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The basic approach in the microscopic theory of binary metal systems has
been developed. The electron-ion model Hamiltonian with nonlocal many-
particle interactions was obtained using the statistical operator averaging
for the electron-nuclear model over the localized electron states. The role
of orthogonalization and exchange effects on the formation of electron-ion
interactions is investigated. The transition to the ion metal model with ef-
fective manyparticle interactions was performed.
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The investigation of manyparticle effective interactions in the binary metallic
systems is very interesting from different viewpoints. In particular, it is important
in interpreting thermodynamic and structural characteristics of alloys and melts, in
describing the quantum states of impurities in metals, structure phase transitions
etc.

The basic approach, developed in papers [1,2], makes it possible to perform pre-
cise calculations without employing the model isights or any adjusted parameters. It
gives the advantage of coupling the analytical and numerical analysis which becomes
very substantial for the subsequent employment of the results produced.

In accordance with the basic approach let us consider the electron-nuclei model
for the binary metallic system which consists of two types (¢ = a,b) of nuclei (V. is
the number of nuclei of ¢ type with the charge Q. - e) and N, = >, N.Q. electrons,
—e is the electron charge.

To describe the electron subsystem we use the compound basis of one particle
wave functions

{Wo} = {V.} & {¥,} & {V}, (1)
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which consists of two orthogonal subspaces — localized {V¥;, (r)}(c = a,b) and delo-
calized functions {Wy(r)}. The functions of localized electron states are formed from
the atomic orbitals ¢, ;.(r) = ¢, (r —R;.) according to the Bogoliubov method [3],
for example

1
\Ij)\a,ja (r) = (10>\a7ja (r) -5 Z Z ((plla,ia’ @Aa,ja)(pﬂa,itz (r)
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where \,, i1, are the quantum states numbers of localized electrons that form the
ionic cores, and R;,, R;, are nuclei coordinates. The subspace of Wy (r)-functions can
be constructed using different methods, for instance with the help of the technique
described in paper [4] and grounded on the plane wave basis {py}.
Let us calculate the partition function of the above described model over the
electron variables in grand canonical ensemble

Zy = Spe{exp |=B (H — uN.) |}, (3)

which plays a role of the effective statistical operator for nuclei (ionic) subsystem.
The Hamiltonian of an initial model in the second quantization representation takes
the form

ﬁ = }AITL(R) _'_ Z 260‘1,020’:1,30’02,3
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where the component ﬁn(R) is the operator sum of the nuclei kinetic energy and
their mutual Coulomb interaction. The second term in the right part of (4) presents
the electrons’ kinetic energy and attraction with nuclei, the third term presents
electron-electron interaction. Here a,s are Fermi operators, which correspond to
U, (r)-functions (with the spin projection s), {o} = {Aa,Ja}, {Mo, s}, {k}'. The
“stroke” means that some number of wave vectors, which is equal to the number of
localized functions in {¥;, }, {¥;, } subspaces are excluded from k-spectrum. Matrix
elements in (4) are defined as follows:

Nec
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According to the papers [1,2], we will split the calculation of Z.(u) into two stages.
In the first stage we will calculate the track of statistical operator over the localized
electron states A.(c = a,b). In the second one — over the collectivized electron states.
After the first stage computation we obtain the effective statistical operator of the
collectivized electron subsystem in the ionic field, which determines the Hamiltonian
of electron-ion model on { ¥y }-subspace:

Spi. {exp[—B(H — pN.)]} = exp[—B(Her — uNy)],
[:[ef = [:[z(R) + Z /ZUQ(kla k2‘R)alJ(rl,sak27S

ki ke S
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Here
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is the Hamiltonian of isolated ion subsystem, E? is the energy of an isolated ion and

Verer(Ry,, — Ry,,) is the pair ion-ion potential in the Hartree-Fock approximation
(jC1 7é jCQ at ¢ = 02)7
1 :
‘/:31,02 (R) = V Z ‘/:31,02 (q) exp(lqR),
q
‘/:31,02 (q) = ‘/;1201 (q)ch (q)v (8>

where

Z(q) =Qc—2)_ Ri.(q)
"

is the effective ion valency function, which at ¢ — 0 tends to its true value — the ion
valency Z.. The second term in H.; describes the one particle electron-ion interaction
and the third describes the two electron interaction in the ion field.

To simplify the second stage computations (the averaging over the conductive
electron states ) we will turn from operators ay s to Cy s, which conforms with plane
waves basis {@i(r)} = {V /2 exp(ikr)} according to the expressions:

Qs = Z(\I]ka 9001)0(178' (9)

q
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This relationship, simultaneously with the completeness condition for {W¥, }-basis,
written in the momentum space

Z(\Ill, ‘Pcu 900127 _'_ Z \Ijka ‘Pcu 900127 \I]k) 50117012 ) (1())
l

permits to recalculate the Hamiltonian ﬁef matrix elements. The sum calculation
over the wave vectors k can be done in the general form without concrete definition
of functions Wy(r) . As a result, the general form of Hamiltonian Hg remains,
but instead of matrix elements Ty, 5,, Ro, 0,(q) (see (5)), calculated on the basic
functions W, (r), we obtain matrix elements T, ., R, ,,(q) which are calculated on
the functions of O PW -system:

{Vi, ()} @ {¥y,(r)} © {xaclr)}, (11)

where
X(r) = i) = ;(‘I’zca ox) ¥, (r) (12)

— orthogonalized plane wave. Thus, we obtained {c} = {l,} & {l,} ® {k} without
any restrictions for the wave vector k.

