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Inhomogeneous Monte Carlo simulation of the
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The inhomogeneous Monte Carlo technique is used in studying the vapor-liquid interface of benzene in a
broad range of temperatures using the TraPPE potential field. The obtained values of the VLE parameters
are in good agreement with the experimental values as well as with the results from GEMC simulations. In
contrast to the GEMC, within one simulation box the inhomogeneous MC technique also yields information on
the structural properties of the interphase between the two phases. The values of the vaporization enthalpy
and the vapor pressure very well satisfy the Clausius-Clapeyron equation.
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1. Introduction

Benzene belongs to the cyclic hydrocarbons, a class of organic compounds which are frequently
studied by molecular simulations due to their great industrial importance. It is also one of the
simplest molecular systems in which the hydrophobic interactions play a significant role; many
systems of the kind are of use in environmental, clinical and biological applications [1-4].

Several potential energy models were developed to describe the molecular interactions of hy-
drocarbons. One of these potential fields for hydrocarbons — TraPPE (Transferable Potentials for
Phase Equilibria) — shows good agreement with experimental Vapor-Liquid Equilibrium (VLE)
data in a broad range of temperatures [5-7]. Later on the TraPPE-parameters for alcohols, ethers,
glycols, ketones, and aldehydes were determined [8,9]. Moreover, a version with explicit consider-
ation of the hydrogen atoms was established [10].

One way of studying the vapor-liquid equilibria of molecular fluids is using the Gibbs Ensemble
Monte Carlo technique (GEMC) improved by Siepmann et al. [11] in order to determine the
vapor-liquid coexistence curves of several n-alkanes. Another way of studying the vapor-liquid
equilibria (VLE) is the direct simulation of two coexisting phases in a box elongated in one direction
and containing two phases with different densities. These phases are separated by an interface
perpendicular to the elongated edge of the box in order to minimize the surface energy. This
technique was used in studying the vapor-liquid interfaces in various systems — Lennard-Jones
fluids [12], molten salts [13], water [14-16], aqueous solutions [17,18] etc. This method can also be
modified in order to study the liquid-liquid equilibria between two immiscible liquids [19,20]. The
use of boxes with interface in the Gibbs Ensemble Monte Carlo also represents a powerful technique
which enables us to study the properties of interfaces between vapor and saturated solution of two
immiscible liquids [21-23]. Molecular Dynamics (MD) simulations in such boxes were also used in
studying the free surface of alkane oligomers [24-26].
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One common problem of all these simulations is the phenomenon that the equilibrium properties-
especially those of nonpolar systems — significantly depend on the type of the truncation of long-
range dispersion interactions and on the applied cut-off radii.

Several approaches were suggested to treat the truncated dispersion interactions during the
inhomogenous simulations. Guo et al. [27,28] suggested an approach based on the assumption of
the local dependence of thermodynamic properties. Mecke et al. [29] have included the long-range
corrections within MD simulation by adding an additive force contribution in the direction per-
pendicular to the interface. In the case of Lennard-Jones fluids both methods give better results
in comparison with simulations without any long-range corrections. Nevertheless the density pro-
files and the surface tension show at higher temperatures a significant dependency on the cut-off
radius. Much better results were obtained by Lépez-Lemus et al. [30,31] using the lattice sum tech-
nique; nevertheless this improvement is provided due to a significant increase of the computational
expenses.

Recently we have proposed a new method for treating the long-range corrections in systems
with planar interface treated by the Inhomogeneous Monte Carlo simulation [32]. In the case of
Lennard-Jones particles this method works surprisingly well. For cut-off distances of 2.5¢ and of
5.00 this method gives identical density profiles and surface tension values for temperatures up to
95% of the critical temperature. Since the increase of the computational time is only about 20%
compared to simulations without any long range corrections. In loc. cit. [33] we applied this recent
approach to molecular fluids.

In this work we employ the inhomogeneous simulations with long range corrections for the
calculation of VLE at elevated temperatures nearly up to the critical point. As a representative
system we take benzene as rather rigid molecule.

In the next section we briefly describe the employed simulation technique, explain the determi-
nation of quantities characterizing the phase equilibria, and give a short survey on the technical
details of the MC simulations. In the last part of this work we discuss the obtained results.

