribution function theories, and the asymptotic behavior in the limit of large solute size is identified.
It is indicated that the volume-dependent term is a key to the improvement of distribution function theories
toward the application to large molecules.
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1. Introduction

Hydrophobicity plays a central role in the formation of self-organizing structures such as protein,
micelle, and membrane in aqueous solution. The key idea of hydrophobicity is that water tends to
reduce its contact with nonpolar solutes and promotes their association. Among various components
of solute-solvent (water) interactions, the repulsive part is the origin of hydrophobicity. It is then
insightful to focus on the effect of the repulsive interaction in hydration thermodynamics since one
of the purposes of solution theory is to clarify how molecular interactions manifest themselves in
the observable.

To isolate the effect of the repulsive interaction, the hard core particle is an ideal target of
investigation. Its interaction with the solvent is purely repulsive and infinitely hard at the contact
distance. The solvation (hydration) of a hard particle is a process to exclude the solvent (water)
molecules from the region which the hard particle occupies. In fact, the concept of exclusion
is not restricted to a molecular object. On the macroscopic or hydrodynamic scale, the solvent
exclusion is a common process which leads, for example, to buoyancy. Given that the exclusion
effect is operative for both macroscopic and molecular objects, it is of interest to examine the
dependence on size. When a macroscopic object is of concern, its geometrical properties such as
volume and surface area describe the effect of solvent exclusion; since a macroscopic system has a
sharp boundary in its length scale, the volume and surface area can be defined without ambiguity.
As for a molecule, in contrast, some ambiguity is always present in the definitions of volume and
surface area since the “boundary” of a molecule is vague. From the viewpoint of solvent exclusion
over a wide range of size, the hard particle is a useful target of examination. Even on the molecular
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level, its boundary is sharp and the geometrical properties such as volume and surface area can be
defined without ambiguity.

In the present work, we focus on the hydration of hard-sphere particle. We evaluate the free
energy of hydration over a wide range of size, and discuss the volume dependence to connect
macroscopic and microscopic behaviors. The hydration free energy is calculated using 4 approaches:
(1) method of energy representation, [1–4] (2) information-theoretic approach, [5–7] (3) reference
interaction site model (RISM), [8–12] and (4) scaled-particle theory [13,14]. (1), (2), and (3) are
molecular approaches in the sense that the structural information of the solution needs to be
incorporated, while (4) is not a molecular scheme in that sense. Although (1) and (3) are applicable
to general types of solute-solvent interactions, their usage is restricted to hard-sphere solute in the
present work. In their formulations, on the other hand, (2) and (4) are specialized to the treatment
of hard particle. As shown in section 2, (1) and (2) adopt the structural information of pure water
from molecular simulation, and (3) and (4) are processed relying only upon potential functions or
geometrical parameters.

2. Theory and methodology

In this section, we briefly review the approaches employed in the present work. The system
treated is the aqueous solution of hard-sphere solute at infinite dilution. A single solute molecule
is dissolved in water.

The method of energy representation is a theory of distribution functions in solution with em-
phasis on the free energy of solvation (hydration) [1–3]. In the energy representation, the solute-
solvent interaction energy is adopted as the coordinate of the distribution functions, and a func-
tional for the solvation free energy is constructed in terms of energy distribution functions in the
solution and reference solvent (pure water) systems of interest. Let ρ be the bulk density of the
pure solvent and v be the volume from which the solvent is excluded. When the solute is a hard
particle, the currently used version of functional [2] for the solvation free energy ∆µ reduces to a
simple form as derived in Appendix A and is given by

Ω = 1 −
〈n〉

〈n2〉 − 〈n〉
2

, (1)

∆µ = ρvkBT log (1 − Ω)

