Низкотемпературные магнитно-неоднородные состояния в соединении Sr₂FeMoO_{6-δ}

Н.А. Каланда, С.Е. Демьянов, Л.В. Ковалев

Государственное научно-производственное объединение «Научно-практический центр Национальной академии наук Беларуси по материаловедению», ул. П. Бровки, 19, г. Минск, 220072, Республика Беларусь E-mail: kalanda@ifttp.bas-net.by

Статья поступила в редакцию 28 февраля 2011 г.

Показано, что неоднородность магнитной структуры металлооксидного соединения $Sr_2FeMoO_{6-\delta}$, существенно зависящая от условий синтеза, приводит к различной степени сверхструктурного упорядочения катионов Fe³⁺, Mo⁵⁺. Согласно данным температурных зависимостей намагниченности в условиях охлаждения образцов без магнитного поля, резкий скачок намагниченности в области низких температур (2,3–23 K) свидетельствует о существовании магнитных областей с низкой коэрцитивной силой, в которых реализуется суперпарамагнитное состояние. Установлено, что магнитная неоднородность антиферромагнетик–ферримагнетик способствует фрустрации обменных связей и реализации состояния спинового стекла в материале. Уменьшение магнитной неоднородности и соответственно повышение степени сверхструктурного упорядочения катионов приводит к увеличению отрицательного магниторезистивного эффекта до 14%, не изменяющегося при температурах ниже 15 K.

Показано, що неоднорідність магнітної структури металооксидного сполучення $Sr_2FeMoO_{6-\delta}$, яка істотно залежить від умов синтезу, призводить до різної міри надструктурного впорядкування катіонів Fe^{3+} , Mo^{5+} . Згідно з даними температурних залежностей намагніченості в умовах охолодження зразків без магнітного поля, різкий стрибок намагніченості в області низьких температур (2,3–23 K) свідчить про існування магнітних областей з низькою коерцитивною силою, у яких реалізується суперпарамагнітний стан. Встановлено, що магнітна неоднорідність антиферомагнетик—феримагнетик сприяє фрустрації обмінних зв'язків та реалізації стану спінового скла в матеріалі. Зменшення магнітної неоднорідності і відповідно підвищення міри надструктурного впорядкування катіонів призводить до збільшення негативного магніторезистивного ефекту до 14%, що не змінюється при температурах нижче 15 K.

РАСS: 75.10.-b Общая теория и модели магнитного упорядочения;

76.60. Nr Модель спинового стекла и другие неупорядоченные модели;

75.30. Сг Моменты насыщения и магнитные восприимчивости.

Ключевые слова: двойной перовскит, магнитосопротивление, намагниченность.

Введение

Недавно было открыто семейство ферромагнитных оксидов переходных металлов на основе металлооксидной системы Sr–Fe–Mo–O со структурой двойного перовскита, обладающей высокой чувствительностью электрических и магнитных свойств к магнитному полю с температурой Кюри $T_C \sim 400-500$ К [1,2]. Наиболю с температурой Кюри $T_C \sim 400-500$ К [1,2]. Наиболее интересно и малоизучено соединение Sr₂FeMoO_{6- δ}, которое выше T_C находится в парамагнитном состоянии с кубической структурой ($Fm\overline{3}m$, Z = 2) и удвоенной элементарной ячейкой $c \approx 2a_0$, где $a_0 \approx 3,9$ Å — параметр элементарной ячейки [3]. При $T < T_C$ возникает магнитное упорядочение с формированием тетрагональной структуры (I4/m, Z = 2), в которой октаэдры [FeO₆] и [MoO₆] вращаются вокруг кристаллографической оси *с*. При этом в результате упорядочения спинов электронов Fe и Mo в плоскостях Fe–Mo, пересекающихся под углом 120°, образуется ферримагнитная структура, а длинные цепочки Fe³⁺–O^{2–}–Mo⁵⁺ способствуют сверхструктурному упорядочению катионов. Повышение степени упорядочения увеличивает плотность электронных состояний на уровне Ферми, усиливая выраженность ферримагнитных и металлических свойств Sr₂FeMoO_{6–8} [4,5]. При введении точечных (антиструктурных) дефектов в соединение катионы железа могут находиться в различных спиновых состояниях: низкоспиновом $t_{2g}^6 e_g^0$, промежуточном $t_{2g}^4 e_g^2$ и высокоспиновом $t_{2g}^3 e_g^2$, что и определяет магнитную структуру ферромолибдата стронция [6]. В зависимости от концентрации точечных дефектов могут быть реализованы ферримагнитное (ФРМ), антиферромагнитное (АФМ) или смешанное магнитное (ФРМ–АФМ) состояния [7–9], что дает возможность контролируемо управлять спиновым состоянием катионов.

