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Landau’s theory of Fermi liquids is generalized by incorporating the de Broglie waves diffraction. A newly 
derived kinetic equation of the Fermi particles is used to derive a general dispersion relation and the excitation of 
zero sound is studied. A new mode is found due to the quantum correction. It is shown that the zero sound can exist 
even in an ideal Fermi gas. We also disclose a new branch of frequency spectrum due to the weak interaction. 
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It is well known that at temperatures ~ 1–2 K only two 

quantum liquids exist in nature, the isotopes of helium 3He 
and 4He, and all other substances solidify. The peculiarly 
weak interaction between the helium atoms is the reason 
for helium to remain liquid. Based on this fact, namely that 
in 3He the weak interactions take place between atoms at 
sufficiently low temperatures, Landau has created the 
theory of Fermi liquid (FL) [1]. In which he took into 
account only the weakly excited energy levels of the 
liquid, lying fairly close to the ground state. Landau assu-
med that any weakly excited state of a macroscopic body 
can be represented as an assembly of separate elementary 
excitations (quasiparticles). Moreover, the elementary 
excitations are represented as the collective motion of 
atoms in a liquid and it cannot be identified with individual 
atoms. Therefore, an important characteristic of the energy 
spectrum is the establishment of the dispersion relation 

( )pε  for elementary excitations. Landau has then shown 
that the undamped zero sound can exist in an almost ideal 
Fermi gas, which was confirmed in experiment by Abel et 
al. [2]. A weak electrostatic interactions of electrons with 
each other were discussed and spectrum of elementary 
excitations was investigated in Refs. 3–8. The perturbation 
theory was used in Refs. 9–11 to study oscillations of the 
uncharged Fermi gas. 

In this article, we extend Landau’s theory of Fermi liq-
uids by taking into account the de Broglie waves diffrac-
tion, and show that even in an ideal Fermi gas, when the 
interaction between atoms absent, the dispersion relation of 
the zero sound preserves the form. We also disclose a new 
branch of frequency spectrum due to the weak interaction. 

To consider the problem of existence of the zero sound in 
3He liquid, we employ a novel quantum kinetic equation 
derived by us in Ref. 12, where use was made of the quasi-
classical function = exp ( / )a iSΨ  (  is the Planck 
constant divided by 2 )π  [13]. We note here that the differ-
ence between the Landau kinetic equation and ours is that in 
our equation an additional term, namely the Madelung term 
is incorporated due to the diffraction of de Broglie waves. 

Nonequilibrium states of a Fermi quantum liquid 
are described by the one particle distribution function 

( , , , ),f tr p σ  which satisfies the quantum Boltzmann 
equation [12] 

 ( ) = ( ) ,f d ff C f
t dt

∂ ∂
+ ⋅∇ +

∂ ∂
p
p

v  (1) 

where = = ,d
dt

∂ε
∂

r
p

v
2 1= ,

2
d n
dt m n

∂ε
− + ∇ Δ
∂

p
r

 ε  is 

the energy of the quasiparticle and in general its a matrix 
with respect to the spin variables ,σ  m and n are mass and 
density of particles, respectively, and ( )C f  is the collision 
integral, which describes the variation of the distribution 
function due to particle collisions. 

Note that when the spin of particles is taken into 
account, the distribution function is an operator with res-
pect to the spin variables σ . The quasiparticles in a Fermi 
liquid have spin 1/2. However, there is a wide range of 
problems in which it is sufficient to consider a distribution 
independent of spin variables, so that f  becomes the ordi-
nary quasiclassical distribution function ( , , , ).f tr p  We 
recall here that the condition for quasiclassical motion is 
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that the de Broglie wavelength = /d Fpλ  ( Fp  is the 
Fermi momentum) of the particle must be very small 
compared with the characteristic length L, over which 

( , , , )f tr p  varies considerably. 
Following the Landau’s theory, hereafter, we consider 

FL as a spinless, and the energy ε  of quasiparticles is a 
functional of the distribution function; a variation of distri-
bution function  

 0( , , ) = ( ) ( , , )f t f f t+ δr p p r p  (2) 

produces a variation of energy given by  

 
3

3
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where the factor 2 appears due to a spin, 0 ( )f p  and 
( , )′ϕ p p  are the equilibrium distribution function and the 

quasiparticle interaction function, respectively; in a Fermi 
gas = 0.ϕ  Thus the distribution function (2) refers to the 
energy of quasiparticle  

 0= ( ) ( , , ) ,tε ε + δεp r p  (4) 

where 0 ( )ε p  is the energy corresponding to the equilib-
rium state and has a certain physical significance near the 
surface of the Fermi sphere, i.e., only quasiparticles with 
momenta p, such that | | ,F Fp p p−  have any real 
meaning. We can therefore expand 0 ( )pε  in powers of the 
difference Fp p−  to obtain  
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v  is the speed of quasiparticles at 

the Fermi surface. 
Now Eq. (4) reads  
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Near the surface of the Fermi sphere the variation of 
distribution function ( , , )f t′δ r p  is appreciably different 
from zero, i.e., the magnitude = = .Fp p′p  The same is 
true for the function ( , )′ϕ p p . So that both depend only on 
directions of the vectors p  and .′p  Hence, the quasi-
particle interaction function ϕ  and fδ  can be expressed at 
the Fermi surface as 

