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Solving the Ginzburg–Landau equation we demonstrate that the paramagnetic limiting of superconducting 
state in the superconductors without space inversion symmetry is significantly weakened. It is caused by so 
called magnetoelectric mechanism proving to be effective or not depending of the magnetic field direction and 
the crystal symmetry.  
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1. Introduction 

The term “magnetoelectric effect” in noncentrosym-
metric superconductors encompasses several intriguing 
features. It has been discussed on a phenomenological le-
vel by introducing additional linear gradients terms to the 
Ginzburg–Landau (GL) free energy, so-called Lifshitz in-
variants, like  
 *( ) ( )ij i jK H Dη ηr r . (1) 

Here ( )η r  denotes the order parameter of superconductor, 
H  is magnetic field and = 2i e− ∇−D A  is the gauge-
invariant gradient. First predicted by Levitov, Nazarov, 
and Eliashberg [1], the magnetoelectric effect was studied 
microscopically by several authors [2–6]. In this context 
several observable effects have been predicted: (i) the exis-
tence of a helically twisted superconducting order parame-
ter in a magnetic field in two and three dimensional cases 
and spontaneous supercurrents in a 2D geometry [4–9] and 
near the superconductor surface [10] as well as along junc-
tions of two superconductors with opposite directions of 
polarization [11], (ii) the augmentation of the upper critical 
field oriented perpendicular to the direction of the space 
parity breaking [6,8], (iii) magnetic interference patterns of 
the Josephson critical current for a magnetic field applied 
perpendicular to the junction [8]. 

The presence of Lifshitz invariants (1), however, can 
mislead to invalid conclusions like the inevitable appear-
ance of modulated in space superconducting states or noti-
ceable augmentation of the upper critical field [6,8]. Here 
we would like to give insight into this subtleties by dis-

cussing the magnetic field dependence of the effective cri-
tical temperature in the Ginzburg–Landau framework. 
Considering paramagnetic limiting mechanism of super-
conductivity that was ignored in cited above studies we 
show that magnetoelectric effect weakens in many cases 
but never suppresses completely the paramagnetic limiting 
of the superconducting state. There is also pointed out that 
the order parameter helical modulation claimed in several 
papers presents nothing else as known Landau–Abrikosov 
degenerate solution of the Ginzburg–Landau equation. We 
begin with the short description of the electronic states in 
noncentrosymmetric metals. 

2. Electronic states in non-centrosymmetric metals 

Our starting point is the following Hamiltonian of non-
interacting electrons in a crystal without inversion center:  

 †
0

= ,
= [ ( ) ( ) ]H a aαβ αβ βα

αβ
ξ δ γ

↑ ↓
+ ⋅∑ ∑ kk

k
k k σ , (2) 

where †a αk  ( a αk ) creates (annihilates) an electronic state 
| α〉k . Furthermore, ( ) = ( )ξ ε μ−k k  denotes the spin-
independent part of the spectrum measured relative to the 
chemical potential μ , , = ,α β ↑ ↓  are spin indices and σ  
are the Pauli matrices. The sum over k  is restricted to 
the first Brillouin zone. The second term in Eq. (2) des-
cribes the antisymmetric spin-orbit (SO) coupling whose 
form depends on the specific noncentrosymmetric crystal 
structure [12,13]. The pseudovector ( )γ k  satisfies 

( ) = ( )γ γ− −k k  and 1( ) = ( )g gγ γ− k k , where g  is any 
symmetry operation in the generating point group G  of 
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the crystal (see below). The usual symmetric spin-orbit 
coupling which is present also in centrosymmetric crystals 
yields a new spinor basis (pseudospinor) ,α β  in Eq. (2), 
which retains the ordinary spin-1/2 structure with complete 
SU(2)-symmetry. This is different for the antisymmetric 
spin-orbit coupling. The effect of the antisymmetric spin-
orbit coupling is a spin splitting of the band energy with k-
dependent spin quantization axis which removes the 
SU(2)-symmetry. 