2. Simulation details

In the recently suggested method of treating the long-range interactions in inhomogeneous sim-
ulations the simulation box consists of three compartments separated by interfaces perpendicular
to the z-coordinate. The outer two compartments are treated as identical phases. In order to eval-
uate the density and the energy profiles, the box is subdivided into strips Az of equal thickness.
Then, the basic idea consists in the separation of the interaction energy U; of molecule 7 into the
contribution of the interactions with the molecules within the cutoff sphere and the long range
part depending on the z-coordinate and on the distance dependent density of all components in
the system

= > uy +U(2), (1)

JERE,

where u;; is the pair potential between molecules i and j and U!"¢(z) represents the long-range
correction term. In the case of a one-component system formed by molecules containing N sites
the general relation [33] is reduced to

z

s

Ng
Ur(z)=>_ 3" JwB (|2, — zi|) Az, (2)
k
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where the first summation runs over all strips into which the box is divided and the second over
all sites of molecule a and the last one over all different sites. pg(zx) is the local density of site § in
a strip of thickness Az centred at the position z;. In the case of the interaction of Lennard-Jones
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type the function w®?(¢) has the following form

10 4
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w(€) = y \ (3)
Ameapolg {é (%) -3 (%) ] for &> R..

Clearly, for cut-off radii larger than 20, the long range correction of the repulsion interactions (first
term in the brackets) is negligible compared to that of the dispersion interactions. When the long
range corrections of the energy are involved in the MC algorithm, the behavior of the system rapidly
tends to reach the behavior of the system with non-truncated interactions. The critical temperature
of Lennard-Jones fluid with R, = 2.5¢ without long-range corrections is 7% = 1.186 [12], while
the inclusion of long-range corrections enables us to perform the inhomogeneous simulations of
Lennard-Jones fluid at T* = 1.25 (which represents 95% of the critical temperature of the fluid
interacting via the full Lennard-Jones potential). The values of the coexisting densities and of the
surface tension are in agreement with results obtained by other different simulation techniques
[32]. The equilibrium and interfacial properties of fluids can thus be obtained using the systems of
considerably smaller size than it was so far.

The methods for determining the equilibrium properties from inhomogeneous simulations are
straightforward. The densities of coexisting phases can be directly obtained from the density pro-
files which represent the basic output of the inhomogeneous simulations. This is demonstrated in
figure la for the results of TraPPE benzene at T = 423.15 K. The densities of both phases are
the averages of the respective local densities. A snapshot of the corresponding simulation box is
included in this figure under the density profile.
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Figure 1. Profiles of thermodynamic properties of TraPPE benzene at 423.15 K along the z-
coordinate of the simulation box (vap = v, lig =1). a) Upper part: Density profile and snapshot
of the coexisting liquid and vapor phases. b) Middle part: Profile of normal and transversal
components of pressure. The normal pressure profile is represented by the solid line while the
dashed one is the transversal component. ¢) Lower part: Profile of the energy felt by one molecule.
UV and U! are explained in the text.
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The vapor-liquid equilibrium at a given temperature in a one-component system is also char-
acterized by the pressure. In the case of inhomogeneous simulations the pressure acting on the
simulation box is different in the zdirection perpendicular to the interface (normal pressure) and
in the lateral direction (transversal pressure); this asymmetry is caused by the non-zero value of
the surface tension. The pressure acting on the walls of the system (simulation box) is related to
the diagonal components of the virial tensor IT