 
2 3
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F

Q
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 = ( ) ( , , ) ,Ff F t′δ δ ε − ε n r  (8) 

where = /F Fm p∗ v  is the effective mass of quasiparticle, 
′n  is the unit vector in the direction of ,′p  and ( )Q θ  is 

the function of the angle θ  between p  and .′p  

We now employ the Eq. (1) to study the propagation of 
small perturbations in the Fermi quantum liquid. We 
substitute the Eqs. (2) and (6) into Eq. (1) and linearize it 
with respect to the perturbation fδ  to obtain  
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We look for wave solutions in space and time for ( , , ),F t′n r  
assuming that it is proportional to exp[ ( )].i t−ωkr  

Taking into account Eqs. (6)–(8), ∇ε  can be written as 

= ( ) ( , , ) = ( ) ,
2 2
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where = sinθdθ.dΩ  
Whereas the density variation reads 
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and 
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The wave propagation in the Fermi liquid, as shown by 
Landau, is possible if 1ωτ  ( τ  is the mean free time), 
which means that collisions of quasiparticles are unimpor-
tant and the collision integral can be neglected. 

Use of Eqs. (10)–(12) in Eq. (9) then yields the relation 
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If we suppose that ( )Q ′θ  is constant, i.e., 0( ) = ,Q Q′θ  
then from Eq. (13) after the integration with respect to the 
angle, we obtain  
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Integrating Eq. (14), we finally arrive at the dispersion 
relation  
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solution of which describes undamped waves. 
In the case when = ,Fkω + γv  | | ,Fkγ v  Eq. (15) ad-

mits the solution 
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Thus we have generalized the Landau's dispersion relation 
of zero sound including the quantum correction. The 
condition of the existence of zero sound is that 0Q  and 

2( )dkλ  must be less than one. The latter is always much 
less than one. Note that in Landau’s theory 0Q  must also 
be less than one. 

It should be emphasized that in the absence of 
interaction between atoms, i.e., 0 = 0,Q  as follows from 
Eq. (16), the undamped zero sound waves can be excited in 
an ideal Fermi gas due to the de Broglie waves diffraction, 
the spectrum of which is  

 2
1= 1 2exp 2 1 .
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It should be noted that the dispersion relation is purely 
quantum. 

The definition of 0Q  (Eq. (7)) admits 0Q  to be more 
than one. In this case Eq. (15) has another interesting 
solution. Namely, for the case Fkω v  from Eq. (15) 
follows the dispersion equation  

 2 2 2 20= ,
3 F q

Q
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where 
2

=
2q
k
m

ω  is the quantum frequency. We specifically 

note here that the frequency (18) is novel and is the product 
of weak interactions of atoms. If there are no interactions 
between atoms, i.e., 0 = 0,Q , we recover the frequency of 
quantum oscillations of free atoms from Eq. (15). 

As it was shown by Pines and Nozieres [14] the 
Eq. (15) without the Madelung term also has an unstable 
solution. Instabilities arise in the case of the attractive 
force between quasiparticles, i.e., 0 < 0.Q  The necessary 
condition for the instability is that 01/ Q  should lie in the 
interval (–1, 0), whereas in our case because the Madelung 

term is always positive for the instability 
2 3

0 2
3
4 F
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must be negative. Thus the de Broglie diffraction effect 
leads to a stabilization. 

In the above consideration we assumed that the 
temperature ,FT ω ε  which means that the width of 
transitional zone of the distribution function is ω . Taking 
into account the collision between quasiparticles, it is 
evident that the waves (16)–(18) will be weakly damped in 
the case when 1.ωτ  As mentioned above, the quasi-
particle may be regarded as a particle in the self-consistent 
field of surrounding particles. The collision of two quasi-
particles in such field is accompanied by a change of their 
total energy and momentum by ω  and ,k  respectively. In 
the process, a sound wave is absorbed or emitted in 
collisions. The overall effect of such collisions is to reduce 
the total number of sound quanta. For this case Landau has 
shown that the absorption coefficient is proportional to 2.ω  

To summarize, we have generalized Landau's theory of 
Fermi liquids by taking into account the diffraction of de 
Broglie waves. To this end we used the quantum kinetic 
equation derived by us in recent paper [12]. It should be 
noted that our kinetic equation is considerably reacher than 
the Landau kinetic equation. There is an additional 
physical feature included here, namely the Madelung term 
is incorporated due to the diffraction of de Broglie waves. 
This term is responsible for the excitation of zero sound 
even in an ideal Fermi gas. Thus we have generalized the 
Landau dispersion relation of zero sound including the 
quantum correction and found a new mode due to the 
quantum effect. We also disclosed a new branch of fre-
quency spectrum due to the weak interaction. Landau’s 
theory of Fermi liquids is a vital theory of both theoretical 
and practical use. This theory has proven to be crucial for 
our understanding of a broad range of materials. Important 
examples of where this theory has been successfully 
applied are most notably electrons in most metals and 
liquid 3He. The theory has found further application in 
nuclear and neutron star matter, superfluid 3He, and 
contemporary problems in superconductivity. Hence, the 
results of the present paper may be of substantial interest in 
connection with the above applications, as well as our 
theory is of great general theoretical interest. 
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