Depending on the purpose it is more convenient to ex-
press the Hamiltonian (2) in the initial 2×2 matrix form 
(spinor representation) or in its diagonal form (band re-
presentation). The energy bands are given by  

 ( ) = ( ) | ( ) |ξ ξ γ± ±k k k  (3) 

with the Hamiltonian  
 †

0
=

= ( ) ,H c cλ λλ
λ

ξ
±

∑∑ kk
k

k  (4) 

where the two sets of electronic operators are connected by 
a unitary transformation,  

 = ( ) ,a u cα αλ λ
λ
∑k kk  (5) 

with  

 
(| | ,  ( ))

( ( ),  ( )) = .
2 | | (| | )

z x y

z

i
u u λλ

γ λγ λ γ γ

γ γ λγ↓↑
+ +

+
k k  (6) 

The Fermi surfaces defined by the equations ( ) = 0ξ± k  
are split, except at specific points or lines where | ( ) |= 0γ k  
is satisfied. The band dispersion functions ( )λξ k  are inva-
riant with respect to all operations of G  and the time re-
versal operations 2 0ˆ=K i Kσ  ( 0K  is the complex conjuga-
tion). The states | ,λ〉k  and | ,K λ〉k  belonging to the 
band energies ( )λξ k  and ( )λξ −k , respectively, are dege-
nerate, since the time reversal operation yields | ,K λ〉 =k  

( ) | ,tλ λ= − 〉k k , where ( ) = ( )t tλ λ− −k k  is a nontrivial 
phase factor [14,15]. For the eigenstates of 0H , defined by 
(6), this phase factor takes the form  

 
2 2

( ) ( )
( ) = .

( ) ( )

x y

x y

i
tλ

γ γ
λ

γ γ

−
−

+

k k
k

k k
 (7) 

Finally we turn to the basic form of the antisymmetric 
spin-orbit coupling as it results from the non-
centrosymmetric crystal structures. Here we ignore the 
Brillouin zone structure and use only the expansion for 
small momenta k  leading to basis functions satisfying the 
basic symmetry requirements of ( )γ k . For the cubic group 

= OG , the point group of Li2(Pd1–x,Ptx)3B [16], the sim-
plest form compatible with symmetry requirements is  

 0( ) = ,γ γk k  (8) 

where 0γ  is a constant. For point groups containing im-
proper elements, i.e., reflections and rotation-reflections, 
expressions become more complicated. The full tetrahedral 

group = dTG , which is relevant for Y2C3 [17] and possi-
bly KOs2O6, the expansion of ( )γ k  starts with third order 
in the momentum,  

2 2 2 2 2 2
0 ˆ ˆ ˆ( ) = [ ( ) ( ) ( ) ].x y z y z x z x yk k k x k k k y k k k zγ γ − + − + −k  (9) 

This is sometimes called Dresselhaus spin-orbit coupling 
[12], and was originally discussed for bulk semiconductors 
of zinc-blend structure. 

The tetragonal point group 4= vCG , relevant for 
CePt3Si [18], CeRhSi 3  [19] and CeIrSi3 [20], yields the 
antisymmetric spin-orbit coupling  

 2 2ˆ ˆ ˆ( ) = ( ) ( ) .y x x y z x yk x k y k k k k k zγ γ γ⊥ − + −k  (10) 

In the purely two-dimensional case, setting = 0γ  one 
recovers the Rashba interaction [13] which is often used to 
describe the effects of the absence of mirror symmetry in 
semiconductor quantum wells. 

The single-electron Hamiltonian (2) can be extended to 
include the magnetic field as follows:  

†
0

= ,
= [ ( ) ( ) ] .BH H a aαβ αβ αβ βα

αβ
ξ δ γ μ

↑ ↓
+ −∑ ∑ kk

k
k k σ σ (11) 

The last term describes the Zeeman interaction for an ex-
ternal magnetic field H , with Bμ  being the Bohr magne-
ton. The orbital effect of the field can be included by re-
placing ˆ( / ) ( )e c→ +k k A r  [21], where ˆ = i∇kr  is the 
position operator in the k-representation. 