M,, =P,V =NkT + <Zrquiu> + <Z Hif:(zi)> : (4)

i

where the term NkgT represents the ideal gas contribution while the short-range part of the
non-ideal contribution is given by the sum of products of the components of the force acting on
particle ¢, F{, multiplied by the corresponding component of its position vector, ri; u = x,y,2
The expressions for the long-range corrections of the components of the virial tensor Hiflf( )
can be expressed in a form similar to those for the energy (equation 2). We do not repeat these
formulas explicitly; interested readers can find them in [32] or [33]. Since the normal component
of the pressure is constant in each part of the system, which is the condition for the mechanical
stability of the interface, it can be used in evaluating the vapor pressure, P° = P,,. With respect
to large fluctuations of the forces within the liquid phase it is more convenient to determine the
vapor pressure from the profiles of the transversal or normal pressure along the z-axis. The normal
pressure profile in the z-direction can be constructed by the contributions of all interactions of
molecules i and j placed in two different strips and all the strips between them. Similarly the
transversal (also called tangential) pressure profile is calculated as average from the interactions
acting in z- and y- directions (see e.g. [12] for simple fluids or [25] for the generalization for
molecular liquids). The most direct way of including the long-range corrections is to evaluate them
from the corrections of the components of the virial tensor and add them to the strip in which
the given molecule is placed; in a one-component system we can write for the transversal pressure
profile

PT(Z) = ( kBT — <ZZ €T +le f” 74”) tj Q(z — Zz)e(zj - Z)>

~ 21y
+ (S + ) ) )

where p(z) is the density profile, A is the area of the interface, x;;, y;; and z;; are the components
of a vector pointing from the center of molecule i to j, f;; is the force acting between these two
particles and 6(z) is the Heaviside step function The normal pressure profile, Px(z) is given by a
formula of the same form but with factor 27 instead of (x7; +y7;)/2 and I1V¢(2) instead of IT5¢(z)
and Hlyryc( ). The vapor pressure is then represented by the average of these pressure profiles within
the vapor phase where the scatter is much smaller than in the liquid phase (see figure 1b).
Another quantity related to the vapor-liquid equilibrium is the enthalpy of vaporization. Since
the interaction energy of molecules is calculated in every MC step it does not cost any additive
work to also construct profiles of the interaction energy as a function of the z-coordinate. From
such a profile the excess internal energy of molecules in both phases can be determined similarly
to the determination of the coexisting densities (see figure 1c). The vaporization enthalpy can then
be obtained as
AHyp = HY, — H), =UY, — UL, + P°(V)\, — VL), (6)

where the subscript m denotes the molar quantities (H: excess enthalpy, U: excess internal energy
and V: volume) while the superscripts v and [ identify the vapor and the liquid phase. The molar
volumes are obtained from the density profiles. At low temperatures it is possible to replace V,y,
by the expression of the ideal gas, because it is impossible to estimate the gas-phase density from
the simulation.
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The surface tension and the thickness of the interface can be calculated in the same way as
in [33].

The simulation conditions are almost identical with those used in our previous study [33].
The system contains 343 molecules of benzene. These are represented by planar rigid hexagons
with the vertices representing the united atoms CH; the distance between these united atoms is
rcc = 1.4 A and the sites of two different molecules interact through the Lennard-Jones potential
with parameters occ = 3.695 A and ecc /ks = 50.5 K. The initial configurations were obtained by
NPT equilibration of a simple cubic lattice containing 343 molecules. The recommended value of
the cut-off radius for the TraPPE potential, used at all simulations, is R, = 14.0 A. This demands
a box length of at least 28 —30 A in the z— and y— directions. A cubic box of this length contains
about 160 benzene molecules in the liquid phase at T' = 298.15 K. It is necessary to increase this
number in the simulation with respect to the free space for the gas phase and the molecules in the
interfacial region. Therefore we used the twofold number of particles. Because this number depends
on the temperature it has to be verified in each simulation.

During the equilibration the lateral dimensions of the simulation box were kept constant, 30 x 30
A, while the z-dimension was allowed to vary. After this phase the zdimension was increased to 180
A and an equilibration phase of 250000 Monte Carlo loops (250000 x 343 generated configurations)
was run. Three production runs of the same length were then performed. The maximal translation
and rotation parameters were adjusted in order to get an acceptance ratio between 30 and 50%.
The simulations at temperatures T > 498.15 K were performed with 512 molecules in a box with
dimensions 30 x 30 x 240 A. After every 10th MC cycle the density profiles for sites and molecular
centers along the zaxis were recorded in strips of thickness 0.25 A after every 10 MC cycles. With
the same frequency, the components of the virial tensor and profiles of normal and transversal
pressure were also measured.