Методические особенности эксперимента

С целью изучения влияния условий получения соединения Sr₂FeMoO_{6- δ} на нульмерную дефектность его структуры и в конечном счете на магнитные и электрические характеристики применялись два метода синтеза: в качестве исходных реагентов использовались исходные оксидные компоненты SrCO₃, Fe₂O₃, MoO₃ (образцы серии №1) и частично восстановленные прекурсоры SrFeO_{3-x}, SrMoO_{4-y} (образцы серии №2). Для получения прекурсоров из соответствующих оксидов их синтез проводился при 1270 К в течение 20 ч в аргоне с последующим охлаждением в режиме выключенной термоустановки. При этом после вибропомола зерна прекурсоров имели субмикронный размер ~0,2 мкм.

Синтез соединения осуществлялся в политермическом режиме при температурах до 1420 К и скорости нагрева 120 К/ч в вакуумированных кварцевых ампулах в присутствии гетера (Fe), с последующей закалкой при комнатной температуре. Содержание кислорода определялось путем разложения образца в токе аргона в графитовом контейнере. После разложения на рентгенограммах наблюдались рефлексы оксида стронция, металлического железа и молибдена. Рефлексы, характерные для двойного перовскита, не обнаружены.

Электрические и магнитные свойства образцов изучались на универсальной установке фирмы «Сгуодепіс Limited» в интервале температур 2,3–700 К в постоянном магнитном поле до 8 Тл. Температурные зависимости удельной намагниченности $Sr_2FeMoO_{6-\delta}$ измерялись в режимах предварительного охлаждения до 2,3 К в магнитном поле (FC-field cooling) или без него (ZFC-zerofield cooling) с последующим нагревом в магнитном поле.

Результаты и их анализ

Согласно данным рентгеноструктурного анализа установлено, что образцы Sr₂FeMoO_{6- δ} серий №1 и №2 являются однофазными и выше T_C находятся в парамагнитном состоянии с кубической структурой ($Fm\overline{3}m$, Z = 2) [4]. При $T \sim T_C$ формируется магнитное упорядочение и наблюдается структурный переход типа $Fm\overline{3}m \rightarrow I4/m$. В этом случае ферримагнитная

структура реализуется по механизму двойного обмена t_{2g} -электронами, находящимися на гибритизированных орбиталях $Fe(t_{2g}\downarrow)$ и $Mo(t_{2g}\uparrow)$ цепочечной группы $Fe^{3+}(3d^5; t_{2g}^3e_g^2)-O^{2-}(2p^6)-Mo^{5+}(4d^1; t_{2g}^1e_g^0)$. Использование частично восстановленных прекурсоров при синтезе образцов серии №2 позволило реализовать сверхструктурное упорядочение катионов Fe^{3+} и Mo^{5+} , что следует из появления рефлексов (011) и (013) на рентгенограммах. Упорядоченные состояния катионов Fe^{3+} и Mo^{5+} приводят к уменьшению объема элементарной ячейки на 0,22% по сравнению с соединением, полученным прямым синтезом из оксидов, при этом степень сверхструктурного упорядочения P достигает 64% (см. табл. 1).