The eigenvalues of the Hamiltonian (11) are  

 ( , ) = ( ) | ( ) | .Bλξ ξ λ γ μ+ −k H k k H  (12) 

There are two Fermi surfaces determined by the equations  
 ( , ) = 0.λξ k H  (13) 

For certain directions and magnitudes of H  there may be 
accidental degeneracies of the Fermi surfaces, determined 
by the equation ( ) = Bγ μk H . However, there are no 
symmetry reasons for such intersections. 

An important property of the Fermi surfaces (13) is the 
fact that their shapes depend on the magnetic field in a 
characteristic way, which can be directly probed by dHvA 
experiments [22,23]. Note that while at = 0H  time rever-
sal symmetry guarantees ( ) = ( )λ λξ ξ−k k , the loss of time 
reversal symmetry for 0H ≠  yields, in general, 

( , ) ( , )λ λξ ξ− ≠k H k H , i.e., the Fermi surfaces do not have 
inversion symmetry. 

3. Ginzburg–Landau theory for one band 
noncentrosymmetric superconductors 

Instead considering intrinsic multi-band situation due to 
the spin splitting of the electron band, for simplicity we 
restrict ourselves to a one-band situation, i.e., we ignore 
one of the two bands. This band shall be characterized by 
an isotropic density of states at the Fermi energy, 

0 ( ) =N N+ +k . 
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The Ginzburg–Landau free energy functional in an un-
iaxial non-centrosymmetric superconductor one band su-
perconductor is [6]  

{
}

3 2
0

* 2 2 2
1 2

= ( ) | |

( ) ,

c

x y z ij i j ij i j

F d r T T

K D D K D K H D Q H H

α η

η η

− +

⎡ ⎤+ + + + +⎣ ⎦

∫
(14) 

where 0 0= / 2 cN Tα + , and other coefficients are ex-
pressed through the averages over the Fermi surface of the 
products of components of the Fermi velocity and unit vec-
tor ˆ ( )γ k :  

 2 20 3 0 3
1 2= ( ) ,       = ( ) ,

8 8x z
N S N S

K v K v+ +〈 〉 〈 〉k k  (15) 

 

0 3

2
0 3

ˆ= ( ) ( ) ,
2

ˆ ˆ= ( ) ( ) ,
2

B
ij i j

B
ij i j

N S
K v

N S
Q

μ
γ

μ
γ γ

+

+

− 〈 〉

〈 〉

k k

k k
 (16) 

 3 3 2 2
1 7 (3)( ) = = .

| | 4n n
S T T

T
ζ

π
ω π

∑  (17) 

The term linear in H  incorporates the magnetoelectric 
effects while the term quadratic in H  describes the para-
magnetic effect. Therefore 2| |ijQ η  is connected with the 
change of the paramagnetic susceptibility in the supercon-
ducting phase compared with the normal state (Pauli) sus-
ceptibility. In particular, ijQ  vanishes when there is no 
change of the paramagnetic susceptibility. These coeffi-
cients have to be compared with those of a spin singlet 
state of a centrosymmetric superconductor, (0)

ijQ =
 2

0 3 / 2ij B N Sδ μ=  which, assuming 0 0=N N+ , is larger 
than above ijQ . 

We consider now the two illustrative cases, the point 
group 4vC  and 4D  which are characterized by the pseudo-
vectors  

2 2
4

4

ˆ ˆ ˆ( ) = ( ) ( ) , for ,

ˆ ˆ ˆ( ) = ( ) , for .
y x x y z x y v

x y z

k x k y k k k k k z C

k x k y k z D

γ γ γ

γ γ γ
⊥

⊥

− + −

+ +

k

k
 (18) 

For symmetry arguments and using above expressions we 
find the following relations for the coefficients,  

= 0 and = 0 otherwise,

= > 0 and = 0 otherwise
xy yx ij

xx yy zz ij

K K K

Q Q Q Q

− ≠

≠
 (19) 

for 4vC  where presumably | | | |zz xyK K  and zz xxQ Q  
due to large number of nodes in the k-dependence of the 
γ -part of ( )kγ  , and  

 
= 0, 0 and = 0 otherwise,

= > 0 and = 0 otherwise
xx yy zz ij

xx yy zz ij

K K K K

Q Q Q Q

≠ ≠

≠
 (20) 

for 4D . 