Further, we extract from operator ]:Ief the electron liquid Hamiltonian ]:IEL and
the electron-ion interaction operator ‘761:

Hy = HR)+H, + f/el

~

_ +
HEL - ngaksaks QVZV Z Zak1+q81ak2 q,520ka,50 k1,51

k ,S k1 ko 51,52
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ki,ky S
1
+ 5 Z Z A4(k17 k27 k37 k4|R>ai(i>1,sla’i{l,ﬁgak&sQak%Sl + T (13>
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where e, = h*k%/2m. We present here the main terms of matrix elements
As(ky, ko|R), As(ky, ko, ks, ky|R), disregarding the components caused by gibridiza-
tion effects between localized and delocalized electrons :

1 )
Ay(ki koR) = Ty, — C0kike — — ZQcZRﬂl,kQ (q) exp(—igR;,)

F oIS YV { R @R () = 3R (@R (-a))

¢ les q#0

+ A4(k1a k27 k37 k4|R) =

- 17 Z V {Rkl k4( )RgQ,k3(_q) - 5k1,k4+q5k2,k3_q} N (14)
q750

We pass on to the second stage of computation, i.e., the partition function cal-
culation over the collectivized electron states. As in the reference system we use the
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electron liquid model with Hamiltonian fIEL. We will take into account the electron-
ion interactions in terms of perturbation theory method. As one can see from (2),
(14), the operator Vi describes nonlocal one- and two-electron interactions, which
have manyparticle character relatively to ions.

In this paper, in order to avoid inconveniences, we restrict ourselves to a simple
metal case, neglecting the atomic function ¢, (r—R;,) overlap integrals. To simplify
the high order diagram calculation for perturbation theory series we will restrict
ourselves to the main terms in As(ky, ka|R) and Ay(ky, ko, ks, ky|R), which are
additive over ion partial structure factors

= 3 expliqR,,). (15)

jczl

But in the first order of perturbation theory series we will also take into account the
terms proportional to the product of two partial structure factors.

The statistical operator track for the electron-ion model over the electron vari-
ables defines the statistical operator for the ion model of the metal with effective
manyparticle interactions:

~ A

exp{ B Ne} - Spe (exp {~0 [H — w'Ne|}) =

= exp{—B[F,, + Y New. + Hs(R)]}, (16)
where p* = p*(f8, N/V) is the electron chemical potential, F,, is free energy for

electron hqmd model, w, is the single ion energy in the electron liquid surroundings
in the pair correlation approximation relatively to the reference system, _F_lef(R) is
the ion subsystem Hamiltonian where the interionic energy is written in terms of
structure factors:

AaR) - —;z[j}i vi]

Z Z ‘/012)02 [SClSCQ 601302N01:|

01 c2 q#0

)n 1 . . .
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n>3 777 Clye, Cn q1;-.

Here, we obtain the following expressions for the interionic potentials:
‘/6(12,222 (q) = ‘/QZCI (q>Z - R Z a’ k + qa 2(k7 k + Q)Mz(q, _q’k)a

ch(lr.b.).cn(qla"qu = VZ/‘LTL q1a7qn|k) (k k — Q1)a2 (k ql,k q1 — q2)

x-ay(k—qr— = Qo k—ar — = aqn), (18)
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where p,(qu, - . ., qn|k) —k is the component n-particle static semi-invariant correla-
tion function of the reference system [5]. Particulary, in the local field approximation

pa(a, —alk) = p(a, —alk) {1+ V,V'p(q, —a)[1 = G,]} (19)

where G, is static local field correction function and
Z 115(a, —qlk) (20)

is the pair correlation function of noninteracting electron subsystem. The effective
ion valence function is determined by expressions:

Zla) = Q23 Ranla) - Y mRla),
Ac

k,s

Penla) = z{zm,ue Do (), ()

Ac

~ ok — @ (K) — pr. () (k + q>z} @)

Hc

The contributions to effective interionic potentials which appear in the second and
higher orders in perturbation theory series are obtained in the following approxima-
tion for V;:

~

Vy = Z > S.q Z as(k + q,k)Cif  Ces - (22)

¢ q¢0

Here, the main term of two-electron interaction is taken in Hartree-Fock approxi-
mation.

k=k,
t=-1,0,1

q4a,

Figure 1. Depending of the kinetic energy contribution on wave vector g (k = kp,
= —1,0,1).
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In accordance with (18), n-particle interionic potentials are of the screening char-
acter, particularly V%) (q) have the following asymptotics:

1 - L(q)G(q)

im(V2 (q)) = ViZe,(@)Ze(q)

a0 L+ L(g)[1 = G(9))
lim (V2 (@) = ViQe, Qe (23)
where L(q) = V,V'u3(¢,—q). As we can see, the nonlocal matrix elements of

electron-ion interaction, simultaneously with electron liquid model correlation func-
tions, completely define the character of n-particle interionic potentials.