Таблица 1. Параметры кристаллической решетки и структурного упорядочения для образцов Sr₂FeMoO_{6-δ}№1 и №2

Образцы	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	V, Å ³	<i>P</i> , %
№ 1	5,5717(5)	5,5717(5)	7,9031(2)	245,2867(3)	0
<u>№</u> 2	5,56404(3)	5,56404(3)	7,90539(2)	244,7393(5)	64

Интерпретация полученных данных представляется следующим образом. В кристаллической решетке соединения Sr₂FeMoO_{6- δ} образуются анионные вакансии $V_0^{\bullet\bullet}$, способствующие перераспределению электронной плотности между катионами Fe³⁺ и Mo⁵⁺, и реакция дефектообразования для идеально упорядоченного соединения с учетом соблюдения электронейтральности выглядит следующим образом:

$$\operatorname{Sr}_{2}^{2+}\operatorname{Fe}^{3+}\operatorname{Mo}^{5+}\operatorname{O}_{6}^{2-} \leftrightarrow$$

$$\leftrightarrow \operatorname{Sr}_{2}^{2+}\operatorname{Fe}_{2\delta}^{2+}\operatorname{Fe}_{1-2\delta}^{3+}\operatorname{Mo}^{5+}\operatorname{O}_{6}^{2-}(V_{0}^{\bullet\bullet})_{\delta}\operatorname{O}_{1-\delta}^{2-} + \frac{\delta}{2}\operatorname{O}_{2}\uparrow. \quad (1)$$

Из выражения (1) следует, что с увеличением δ , согласно определению $[Fe^{2+}] = 2\delta$, концентрация двухвалентных катионов железа растет, а $[Fe^{3+}] = 1-2\delta$ концентрация трехвалентных катионов железа уменьшается, что способствует перераспределению электронной плотности и образованию катиона Mo⁶⁺. В связи с этим реакция дефектообразования для неупорядоченного состояния Fe/Mo имеет вид:

$$\operatorname{Sr}_{2}^{2+}\operatorname{Fe}^{3+}\operatorname{Mo}^{5+}\operatorname{O}_{6}^{2-} \leftrightarrow$$

$$\leftrightarrow \operatorname{Sr}_{2}^{2+}\operatorname{Fe}_{2\delta+x}^{2+}\operatorname{Fe}_{l-2\delta-x}^{3+}\operatorname{Mo}_{l-x}^{5+}\operatorname{Mo}_{x}^{6+}\operatorname{O}_{5}^{2-}(V_{0}^{\bullet\bullet})_{\delta}\operatorname{O}_{l-\delta}^{2-} + \frac{\delta}{2}\operatorname{O}_{2}\uparrow,$$
(2)

где величина $x = [Fe_{Mo}] + [Mo_{Fe}]$ определяет концентрацию антиструктурных дефектов.

При измерении температурных зависимостей намагниченности M (рис. 1) установлено, что образцы серий №1 и №2 с различным сверхструктурным упорядочением катионов Fe/Mo являются ферримагнетиками с одинаковой температурой фазового перехода $T_C \sim 418$ К. Приведенные зависимости M(T) в первую очередь

Рис. 1. Температурные зависимости намагниченностей образцов Sr₂FeMoO_{6- δ}, измеренных при *B* = 0,01 Тл и синтезированных: из оксидов MoO₃, Fe₂O₃, SrCO₃ (образец №1) (*a*) и из прекурсоров SrFeO_{3-x}, SrMoO_{4- ν} (образец №2) (δ).