3.1. Symmetry 4vC , ẑH  

In the case of 4vC  for the field directed parallel to z-
axis = (0,0,1)HH  the terms linear in gradients and H  is 
absent. The standard solution = e ( )iq yy f xη  of the GL 
equation  

22
2

0 1 2( ) 2 = 0,c zzT T K i eHx Q H
yx

α η
⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂⎪ ⎪⎢ ⎥− + − + − + +⎨ ⎬⎜ ⎟⎝ ∂ ⎠⎢ ⎥∂⎪ ⎪⎣ ⎦⎩ ⎭
  (21) 

is degenerate in respect to yq . The magnetic field depen-
dence of critical temperature is  

 21
0

2
= zz

c c
eK Q

T T H H
α α

− − . (22) 

Both the orbital (linear in H ) and paramagnetic (quadratic 
in H ) depairing effect are present. Compared to the ordi-
nary spin-singlet case, however, the effect of the paramag-
netic limiting is weaker here due to (0)<zz zzQ Q . It is im-
portant to note here that no magnetoelectric effect comes 
into play here. 

3.2. Symmetry 4D , ẑH  

The situation is quite different for the uniaxial crystals 
with point symmetry group 4D  (or 6D ). The GL equation 
includes gradient terms in the field direction and acquires 
the form  

 
22

0 1 2( ) 2cT T K i eHx
yx

α
⎧ ⎡ ⎤⎛ ⎞∂ ∂⎪ ⎢ ⎥− + − + − + −⎨ ⎜ ⎟⎝ ∂ ⎠⎢ ⎥∂⎪ ⎣ ⎦⎩  

 
2

2
2 2 = 0.zz zziK H K Q H

z z
η

⎫∂ ∂ ⎪− − + ⎬∂ ∂ ⎪⎭
 (23) 

The solution can be written as  

 = e e ( ),
iq y iq zy z f xη  (24) 

which remains degenerate with respect to the wavevector 
yq , but not with respect to zq  which is used to maximize 

the critical temperature to  

 
2 2

1
0

2

2
= .

4
zz

c c zz
eK K HT T H Q

Kα α

⎛ ⎞
− + −⎜ ⎟

⎝ ⎠
 (25) 

This corresponds to the finite wavevector  

 
2

= .
2

zz
z

K H
q

K
 (26) 

Note that this wave vector could also be absorbed into the 
vector potential without changing the physically relevant 
results: χ→ +∇A A  with = / 2zq z eχ − . 

The simple paramagnetic depairing effect is weakened 
due to magnetoelectric response of the system. Adjusting 
the nucleation of the superconducting phase to the shifted 
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Fermi surface, as incorporated in the wavevector zq , re-
covers some of the strength of the nucleating condensate. 
This is a specific effect of the noncentrosymmetric super-
conductor and has its conceptional analogue in the FFLO 
phase for centrosymmetric spin singlet superconductors, 
where the condensate also nucleates with finite momentum 
Cooper pairs in order to optimize the pairing of degenerate 
quasiparticles on the split Fermi surface. 

3.3. Symmetry 4vC , ẑ⊥H  

Now we turn the magnetic field into the basal plane 
= (cos ,sin ,0)H ϕ ϕH , and impose a gauge to have the 

vector potential = (sin , cos ,0)Hz ϕ ϕ−A . The correspond-
ing GL equation take the form 

 

2
2 2

0 1 2 2

2

( ) ( )

( ) = 0,

c x y

xy x y y x xx

T T K D D K
z

K H D H D Q H

α

η

⎧ ∂⎪ − + + − +⎨
∂⎪⎩
⎫

+ − + ⎬
⎭

 (27) 

where  

 = 2 , = 2 .x y y xD i eH z D i eH z
x y
∂ ∂

− + − −
∂ ∂

 (28) 

Like in ordinary superconductors the solution of this equa-
tion have the Abrikosov form  