51

-20

Figure 2. The exchange interaction between localized and conductive electrons
in plane waves (solid curve) and ortogonalized plane waves (dashed curve).
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Figure 3. Dependence of direct electron-ion Coulomb interaction on wave vector
q at k = kp. The lovest curve coresponds to plane waves approsimation, other
ones to ortogonalization corrections at t = —1,0, 1.

For example, let us consider the properties of these matrix elements for the metal-
lic lithium case, using a simple 1s-function 1,(r) = 7 /2(a/ag)?? exp(—ar/ay),
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Figure 4. The total electron-ion formfactor as(k+ q, k), averaging over the angle
between k and q at k = 0, kp, 2kp.

where ag is Bohr radius and « is a variational parameter (for an isolated ion Li™
parameter « takes the value 43/16 ). This form being sufficiently precise for 1s
electron description, makes it possible to perform the calculations for a§(k + q, k)
in analytical form, which permits to perform the precise analysis of the obtained

results.

Figures 1-3 show the main components of electron-ion formfactor a§(k + q, k)
for the case k = kp and a different mutual orientation of vectors k and q(t =
cos(k,q) = —1,0,1) . Figure 1 illustrates the contribution of electron kinetic en-
ergy change caused by orthogonalization effects. Figure 2 shows the contribution
caused by exchange interaction between localized and conductive electrons in differ-
ent approximations: dashed curve corresponds to plane wave approximation and the
solid one corresponds to orthogonalized plane wave. Figure 3 illustrates the direct
electron-ion Coulomb interaction. Lower curve corresponds to plane waves approxi-
mation, higher curves are orthogonalization corrections. Figure 4 illustrates the total
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Figure 5. The function as(r, k) for Li at k = 0, kg, 2kr.
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formfactor dependence over k, ¢ being the average over the angle between k and q.
All figures correspond to o = 43/16.

As one can see in figures 14, the formfactor a$(k + q, k) speciality is its high

nonlocality (dependence on modulus and orientation of vector k), caused, firstly, by
orthogonalization effects. The most important corrective term is the kinetic energy
contribution (see figure 1). It generates the maximum on a$(k+q, k) curve (figure 4).
The height of this maximum decreases with the electron kinetic energy increasing.
We have calculated the Fourier transformation of formfactor a$(k + q, k), averaged
over the k and q angle (figure 5) at k = 0, kg, 2kp. The as(r, k) dependence has
the Coulomb character (r—!) for small and for large values of r (71520 (ag(r,k)) =

—7Z*e*/r).
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EdexTneHi B3aemogii y 6iHapHUX MeTaniyHux
cucremax

C.M.Kosanb', B.6.Conos’siH?

JIbBiBCbKUI HaUjoHaNbHUI YHiBepcuTeT iMeHi IBaHa PpaHka,
79005 JbBiB, BYN. Kupuna i Medogisa, 8

IHCTUTYT i3nkm koHaeHcoBaHMX cmcteMm HAH Ykpainm,
79011 JlbBiB, Byn. CBEHLiUbKOrO, 1

OtpumaHo 24 notoro, 2004 p.

Po3pobneHo 6asncHuiA Nigxif y MiKPOCKONIiYHiA Teopii BiHapHUX MeTa-
NiyHMX cucTteMm. LLnaxom cTaTUCTMYHOro 3acepefHeHHs CTaTUCTUYHO-
ro onepartopa efnekTpoH-94epHOI MoAeNi 3a cTaHaMK NMiACUCTEMU OKa-
Ni30BaHUX €NeKTPOHIB NOOYyA0BAHO raMinbTOHIaH eNeKTPOH-iIOHHOI MO-
neni 3 HenokasbHMMK BaraTo4acTUHKOBUMU B3aemoaismu. Jocnigxe-
HO ponb edekTiB opTOroHanisauji Ta 06MiHy y GOpMyBaHHI €NeKTPOH-
iOHHMX B3aeMofin. 3AINCHEHO nepexin Ao iOHHOI Mogeni 3 epeKTUBHYN-
MK 6araTo4acTUHKOBMMU B3aEMOLISIMM.

Knio4oBi cnoBa: 6a3vicHuii niaxig, es1eKkTpoH-s4epHa Moaes b,
€JIEKTPOH-IOHHa MoAe/1b, IOHHA MOAEe b, barato4acTUHKOBI B3aeMoaii

PACS: 71.55.Ak
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