свидетельствуют о том, что намагниченность образцов серии №2 выше значений М образцов серии №1 во всем интервале температур для ZFC и FC режимов. Это обусловлено переходом в образцах №1 части катионов Fe, находящихся в высокоспиновом состоянии $\mathrm{Fe}^{3+}(t_{2g}^3e_g^2)$, в промежуточное $\mathrm{Fe}^{2+}(t_{2g}^4e_g^2)$ или низко-спиновое $\mathrm{Fe}^{2+}(t_{2g}^6e_g^0)$ состояние. Такой переход уменьшает степень заселенности eg-орбиталей и повышает вероятность формирования кластеров типа Fe³⁺-O²⁻Fe³⁺ и Мо⁵⁺-О²⁻-Мо⁵⁺. Образование таких антиструктурных дефектов стимулирует перераспределение электронной плотности с изменением электронной конфигурации части ионов железа и молибдена по схеме $\operatorname{Fe}^{3+}(3d^{5}) + \operatorname{Mo}^{5+}(4d^{1}) \to \operatorname{Mo}^{6+}(4d^{0}) + e^{-} + \operatorname{Fe}^{3+}(3d^{5}) \to$ \rightarrow Fe²⁺(3d⁶) + Mo⁶⁺(4⁰). Исходя из того, что в обменных взаимодействиях диамагнитный катион $Mo^{6^+}(4d^0)$ не участвует и между ионами $Fe^{2+}(3d^6)$, имеющими меньший магнитный момент, чем ионы $Fe^{3+}(3d^5)$, возможны только отрицательные обменные взаимодействия, очевидно, что антиферромагнитное упорядочение магнитных моментов формируется между ионами $Fe^{2+}(3d^{\circ}).$

При этом становится очевидным, что микроструктура образцов, т.е. форма и размер зерен, оказывает существенное влияние на их магнитное состояние. Можно утверждать о большей магнитной неоднородности образца серии №1 (средний размер зерен равен 1 мкм), чем образцов серии №2 (средний размер зерен равен 0.03 мкм), обладающих упорядоченной по катионам Fe/Mo кристаллической структурой. Так, в образцах серии №1 зависимости $M_{ZFC}(T)$ и $M_{FC}(T)$ расходятся при более низкой температуре $T_B = 241$ К, чем у образцов серии №2 ($T_B = 305$ K), где T_B можно считать температурой, при которой замораживаются магнитные моменты частиц максимального размера. Максимумы на зависимостях $M_{ZFC}(T)$ наблюдаются при температуре, когда замораживаются магнитные моменты у частиц минимального размера ($T_m = 180$ К и 265 К соответственно). Поэтому из-за большей магнитной неоднородности образцов серии №1 по сравнению с серией №2 величина разности $\Delta T = T_B - T_m$ различна $\Delta T = 61$ К (№1) и $\Delta T = 39$ К (№2).

На магнитно-неоднородное состояние соединения Sr₂FeMoO₆₋₆ при низких температурах указывают и его магниторезистивные характеристики. Так, для образцов серии №1 с большей магнитной неоднородностью максимальное значение магнитосопротивления *MR*, определяемое как $MR = [\rho(H) - \rho(0)] / \rho(0)$, где $\rho(H)$ и $\rho(0)$ — соответственно удельное сопротивление в поле и без, в магнитных полях до 8 Тл достигает 4% при T = 15 К и практически не изменяется до температур порядка 3 К (рис. 2,а). В соединении серии №2, обладающем упорядоченной по катионам Fe/Mo кристаллической структурой, величина MR при низких температурах возрастает до 14%, что подтверждается высоким значением степени сверхструктурного упорядочения Р по данным рентгеноструктурного анализа (рис. 2,б).

Такое увеличение MR объясняется с точки зрения низкотемпературной проводимости в системе зерно (Sr₂FeMoO_{6- δ})-наноконтакт-зерно (Sr₂FeMoO_{6- δ}), где поперечные сечения межзеренного контакта порядка фермиевской длины волны электрона. При приложении внешнего магнитного поля вырождение по спину в области наноконтакта снимается, в результате чего вероятность туннелирования электронов с различной степенью спиновой поляризации не одинакова и доминирующими становятся однонаправленные спинполяризованные токи.

Анализ поведения температурных зависимостей ZFC намагниченностей образцов №1 и №2 показывает, что в магнитном поле B = 0,01 Тл при нагревании от 2,3 до 23 К происходит резкое увеличение **М**. Это указывает на наличие в материале Sr₂FeMoO_{6- δ} магнитных областей с низкой коэрцитивной силой H_c , в качестве которых могут выступать зерна сферической формы размером ~0,03–0,04 мкм, у которых обменные

Рис. 2. Полевые зависимости магниторезистивного эффекта в образцах Sr₂FeMoO_{6- δ}, №1 (*a*) и №2 (δ) при различных температурах.