(
1 −

1

Ω

)
, (2)

where kB is the Boltzmann constant, T is the temperature, and n is the occupancy number of
solvent molecules in the region which the hard solute is to occupy after insertion. Ω is defined
by equation (1) from the first and second cumulants of n, where the average 〈· · ·〉 is taken in the
pure solvent. When the system is the solution and the hard solute is present at full coupling of the
solute-solvent interaction, n is always zero. When the system is the pure solvent and the region of
insertion is specified by treating the solute as a test particle, n is variable. 〈n〉 is the average number

of solvent molecules in the region of insertion and is equal to ρv. The term
(〈

n2
〉
− 〈n〉

2
)

reflects

the solvent-solvent correlation in the pure solvent. This correlation affects the solvation free energy
∆µ through Ω. As noted in the footnote 44 of [2], no input is necessary from the solution system
when the solute is a hard particle. Molecular simulation of the pure solvent system is necessary

only to obtain
(〈

n2
〉
− 〈n〉

2
)
. The factor written as

〈
n2

〉
− 〈n〉

2

〈n〉
(3)

corresponds to the number fluctuation of the solvent molecules contained in the region of exclusion.
In the limit of large size of the region, this factor approaches ρkBTχT, where χT is the isothermal
compressibility of the pure solvent system. At liquid conditions, the factor is much smaller than
unity. Actually, the functional described in [2] is a combined functional of the Percus-Yevick (PY)-

472



Hydration of hard-sphere solute

and hypernetted-chain (HNC)-type approximations. Since Ω < 0 holds in the conditions studied in
the present work, the PY-type form is adopted and the functional is simplified into equation (2) [15].

The second approach examined in the present work is the information-theoretic approach [5–7].
In this approach, a Gaussian-like approximation is adopted for the probability of the occupancy
number n of solvent molecules contained within the region of solute insertion in the pure solvent
system. In Hummer et al.’s version, [5] the probability pn is set to

pn = exp
(
λ0 + λ1n + λ2n

2
)
, (4)

where λ0, λ1, and λ2 are determined from a set of constraints expressed as

∑

n

pn = 1

∑

n

npn = 〈n〉

∑

n

n2pn =
〈
n2

〉
. (5)

In equation (5), 〈· · ·〉 is the average in the pure solvent system, as is so for equation (1).
〈
n2

〉

is an input brought from molecular simulation of the pure solvent and carries the information of
solvent-solvent correlation. The solvation free energy ∆µ of a hard particle is then given by

∆µ = −kBT log p0 = −kBTλ0 . (6)

The third approach employed in the present work is the reference interaction site model (RISM)
[8–12]. In this approach, the site-site form of Ornstein-Zernike equation is formulated to introduce
the direct correlation function and a closure relationship is adopted to give a self-consistent integral
equation for pair correlation functions. The site-site radial distribution functions are obtained from
the integral equation and determine the solvation free energy.

The fourth approach is the scaled-particle theory. It provides an analytically convenient ex-
pression for the solvation free energy of hard-sphere solute [13,14]. In this theory, the detailed
interaction and structure of the solution are not taken into account explicitly and affect the sol-
vation free energy of the hard-sphere solute only through the solvent density ρ, pressure P , and
temperature T of the system. The solvent molecule is modeled as a hard sphere with a properly
chosen diameter σv. When the radius of solvent exclusion (cavity) is λ, the corresponding solute
has a diameter of 2λ − σv. Since we are concerned with cavities of realistic size, we restrict our
attention to the solutes which involve positive diameters and satisfy λ > σv/2. The free energy ∆µ
of solvation (cavity formation) is then expressed in the scaled-particle theory as [13,14]

∆µ = −kBT

[
log (1 − y) −

(
3y

1 − y

)
R −

{
3y

1 − y
+

9

2

(
3y

1 − y

)2
}

R2

]
+

yP

ρ
R3, (7)

where y is the packing fraction of the solvent defined as

y =
π

6
ρσ3

v
(8)

and R is the ratio of the solute diameter to the solvent diameter given by

R =
2λ − σv

σv

. (9)

When the solvent is water, σv is actually an effective diameter of the solvent molecule. It is an
adjustable parameter in equation (7), and a value of 2.8 Å is adopted in the present work. This
value is the best-fit value obtained in a previous molecular simulation [16]. Actually, an exact
expression for ∆µ is available when the cavity radius λ is small enough or large enough; when λ is
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very large, ∆µ is simply the product of the pressure P and the cavity volume. Equation (7) was
formulated to smoothly interpolate the limits of small λ and large λ [13,14].