 [ ]( ) = exp ( ) ( ) ,zi f zη ×r p r  (29) 

where we write = /p Hp H  as a vector parallel to the mag-
netic field ( ( )z×p r  denoting the z-component of the vec-
tor ×p r ), and ( )f z  satisfies the resulting renormalized 
harmonic oscillator equation  

 

2 2
0 1 0

22
2

2 2
1

( ) (2 ) ( )

( ) = 0,
4

c

xy
xx

T T K eH z z

K
K Q H f z

Kz

α
⎧
⎪ − + − −⎨
⎪⎩

⎫⎛ ⎞∂ ⎪− + −⎜ ⎟ ⎬⎜ ⎟∂ ⎪⎝ ⎠ ⎭
 (30) 

with the shifted equilibrium position  

 1
0

1
= (2 ) .

2
xyK

z eH p H
K

− ⎛ ⎞
+⎜ ⎟⎝ ⎠

 (31) 

Thus, the vector p  is absorbed into the shift 0z  and does 
not appear anywhere else in the equation. 

Then the corresponding eigenvalue determines the 
magnetic field dependence of optimized critical tempera-
ture:  

 
2 2

1 2
0

1

2
= .

4
xy

c c xx
Ke K K H

T T H Q
Kα α

⎛ ⎞
− + −⎜ ⎟

⎜ ⎟⎝ ⎠
 (32) 

The eigenstates are degenerate with respect to p  and ac-
quire the same structure as in the case of the usual Landau 

degeneracy following from the system translational inva-
riance in the plane perpendicular to magnetic field. Never-
theless, the characteristics of the noncentrosymmetricity 
incorporated in the ijK -terms appears in the expression of 

cT . Similar to the previous case of 4D  with zH  the 
magnetoelectric effect yields a reduction of the paramag-
netic limiting term. This renormalization is surprisingly 
strong in general, as we can see when we return to the ex-
pressions which we had derived for the different coeffi-
cients. We obtain for the last term in Eq. (32),  

2 2 2 22
2 3

2
1

( ) ( )
ˆ= ( ) .

4 2( )
xy x y B

xx x
x

K v H N SHQ
K v

γ μ
γ

α α
+

⎡ ⎤ ⎡ ⎤〈 〉
⎢ ⎥ ⎢ ⎥− − 〈 〉
⎢ ⎥ ⎢ ⎥〈 〉⎣ ⎦ ⎣ ⎦

k k
k

k
 

  (33) 

Considering the simplified picture of a parabolic band with 
( ) = / *mv k k  and a Rashba spin-orbit coupling ˆ ˆ= zγ ×k  

(setting ( ) = 0zγ k ) we find the amazing result that the two 
terms exactly cancel and the paramagnetic effect is com-
pletely suppressed. This effect can be immediately ob-
tained, if we perform the gauge transformation  

 
ˆ*( )B

F

m z
ek

μ ×
→ +

H
A A  (34) 

eliminating the paramagnetic term in initial equation. 
However, it is important to notice that this exact cancella-
tion is a consequence of the simplified forms of the band 
structure and the spin-orbit coupling term. Taking more 
realistic band structure effects into account it is obvious 
that this identity does not hold anymore in general. Never-
theless, our results suggests that the magnetoelectric effect 
can, in principle, yield a substantial contribution to elimi-
nate the paramagnetic limiting also for fields in the basal 
plane. 

3.4. Symmetry 4D , ẑ⊥H  

It is easy to see that this case is analogue to the situation 
for the field along the z-axis and has only quantitative dif-
ferences. Thus also here we encounter a reduction of the 
paramagnetic limit due to the magnetoelectric effect yield-
ing  

 
2 2

1 2
0

1

2
= ,

3
xx

c c xx
e K K K H

T T H Q
Kα α

⎛ ⎞
− + −⎜ ⎟

⎝ ⎠
 (35) 

where also the same considerations concerning the gauge 
freedom apply as in the case of ẑH  apply. 