The molecular truncation [33] of the intermolecular energy was applied. This means that the
truncation was based on the center-center separation of the molecules rather than on the separation
of the sites.

3. Results

The values of the densities and the excess energies for the coexisting phases are listed in table 1.
These values were determined in the way shown in figures 1a and lc. The error bars were estimated
as three times the standard deviation of a set of 5 block averages of thickness 10 A which were
chosen uniformly within the bulk phases. Figure 2 shows the comparison of our results with the
GEMC data obtained by Wick et al. [7] and with the experimental data [34]. Since the TraPPE
potential field was parameterized to reproduce densities of coexisting phases in a wide temperature
range, the perfect agreement with the experimental data is not surprising. The coincidence with
the GEMC results shows that the inhomogeneous simulations can provide equivalent description
of the phase equilibria if the finite size effects are correctly involved.

Table 1. Density and excess energy per one particle of coexisting phases.

T K] p'[mol/l] p¥[mol/l] U'[kJ/mol] U"[kJ/mol|

348.15  10.41; 0.0445 —25.02; —0.16
398.15  9.78; 0.17; —23.00; —0.68,
42315 9.357g 0.24, —21.86, —0.93;
44815  8.90 0.425 —20.606 1.4,
47315 8.3 0.564 —18.96, ~1.814
498.15  7.953s 0.805 ~18.124 —2.69
523.15 6.8, 1.59 —15.79 —4.64
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Figure 2. Coexisting densities of benzene at Figure 3. Vapor pressure of benzene. Line:
various temperatures. The line represents the Experimental values [34]. Circles: inhomoge-
experimental values [34]. Diamonds: GEMC neous MC simulation (this work). Diamonds:
data [7]. Circles: This work. GEMC [7].

The values of the vapor pressure are summarized in the first two columns in table 2. In the
second column the average values of the normal pressure profile within the vapour phase are shown.
The third column contains data which were determined from the zz-components of the virial tensor.
Evidently, if the vapor pressure is estimated by the average value of the transversal or normal
pressure profile in the vapor phase, the statistical uncertainties are one order of magnitude smaller
compared to the second method. The dependence of the vapor pressure on the temperature is
plotted in figure 3. Again the results of this work (circles with error bars) are compared with GEMC
results (diamonds) [7] and with the experimental data (solid line) [34]. A slight overestimating of
the vapor pressure is one shortcoming of the TraPPE potential field which was already recognized
in the paper by Wick et al. [7].

Table 2. Vapor pressure, enthalpy of vaporization and surface tension for TraPPE benzene;
results of inhomogeneous simulations.

T[K] P°[bar] P°@ [bar] AH,,, [kJ/mol] ~ [mN/m]

34815 1.2, 23 27.65 22.66
398.15 5.3, 104 25.53 16.75
42315 7.9, 114 24.1, 14.4;
448.15  12.85 13, 22.0, 11.06
47315 17.33 165 20.0; 8.34
498.15 24, 285 18.15 6.0s
523.15 37, 3310 13.05 3.510

The knowledge of the equilibrium pressure enables us to calculate the heat of vaporization. Its
values are listed in the fourth column in table 2 and the comparison with the experimental data
is shown in figure 4. One can see that the employed potential model for benzene underestimates
the values of the heat of vaporization; the relative difference is about 10 % which is similar to the
extent in which the vapor pressure is overestimated. The main reason for this insufficiency of the
TraPPE model may be the formation of stable dimers of benzene molecules [35] which cannot be
described accurately by pairwise additive interaction site potential models.
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Figure 4. Enthalpy of vaporization of benzene. Line: Experimental values [34]. Circles: MC

simulation (this work).
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Figure 6. Surface tension of benzene de-
pending on temperature. Line: Experimen-
tal values [34]. Circles: MC simulation (this
work).

Figure 5. Representation of the Clausius-
Clapeyron equation (CC). The figure shows
the right hand sides of equations (7) and (8)
as functions of temperature. The uncertainty
range of the expression AH,,/(PTAV,,) is
shown by the vertical error bars. The dashed
lines indicate the uncertainty range of —B/T?.