In this paper, we express the size of the hard sphere by the radius λ of solvent exclusion. As
noted above, it corresponds to the hard sphere diameter 2λ − σv when the solvent diameter is set
to σv. We employ water as the solvent at 25◦C and 1.0 g/cm3, and identify the region of solvent
exclusion in terms of the hard-sphere center and the position of the oxygen atom. In this case, the
factor of equation (3) appearing in equations (1) and (5) is given by

〈
n2

〉
− 〈n〉

2

〈n〉
= 1 + 4πρ

∫
2λ

0

drr2 (g(r) − 1)
(
1 −

r

2λ

)2 (
1 +

r

4λ

)
, (10)

where g(r) is the oxygen-oxygen radial distribution function of pure water. In the present work,
g(r) used to calculate ∆µ with the method of energy representation and the information-theoretic
approach was obtained from a molecular dynamics simulation of pure water. The potential model
employed was the SPC/E model [17], and the simulation was performed for 100 ps in the canonical
ensemble at 25◦C and 1.0 g/cm3. The number of water molecules in the unit cell was 10000, and
the edge length of the cubic cell was ∼67 Å. When we calculated equation (10) with g(r) as an
input, we used the g(r) from the SPC/E simulation in the range of r < 30 Å.

In the RISM calculation, we actually employed the dielectrically consistent version referred to
as the DRISM theory [12]. The HNC approximation was adopted as the closure. The SPC/E model
was used as the water model, and the temperature and density were the same as the above. A
necessary modification in the DRISM calculation was that a repulsive core is incorporated at the
H site. This is needed to avoid catastrophic overlap of the interaction sites [18,19]. Accordingly, the
H site was also treated as a hard sphere of diameter 0.4 Å when a hard-sphere solute is inserted
into water. Further, a hard-sphere diameter of 2.8 Å was assigned to the O site. Thus, when the
radius of solvent exclusion measured with respect to the hard-sphere center and the O site is λ,
additional hard interaction of radius (λ − 1.2) Å is incorporated between the hard-sphere center
and the H site in the DRISM calculation [20]. The details of the DRISM methodology are described
in [21,22]. A supplementary discussion using the molecular Ornstein-Zernike approach is presented
in Appendix B.

3. Results and discussion

In figure 1, we show the hydration free energy ∆µ as a function of the cavity radius λ. In the
range of λ <

∼ 3 Å, the ∆µ values from the method of energy representation and the information-
theoretic approach are indistinguishable from those by the scaled-particle theory. In this range,
since the scaled-particle theory provides essentially exact values, [16] the above two methods
are shown to be superior in treating a hard particle of relatively small size. At λ >

∼ 10 Å, the
information-theoretic approach was found not to give a converged result since the argument in
the exponential function of equation (4) was too large and the calculation in double precision was
terminated.

When the size of a molecule is large, ∆µ is commonly expressed to be proportional to the surface
area [23–25]. In figure 2, we show ∆µ/(4πλ2) as a function of λ. It is seen that ∆µ calculated by the
scaled-particle theory grows with the surface area 4πλ2 when λ >

∼ 10 Å. In the other approaches,
∆µ/(4πλ2) increases with λ over the whole range of λ examined in the present work. Actually, the
increase is linear, and this shows the presence of a volume-dependent term in the molecular length
scale.

In real systems, the dispersion attraction is operative between a hydrophobic solute and water.
Since the dispersion interaction is short-ranged, its contribution to ∆µ is expected to be propor-
tional to the surface area and to λ2 when λ is large. In previous treatments, although the effect
of dispersion attraction is incorporated as perturbation, [13,14,24–26] it is not negligible in ∆µ.
This shows that the λ2 term is reduced from that given in figures 1 and 2 when the dispersion
attraction is introduced in the calculation.
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Figure 1. The hydration free energy ∆µ as a function of the cavity radius λ calculated using
the method of energy representation (denoted as ER in the figure), the information-theoretic
approach (denoted as IT), the RISM-HNC approach (denoted as RISM), and the scaled-particle
theory (denoted as SPT).

Figure 2. ∆µ/(4πλ2), the hydration free energy scaled by the surface area of the cavity as a
function of the cavity radius λ calculated using the method of energy representation (denoted as
ER in the figure), the information-theoretic approach (denoted as IT), the RISM-HNC approach
(denoted as RISM), and the scaled-particle theory (denoted as SPT).