3.5. Two-dimensional case, symmetry 4vC , ẑ⊥H  

The simplest way to pass from 3D to 2D situation it is 
to introduce ( )zδ  function potential well into 3D GL equa-
tion (27). It is equivalent to the theory used by Tinkham 
[24] for the calculation of the upper critical field in a thin 
film with thickness <<d ξ  for a field parallel to the film. 
Thus, we consider the equation  
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2
2 2

0 1 2 2

2 2

( ) ( )

2
( ) ( ) = 0,

c x y

xy x y y x xx

T T K D D K
z

K
K H D H D Q H z

d

α

δ η

⎧ ∂⎪ − − + − +⎨
∂⎪⎩

⎫+ − + − ⎬
⎭

 (36) 

where d  is a length of the order of the film thickness that 
is in pure 2D case it is an atomic scale length. This eigen-
value equation has the solution 

 [ ] | |( ) = exp ( ) exp ,z
zA i
d

η ⎛ ⎞× −⎜ ⎟⎝ ⎠
r p r  (37) 

where = /p Hp H  is a vector with arbitrary length di-
rected along magnetic field. This then determines the criti-
cal temperature as a function of the applied magnetic field: 

2
2 2 2

0 1 0
1

( ) (2 ) ( ) = 0.
4

xy
c xx

K
T T K eH z z Q H

K
α

⎛ ⎞
− + 〈 − 〉 + −⎜ ⎟

⎜ ⎟⎝ ⎠  
   (38) 
Here 0cT  is the critical temperature in the absence of a 
magnetic field, corresponding to 2

2 0 0= / ( )c cd K T Tα − . 
Moreover, ...〈 〉  denotes the expectation value using the 
wave function exp( | | / )z d−  and 0z  is determined by the 
same expression as in the 3D case  

 1
0

1
= (2 ) .

2
xyK

z eH p H
K

− ⎛ ⎞
+⎜ ⎟⎝ ⎠

 (39) 

Hence, we obtain for the critical temperature  

2 2
2 2 21

0 0
1

= ( / 2)(2 ) .
4

xy
c c xx

K KHT T Q z d eH
K α α

⎡ ⎤
⎢ ⎥+ − − +
⎢ ⎥⎣ ⎦

 (40) 

The critical temperature reaches obviously a maximal 
value at 0 = 0z , i.e., for  

 
1

= .
2

xyK
p H

K
−  (41) 

Thus, unlike to the 3D geometry the 2D superconduct-
ing state proves to be modulated in the perpendicular to the 
field direction. The upper critical field shows also here the 
square root temperature dependence usual for thin films in 
a parallel magnetic field [24]. Under special conditions 
(e.g., rotation symmetry around the normal vector of the 
film) the expression in the square parenthesis in Eq. (40) 
may vanish, as described above. Then, unlike in usual su-
perconductors, non-centrosymmetric superconductors fol-
low the standard Tinkham behavior unchanged by para-
magnetic contributions. 

In view of strong inequality 1/ 2d eH  the com-
plete suppression of 2D superconducting state ( ( ) = 0cT H ) 
is reached in the field which exceeds the orbital critical 
field in the 3D case (32). 

4. Conclusion 

One of the physically most remarkable aspects of non-
centrosymmetric superconductivity is connected with 
magnetoelectricity, the peculiar connection between super-
currents and spin polarization. We have considered one 
aspect in this context, namely its influence on paramagnet-
ic limiting. This effect is of interest in strongly correlated 
electron systems where the coherence length is generally 
small due to the enhanced masses like in heavy Fermion 
compounds. Here ordinary orbital depairing in a magnetic 
field is weak, such that the upper critical field reaches 
magnitudes where paramagnetic limiting through spin po-
larization becomes visible. There was demonstrated that 
depending of crystal symmetry and field direction the pa-
ramagnetic suppression of superconducting state is sub-
stantially weakened by the magnetoelectric effect. In some 
cases the latter causes the appearence FFLO like states for 
centrosymmetric superconductors. In other the modulated 
state does not appear obeying just usual property of the 
Landau–Abrikosov degeneracy of the Ginzburg–Landau 
equation. The conclusions derived here in frame of one 
band superconductivity model allow generalization to the 
more real two-band case. 

Author express the gratitude to V.G. Peschanskii for the 
numerous kind conversations. 
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