силы обеспечивают однородную намагниченность и способствуют реализации в них суперпарамагнитного состояния. Такое предположение может быть объяснено при учете влияния магнитного поля на величину потенциального барьера для изменения ориентации **M**. Так, в процессе охлаждения $Sr_2FeMoO_{6-\delta}$ ниже T_C при B = 0 Тл магнитные моменты частиц ориентируются вдоль их осей легкого намагничивания случайным об-

разом, при этом $\mathbf{M} = \sum_{i=1}^{n} \mu_i = \mathbf{0}$. При помещении во

внешнее магнитное поле энергия однодоменной одноосной частицы $Sr_2FeMoO_{6-\delta}$ малого объема V определяется выражением

$$E = VK\sin^2\theta + VMH\cos\theta, \qquad (3)$$

где K — константа одноосной кристаллографической анизотропии, θ — угол между вектором **М** частицы и осью легкого намагничивания [8]. В этом случае для перемагничивания частицы преодолевается энергетический барьер, равный

$$\Delta E = KV \left(1 - \frac{H}{H_c^0} \right),\tag{4}$$

где $H_c^0 = 2K/M$ — коэрцитивная сила. Из выражения (4) следует, что внешнее магнитное поле понижает энергетический барьер и при $H = H_c^0$ на перемагничивание суперпарамагнитных частиц могут оказывать влияние тепловые флуктуации. Поэтому в магнитном поле B = 0,01 Тл $< \mu_0 H_c^0$, где μ_0 — магнитная постоянная, процесс перемагничивания суперпарамагнитных зерен происходит когерентно: их спины остаются ориентированными параллельно друг другу, а величины поля недостаточно для перемагничивания зерен, находящихся в несуперпарамагнитном состоянии.

При дальнейшем увеличении температуры наблюдается плавный рост **M**, что, скорее всего, обусловлено вкладом в намагниченность «размороженных» спинов электронов несуперпарамагнитных зерен. Ферримагнитное упорядочение спинов катионов железа и молибдена ближнего порядка способствует фрустрации обменных связей и реализации состояния спинового стекла в Sr₂FeMoO₆₋₈, при котором инверсия спинов не изменяет энергию системы в достаточно широком интервале температур. На возможность существования спинового стекла в образцах №1 и №2 указывают температурные зависимости намагниченностей ZFC образцов с последующим их нагревом при различных величинах магнитных полей B = (0,01-0,2) Тл (см. рис. 3).

Рис. 3. Температурные зависимости ZFC намагниченностей образцов Sr₂FeMoO_{6-δ} №1 (*a*) и №2 (*б*) при различных значениях магнитного поля *B*, Тл: 0,01 (*1*), 0,06 (*2*), 0,12 (*3*) и 0,2 (*4*).

Low Temperature Physics/Физика низких температур, 2011, т. 37, № 9/10

Анализ данных свидетельствует, что для образцов обеих серий значения Ттах при увеличении магнитного поля сдвигаются в сторону более низких температур, что обусловлено уменьшением величины энергетического барьера при увеличении магнитного поля. При некотором критическом поле $\mu_0 H_c^0 \approx 0,07$ Тл (№1) и $\mu_0 H_c^0 \approx 0,09$ Тл (№2) величина M_{ZFC} в интервале T == 2,3-160 К для серии №1 и Т = 2,3-250 К для серии №2 не изменяется, что указывает на отсутствие влияния температуры на процессы перемагничивания образцов. При выделении из выражения (3) составляющей энергии магнитного поля $E_M = VMH \cos \theta$ плавный рост $M_{ZFC}(T,H)$ при $B < \mu_0 H_c^0$ определяется условием $\Delta E > kT$. В этом случае из-за величины $\cos \theta$ перемагничивается только часть магнитных моментов зерен определенной ориентации. Так, для зерен с М, удовлетворяющим условию cos $\theta < 0, 5$, энергетический барьер $\Delta E \rightarrow 0$, и они намагничиваются вдоль поля, а для зерен с **M** при $\cos \theta > 0.5$ реализуется условие $\Delta E \rightarrow \max$, при котором уменьшается общая намагниченность образца.