In the limit of large λ, the exact ∆µ approaches Pv, where P is the pressure, and v is the volume
of the exclusion region and is equal to (4/3)πλ3. By construction, the scaled-particle theory gives
the correct limit value. In the other approaches examined, in contrast, the large-λ behavior of ∆µ
is not exact and is discussed in the following.

To determine the asymptotic value of ∆µ at large v in the method of energy representation and
the information-theoretic approach, it is useful to note that when the region of solvent exclusion
is large enough, the factor of equation (3) reduces to

〈
n2

〉
− 〈n〉

2

〈n〉
= ρkBTχT , (11)

where χT is the isothermal compressibility of the pure solvent system. The expression in the energy
representation given by equation (2) then leads, by virtue of ρkBTχT � 1 at liquid conditions, to

∆µ ≈ ρvkBT log

(
1

ρkBTχT

)
. (12)
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In the information-theoretic approach, it was shown that the asymptotic form is expressed as [6]

∆µ ≈
v

2χT

. (13)

It should be noted that equations (12) and (13) are valid for a hard particle of any shape; the
validity is not restricted to a hard-sphere solute.

In water at 25◦C and 1.0 g/cm3,

ρkBT log

(
1

ρkBTχT

)
≈ 3700 atm ,

1

2χT

≈ 10000 atm (14)

with the χT value of 4.8 · 10−5 atm−1 for the SPC/E model (this value corresponds well to the
experimental value of 4.6 · 10−5 atm−1) [16]. With the RISM approach, the inspection of figure 2
indicates that ∆µ/v is ∼10000 atm at large v, and indeed agrees with the analytical expression at
large v. The analytical expression in the RISM-HNC approach is presented in Appendix B.

The ∆µ/v calculated above are the asymptotic values of ∆µ/v at large enough v. The compar-
ison of the values shows that the method of energy representation provides a better estimate of ∆µ
for a large solute. The exact value of ∆µ/v is 1 atm, [27] however, and it is concluded that except
for the scaled-particle theory, the theories of solutions examined in the present work overestimate
the v dependent term. Actually, since the surface tension of water is ∼70 mN/m, the volume term
is dominant only when λ >

∼ 1 µm in the exact treatment. The scaled-particle theory incorporates
the correct limiting behavior of the Pv term in its construction. According to the asymptotic
analysis, in contrast, the other approaches may exhibit an evident volume dependence even in the
nanometer-scale. This is caused by the fact that the large v behavior is determined by the isother-
mal compressibility χT, rather than the pressure P . The solvation free energy needs to be nicely
computed in the nanometer-scale when its quantitative analysis is necessary for self-organizing
structures such as protein, micelle, and membrane. A key to improve the large v behavior of the sol-
vation free energy in distribution function theories will be to accurately and smoothly incorporate
the crossover of the volume-dependent term from the χT-dominated form to the P -dominated one.
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Appendix A

In this Appendix, we derive equation (2) from the functional given in [2]. Within the present
Appendix, the notations are adopted from [2]. In [2], the functional for the solvation free energy is
given by equations (5), (12), and (18)–(21).

In the energy representation, the instantaneous distribution ρ̂e(ε) is defined by equation (1) of
[2]. As noted in Appendix E of [1], the hard-core potential is characterized by a single parameter
ξ which is much larger than the thermal energy (kBT ) and is practically considered to be infinite.
When the solvent molecule overlaps with the solute, the solute-solvent interaction energy is ξ, and
when the solvent is outside the region of exclusion, the pair energy is simply 0. In this case, ρ̂e(ε)
reduces to

ρ̂e(ε) = nδ (ε − ξ) + (N − n)δ (ε), (15)

where N is the total number of solvent molecules in the system and n is the occupancy number of
solvent molecules in the region which the hard solute is to occupy upon insertion. Equation 5 of
[2] is then simplified correspondingly, and the first three read as

ρe(ε) = Nδ (ε),

ρe

0
(ε) = 〈n〉 δ (ε − ξ) + (N − 〈n〉)δ (ε),

χe

0
(ε, η) =

(〈
n2

〉
− 〈n〉

2
)

[δ (ε − ξ) δ (η − ξ) − δ (ε) δ (η − ξ) − δ (ε − ξ) δ (η) + δ (ε) δ (η)]. (16)

When the solute is present at full coupling of the solute-solvent interaction, n = 0 holds since the
solvent molecule cannot overlap with the solute. Thus, the first of equation (16) is particularly
simple. In the second and third, 〈· · ·〉 is the average in the pure solvent system in which the solute
is treated only as a test particle. Actually, the third of equation (16) is derived by noting that N
is invariant against the change in the system configuration.