The enthalpy of vaporization is related to the temperature dependence of the vapor pressure
through the Clausius-Clapeyron equation
dln(P°)  AH,,
or  TP°AV,’

(7)

With respect to non-ideal behaviour of the vapor phase in the investigated temperature range, the
volume change of vaporization cannot be approximated by the molar volume of ideal vapor. The
simulated values of the vapor pressure were fitted to the Antoine equation

m(w>=A+B (8)
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where P§ = 1 bar and the fitted constants are A = (10.2 £ 0.5) and B = (—3450 £ 250) K;
the differential quotient on the left hand side of the Clausius-Clapeyron equation can be then
expressed as
o

S =T ®
The consistency between the vaporization enthalpy and the vapor pressure according to equations
(7) and (9) is shown in figure 5 where the values of the quotient —B/T? and AH,,/(P°TAV,,)
are plotted against 7. The dashed lines indicate the uncertainty range of —B/T? while those of
the second expression are shown by the vertical error bars.

For completeness, the dependence of the surface tension of benzene on the temperature is shown
in figure 6. The solid line represents the values obtained by an extrapolation method suggested by
Somayajulu [36] and the circles are the results of our simulations. We note that the surface tension
values evaluated according to the method of Somayajulu are in agreement with the experimental
data up to the normal boiling point [37].

4. Conclusion

Inhomogeneous Monte Carlo simulations were performed in order to investigate the vapor-
liquid equilibrium properties of benzene using the TraPPE potential field. The perfect agreement
of the results of this simulation technique with those obtained by the GEMC as well as with
experimental data is a profound affirmation of the reliability of this technique for the calculation
of phase equilibria. The enthalpy of vaporization and the vapor pressure very well satisfy the
Clausius-Clapeyron equation.

References

Jorgensen W.L., Gao J., Ravimonah C., J. Phys. Chem., 1985, 89, 3470.
Jorgensen W.L., Duffy E.M., Bioorg. Med. Chem. Lett. 2000, 10, 1155.
Jedlovszky P., Mezei M., J. Chem. Phys., 1999, 111, 10770.

Jedlovszky P., Varga 1., Gilanyi T., J. Chem. Phys. 2003, 119, 1731.

Martin M.G., Siepmann J.I., J. Phys. Chem. B, 1998, 102, 2569.

Martin M.G., Siepmann J.I., J. Phys. Chem. B, 1999, 103, 4508.

Wick C.D., Martin M.G., Siepmann J.I., J. Phys. Chem. B, 2000, 104, 8008.
Chen B., Potoff J.J., Siepmann J.I., J. Phys. Chem. B 2001, 105, 3093.
Stubbs J.M., Potoff J.J., Siepmann J.I., J. Phys. Chem. B, 2004, 108, 17596.
Chen B., Siepmann J.I., J. Phys. Chem. B, 1999, 103, 5370.

. Siepmann J.I., Karaborni S.; Smit B., J. Am. Chem. Soc., 1993, 115, 6454.

. Trokhymchuk A., Alejandre J., J. Chem. Phys., 1999, 111, 8510.

Aguado A., Wilson M., Madden P.A.; J. Chem. Phys. 2001, 115, 8603.

. Wilson M.A., Pohorille A., Pratt L.R., J. Phys. Chem., 1987, 91, 4873.

. Alejandre J., Tildesley D.J., Chapela G.A., J. Chem. Phys., 1994, 102, 4574.
. Taylor R.S., Dang L.X., Garrett B.C., J. Phys. Chem 1996, 100, 11720.
Jungwirth P., Tobias D.J., J. Phys. Chem. B, 2001, 105, 10468.

. Dang L.X., Chang T.-M., J. Phys. Chem. B, 2002, 106, 235.

. Zhang Y., Feller S.E., Brooks B.R., Pastor R.W., J. Chem. Phys., 1995, 103, 10252.
. Nicolas J.P., de Souza N.R., J. Chem. Phys., 2004, 120, 2464.

. Wick C.D., Martin M.G., Siepmann J.I., Schure M.R., Int. J. Thermophys, 2001, 22, 111.
. Wick C.D., Siepmann J.I., Schure M.R., Anal. Chem., 2002, 74, 3518.