Выводы

Изучение металлооксидного соединения Sr₂FeMoO_{6-δ} со структурой двойного перовскита показало, что его микроструктура, существенно зависящая от условий синтеза, определяет степень сверхструктурного упорядочения катионов Fe³⁺, Mo⁵⁺ в кристаллической решетке. Это способствует появлению магнитных областей с низкой коэрцитивной силой и реализации суперпарамагнитного состояния в них. По данным магнитных и магниторезистивных исследований установлено, что при низких температурах в соединении формируются магнитно-неоднородные АФМ-ФРМ области, способствующие фрустрации обменных связей и реализации состояния спинового стекла. Уменьшение магнитной неоднородности и, соответственно, повышение степени сверхструктурного упорядочения катионов приводит к увеличению отрицательного магниторезистивного эффекта до 14%, не изменяющегося при температурах ниже 15 К.

- Y.C. Hu, Q. Ji, J.J. Ge, R.B. Xie, Z.S. Jiang, X.S. Wu, G.F. Cheng, H. Liu, and Q. Lu, *J. Alloys Compounds* 492, 496 (2010).
- D.D. Sarma, Current Opinion in Solid State and Materials Science 5, 261 (2001).

- M. Retuerto, M.J. Martinez-Lope, M. Garcia-Hernandez, and J.A. Alonso, J. Phys.: Condens. Matter 21, 186003 (2009).
- T. Suominen, J. Raittila, T. Salminen, K. Schlesier, J. Lindén, and P. Paturi, J. Magn. Magn. Mater. 309, 278 (2007).
- A. Deb, N. Hiraoka, M. Itou, Y. Sakurai, A. Koizumi, Y. Tomioka, and Y. Tokura, *Phys. Rev.* B70, 104411 (2004).
- K. Kuepper, I. Balasz, H. Hesse, A. Winiarski, K.C. Prince, M. Matteucci, D. Wett, R. Szargan, E. Burzo, and M. Neumann, *Phys. Status Solidi* A201, 3252 (2004).
- S. Ray, A. Kumar, D.D. Sarma, R. Cimino, S. Turchini, S. Zennaro, and N. Zema, *Phys. Rev. Lett.* 87, 097204 (2001).
- M.T. Causa, A. Butera, M. Tovar, and J. Fontcuberta, *Physica* B320, 79 (2002).
- M. Kalanda, G. Suchaneck, A. Saad, S. Demyanov, and G. Gerlach, *Materials Science Forum* 636, 338 (2010).

Low-temperature magnetically-inhomogeneous states in $Sr_2FeMoO_{6-\delta}$ compounds

N.A. Kalanda, S.E. Demyanov, and L.V. Kovalev

It is shown, that the degree of inhomogeneity of the $Sr_2FeMoO_{6-\delta}$ metal oxide compound microstructure, that essentially depends on synthesis conditions, leads to different degrees of superstructural ordering of Fe³⁺ and Mo⁵⁺ cations. According to the temperature dependences of magnetization of the samples measured without any magnetic field, the sharp jump in the low temperature region (2.3-23 K) indicates that there are magnetic regions with low coercitive force, where the superparamagnetic state is realized. It is established that magnetic inhomogeneity of antiferromagneticferrimagnetic states promotes a frustration of the exchange coupling and facilitates a realization of the spin glass state in the material. A decrease of magnetic inhomogeneity and corresponding increase of the degree of superstructural ordering of cations cause the negative magnetoresistance effect to increase up to 14%, and to be unchanged at temperature below 15 K.

PACS: **75.10.-b** General theory and models of magnetic ordering;

76.60.Nr Spin-glass and other random models; 75.30.Cr Saturation moments and magnetic susceptibilities.

Keywords: double perovskite, magnetoresistance, magnetization.