According to equation (12) of [2] and equation (16) above, only the coordinate points of ε = ξ
and 0 contribute to the integral. It is not necessary to take into consideration the other values of ε.
Equation 21 of [2] shows that the weight factor α is zero at ε = ξ and is unity at ε = 0. It is then
necessary to set the value of we only at ε = 0 and the value of we

0
at ε = ξ. The we value at ε = ξ

is not needed since ρe is zero at ε = ξ. At ε = 0, we is simply equal to

−kBT log

(
N

N − 〈n〉

)
. (17)

When N is large enough, equation (17) above is of the order 1/N , and F of equation (19) of [2]
vanishes. The contribution to ∆µ from ε = 0 is then given by

−kBT

[
〈n〉 − N log

(
N

N − 〈n〉

)]
= O

(
1

N2

)
(18)

and can be neglected at large enough N . Thus, the coordinate point of ε = 0 makes no contribution
to ∆µ.

At ε = ξ, it is necessary to identify we
0

from the fifth of equation (5) of [2]. From equation (16)
above, equation (B5) of [3] is solved to determine ūe

0
therein; ūe

0
is equal to

kBT
〈n〉

〈n2〉 − 〈n〉
2

(19)

at ε = ξ and is zero at ε = 0. we
0

is then equal to kBTΩ at ε = ξ, where Ω is given by equation (1)
in section 2. The contribution to ∆µ from ε = ξ is thus written as






kBT 〈n〉 log (1 − Ω)

(
1 −

1

Ω

)
when Ω 6 0,

kBT 〈n〉

(
1 −

Ω

2

)
when Ω > 0.

(20)

In liquid conditions, Ω < 0 holds, and equation (2) is derived [15].
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Appendix B

We supplement the integral equation treatment with the molecular Ornstein-Zernike (MOZ)
theory, in which the pair correlation functions and the integral equation are explicitly dependent on
angular coordinates as well as on the radial distance. The multipole model was adopted for the water
molecule; it is a hard sphere of diameter 2.8 Å in which a point dipole and a point quadrupole of
tetrahedral symmetry are embedded [28]. The dipole moment was determined through the iterative
procedure given in [28] to incorporate the polarization effect in the mean-field sense. The resulting
value at 25◦C and 1.0 g/cm3 was found to be enhanced by 40% from the value at isolation (in
dilute gas); it is equal to 2.6 D and is in agreement with the commonly accepted value in liquid
[29]. The quadrupole moment was taken to be 2.6 · 10−26 esu cm2, the gas-phase value. The HNC
approximation was adopted as the closure relationship. In order to numerically solve the MOZ-
HNC equation, the pair potential and the correlation function were expanded in terms of rotational
invariants. The methodological details are presented in [30,31].

The results of the MOZ-HNC scheme combined with the multipole water model were found to
be within ∼20% from those of the method of energy representation in the small radius range of
λ <
∼ 5 Å. When λ is larger, ∆µ/(4πλ2) was observed to involve an evident slope as a function of λ;

the slope corresponds to the coefficient of the volume-dependent term. The asymptotic behavior
of ∆µ for large λ can be obtained from the closed-form expression for ∆µ. In the MOZ-HNC
approach, ∆µ is expressed as [32]

∆µ = ρkBT

∫
dx

8π2

[
1

2
huv(x)2 − cuv(x) −

1

2
huv(x)cuv(x)

]

= ρkBT

∫
dx

8π2

[
1

2
huv(x)2 −

1

2
cuv(x) −

1

2
guv(x)cuv(x)

]
, (21)

where x collectively denotes the position and orientation of the solvent (water) relative to the solute
(hard sphere), and guv, huv, and cuv are the pair correlation function, total correlation function,
and direct correlation function, respectively, between solute and solvent. When the solute is at
infinite dilution, the integrals of huv and cuv over the whole configuration are given through the
MOZ equation as