. Chen B., Siepmann J.I., Klein M.L., J. Am. Chem. Soc. 2002, 124, 12232.
Harris J.G., J. Phys. Chem., 1992, 96, 5077.

. Alejandre J., Tildesley D.J., Chapela G.A., Mol. Phys., 1995, 85, 651.

. Nicolas J.P., Smit B., Mol. Phys., 2002, 100, 2471.

Guo M., Lu B.C.-Y., J. Chem. Phys., 1997, 106, 3688.

. Guo M., Peng D.-Y., Lu B.C.-Y., Fluid Phase Equil., 1997, 130, 19.

. Mecke M., Winkelmann J., Fischer J., J. Chem. Phys., 1997, 107, 9264.

. Lépez-Lemus J., Alejandre J., Mol. Phys., 2002, 100, 2983.

SR R

W RN DNDNDNNDNDDNDDNDDNDNDLN = = e e =
SOXTISTARERRXUNR,OOOTIDU A WNR OO

422



Inhomogeneous MC simulation of the vapor-liquid equilibrium of benzene

31.
32.
33.
34.

35.
36.
37.

Lépez-Lemus J., Alejandre J., Mol. Phys., 2003, 101, 743.

Janecek J., J. Phys. Chem. B, 2006, 110, 6264.

Janecek J., Krienke H., Schmeer G., J. Phys. Chem. B, 2006, 110, 6916.

Lemmon E.W., McLinden M.O., Friend D.G. ” Thermophysical Properties of Fluid Systems” in NIST
Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. Linstrom P.J. and Mal-
lard W.G., June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899
(http://webbook.nist.gov).

Hobza P., Zahradnik R., Muller-Dethlefs K., Collect. Czech. Chem. Commun., 2006, 71, 443.
Somayajulu G.R., Int. J. Thermophys., 1988, 9, 559.

Vargaftik N.B. Tables on thermophysical properties of liquids and gases, Hemisphere Publ. Co.:
Washington, 1975.

MopenioBaHHa meToaAoOM HeogHopiaHoro MoHTte Kapno
piBHOBaru napa-piguHa 6eH3amnHy mix 300 K i 530 K

X.AHesuek?!, MKpinke?, Mlmeep?

1 IHCTUTYT @i3uku | NpuKnagHoi Ximii, TexHonoriyHnin yHiBepcuteT M. BpHo, Yecbka pecnybnika
2 IHCTUTYT @i3NYHOI | TEOPETUYHOI Ximii, YHIBepcuTeT M. PereHcbypr, Perencbypr, HimeuurHa

OTpumaHo 2 nunHs 2007 p., B ocTaTo4yHOMY BUrnsai — 21 cepnHs 2007 p.

MeTtopn HeopgHopigHoro MoHTe Kapno (MK) BMKOPUCTOBYETLCS AN BUBYEHHS MixdasHOI rpaHuui napa-
piavHa 6eH31HY B LUMpPOKiA obnacTti Temnepatyp. OTpyMaHi 3Ha4YeHHs napameTpiB Ans piBHOBaru napa-
piavHa [obpe y3roaxylTbCs 3 €KCNEPUMEHTANIBHUMUN 3HAYEHHSIMU, @ TAKOX 3 pe3ynbraTtaMy MOLENIO-
BaHHA meTogoM MK y Bennkomy kaHoHi4HOMY aHcam6ni (GEMC). Ha sigmiHy Big, GEMC, meTop, HeogHo-
pigHoro MC pae B Mexax KOMIpKM MOAENIOBAHHSA TakoX iHPOpMaLito NPO CTPYKTYPHI BNACTUBOCTI MiX-
dasHoi rpaHunui. OTpuMaHi 3Ha4YeHHs Ans eHTanbnii NAPOYTBOPEHHS | TUCKY HAaCKMYEeHOI Nnapu ayxe nobpe
3a[0BiNbHAOTL piBHAHHA Knaysica-KnanelipoHa.

KniwouoBi cnoBa: 6eH3uH, piBHoBara napa-piavHa, HeogHopiaHe MoHTte Kapsio

PACS: 64.70.Fx, 02.70.Tt
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