∫
dx

8π2
huv(x) =

∫
dx

8π2
cuv(x)

[
1 + ρ

∫
dy

8π2
hvv(y)

]
= ρkBTχT

∫
dx

8π2
cuv(x), (22)

where hvv is the total correlation function between solvent and solvent and its integral over the
whole configuration gives the compressibility χT [33]. Equation (21) is then rewritten as

∆µ =
ρkBT

2

∫
dx

8π2
huv(x)2 −

1

2χT

∫
dx

8π2
huv(x) −

ρkBT

2

∫
dx

8π2
guv(x)cuv(x). (23)

Within the region of solvent exclusion, guv = 0 and huv = −1. We further assume that huv and
cuv decay on the molecular length scale for any λ. Equation (23) then leads to

∆µ ≈
ρvkBT

2
+

v

2χT

≈
v

2χT

(24)

when the excluded volume v is large enough and ρkBTχT � 1. Note the correspondence of equa-
tion (24) with equation (13) [15]. In the multipole water model employed with the MOZ-HNC
equation, χT was calculated to be 3.6 · 10−4 atm−1, and is larger than the experimental value by
an order of magnitude. In turn, the χT value leads to ∆µ/v ≈ 1000 atm for a large enough cavity.
This shows that with respect to the large v behavior, the MOZ-HNC approach combined with
the multiple water model agrees apparently with the scaled-particle theory better than the other
approaches treated in section 3.
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The asymptotic analysis in the integral equation with the HNC closure is also possible for the
RISM approach. In the RISM-HNC approximation, ∆µ is expressed as [34]

∆µ = ρkBT
∑

i,j

∫
∞

0

dr4πr2

[
1

2
hui,vj(r)

2 − cui,vj(r) −
1

2
hui,vj(r)cui,vj(r)

]

= ρkBT
∑

i,j

∫
∞

0

dr4πr2

[
1

2
hui,vj(r)

2 −
1

2
cui,vj(r) −

1

2
gui,vj(r)cui,vj(r)

]
, (25)

where r is the radial distance, and gui,vj , hui,vj , and cui,vj are the radial distribution function,
total correlation function, and direct correlation function, respectively, between the i-th site of the
solute and the j-th site of the solvent. The second term can be written as [35–37]

ρkBT
∑

i,j

∫
∞

0

dr4πr2cui,vj(r) = −
∆V

χT

, (26)

where ∆V is the excess partial molar volume of the solute. ∆µ ≈ v/(2χT) then follows from the
arguments similar to those deriving equation (24) from equation (21). In the RISM-HNC approach,
χT was calculated to be 5.7·10−5 atm−1. This leads to ∆µ/v ≈ 10000 atm for a large enough cavity.
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Вiльна енергiя гiдратацiї твердих сфер в широкiй областi
розмiрiв дослiджувана рiзними теорiями розчинiв

Н.Матубаяшi1,2, М.Кiношiта3, М.Накахара1
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Отримано 16 серпня 2007 р., в остаточному виглядi – 6 жовтня 2007 р.

Вiльна енергiя гiдратацiї твердих сфер в широкому iнтервалi розмiрiв розрахована методами енер-
гетичного представлення, iнформацiйно-теоретичного пiдходу, методом базисних взаємодiючих си-
лових центрiв та на основi теорiї масштабної частинки. Першi з трьох пов’язанi з методом функцiй
розподiлу, а вiльна енергiя гiдратацiї вiдображає структуру розчину через функцiї розподiлу. Прису-
тнiсть об’ємно-залежного доданка виходить за рамки теорiй на основi функцiй розподiлу. Асимпто-
тична поведiнка в границi великої твердої сфери є iдентифiкована. Це вказує, що об’ємно-залежний

доданок є ключовим для покращення теорiй, базованих на функцiях розподiлу, в застосуваннях до

великих молекул.

Ключовi слова: вiльна енергiя гiдратацiї, вода, тверда сфера, залежнiсть вiд розмiру,
представлення енергiї, розподiл зайнятостi

PACS: 05.20.Jj, 61.20.Gy, 61.20.Ne, 61.20.Qg, 61.25.Em, 82.60.Lf

480


