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The partial molar volume (PMV) is a thermodynamic quantity which contains important information about
the solute-solvent interactions as well as the solute structure in solution. Additionally, the PMV is the most
essential quantity in the analysis of the pressure effect on chemical reactions. This article reviews the recent
developments in molecular theories of the PMV, especially the reference interaction site model (RISM) theory
of molecular liquids and its three-dimensional generalization version (3D-RISM), which are combined with the
Kirkwood-Buff solution theory to calculate the PMV. This article also introduces our recent applications of the
theory to some interesting issues concerning the PMV of biomolecules. In addition, theoretical representations
of the effects of intramolecular fluctuation on the PMV, which are significant for biomacromolecules, are briefly
discussed.
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1. Introduction

1.1. General description of partial molar volume

The partial molar volume (PMV) of a solute in solution V̄u is defined as the volume change of
solution when the solute is immersed into the solution:

V̄u =

(

∂V

∂Nu

)

T,p,Nv

, (1)

where V , T , and p are respectively the volume, temperature, and pressure of the solution system,
and Nu and Nv are the numbers of solutes and solvents, respectively. This definition actually
corresponds to the Archimedes’ way in the third century B.C.: he immersed the king’s crown into
a container full of water and measured the volume of the overflow to determine the volume of the
crown of complex shape. Thus, the PMV is a thermodynamic quantity primarily representing the
“intrinsic volume” of the solute. From the microscopic viewpoint at the molecular level, however,
the PMV is also affected by the solute-solvent interaction or solvation. For a typical example,
lithium ion has a negative PMV. In fact, this strange “negative volume” is a clear manifestation of
the strong electrostatic interaction between the ion and water, which is the so-called electrostriction
[1]. The PMV thus includes important information on the solute-solvent interaction in solution.

According to thermodynamics, the PMV is also expressed by the pressure derivative of the
chemical potential of solute µu:

V̄u =

(

∂µu

∂p

)

T

. (2)

In this aspect, the PMV is the most essential quantity in the analysis of the pressure effect on
chemical reactions. The pressure dependence of a chemical equilibrium constant K is determined
by the thermodynamic relation [2]:

(

∂ lnK

∂p

)

T

= −
∆V̄

RT
, (3)
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where ∆V̄ is the reaction volume, that is, the PMV difference between reactant and product. This
is an expression of Le Châtelier’s principle. When pressure is applied to the system, the equilibrium
shifts to the state with smaller PMV. As an interesting example, here let us consider the pressure-
induced denaturation of protein. It has been well known in the fields of biochemistry and biophysics
that a protein is denatured or unfolded by applying pressure. It follows from equation (3) that the
PMV of the denatured structure is smaller than that of the native structure. Therefore, the question
“why and how pressure changes the structure of a protein” can be converted into “why and how the
PMV of the denatured structure of the protein is smaller than that of the native structure” under
the two-state assumption of the native-denatured equilibrium. In addition, if the chemical reaction
is to be described by the transition state theory, even the pressure dependence of the reaction rate
constant k can be predicted by the PMV difference between reactant and the transition state ∆V̄ ‡,
namely the activation volume [3]:

(

∂ ln k

∂p

)

T

= −
∆V̄ ‡

RT
. (4)

In this way, the PMV plays an essential role in analyzing the pressure effect on chemical reactions
in solution.

1.2. Historical background

There is a large volume of experimental work devoted to the PMV and the reaction volume
of various molecules, such as ions [1], organic compounds [4,5], biomolecules [5–7], and proteins
[8,9], in solution. Development of theories for calculating the PMV, however, had lagged behind the
experimental studies until recently. If the geometric volumes such as the van der Waals volume and
the so-called molecular volume could perform the role of the PMV, there would be no difficulty,
because the geometric volume calculation based on the atomic diameters defined in an appropriate
manner has been established [10–13]. However, the PMV cannot be replaced by such a geometric
volume because it is a thermodynamic quantity. Considering that the PMV is actually expressed
by the pressure derivative of the chemical potential of solute, the calculation of PMV should be as
difficult as the free energy calculation.

In order to avoid the direct calculation, some empirical methods have been proposed [5–7,14,15].
In the empirical approaches, most strategies are to decompose the PMV experimentally obtained for
various molecules into several contributions intuitively, and to reconstruct the PMV of a desired
molecule by a superposition of those contributions. These methods are essentially based on the
Traube additive scheme [16] proposed in the nineteenth century. Although the empirical methods
have apparently succeed in predicting the PMV itself, they have obvious difficulty in the application
to the volume change, for example, upon the conformational transition, which should involve more
subtle effects of solvation. That is a fatal drawback because we are generally more interested in the
volume change than the PMV itself. The most significant problem is that such empirical methods
are basically incapable of providing a molecular picture of the PMV as a thermodynamic quantity.

There are mainly two theoretical approaches based on statistical mechanics of liquids to the
calculation of the PMV as a real thermodynamic quantity. One of them is the scaled particle theory
(SPT) [17–19]. The SPT yields an approximate expression for the reversible work necessary for
introducing a spherical particle into a fluid, which is the so-called free energy of cavity formation.
Hirata and Arakawa [20] obtained an analytical expression for the PMV of cavity formation, or
the so-called intrinsic volume, by taking the pressure derivative of the cavity formation free energy,
and succeeded in extracting the intrinsic volume of ions in aqueous solution. The same or similar
analytical equations have been applied to the analysis of the PMV in some solution systems [21–27].
However, the SPT has two essential difficulties in its application to the systems of chemical and
biochemical interest. First, the application of the original SPT is limited to spherical solute only
or requires an unreasonable transformation from the molecule of nonspherical shape to a spherical
particle. The other difficulty is that the SPT is incapable of calculating the electrostatic effects on
the PMV such as electrostriction within its theoretical framework. Irisa, Nagayama, and Hirata
[28] resolved the former problem by extending the theory to arbitrary shaped solutes. Then they

344



Molecular theory of partial molar volume

succeeded in calculating the PMV of molecular solutes by using the extended SPT [29]. However,
the latter problem remains substantially unresolved, even though the combination with dielectric
continuum models was proposed [25,30]. Thus, the SPT is useful for calculating the PMV only
of the systems in which the solvent-exclusion effect is significant rather than the solute-solvent
electrostatic interaction.

In addition, analytical equations for the reaction volume of the contact-complex formation of
two hard-spheres were also derived from analytical formulae of the cavity distribution function
[31,32]. However, these approaches are faced with essentially the same difficulties as the SPT in
the application to more complicated molecular systems.

The other approach is based on the Kirkwood-Buff (KB) solution theory [33]. The theory
provides a general framework for evaluating thermodynamic quantities, including the PMV, of a
liquid mixture in terms of the density pair correlation functions. In the KB theory, the PMV of a
solute is given by

V̄ = kBTχT −

∫ ∞

0

(g(r) − 1) 4πr2dr, (5)

where χT is the isothermal compressibility of solution, and g(r) is the radial distribution function
(RDF) between the solute and solvent. If the RDF has been obtained, the PMV can be readily
calculated through this equation. Therefore, the problem is how to obtain the RDF.

Molecular simulation may be a possible candidate to produce the RDF. However, attempts
to combine the KB theory with molecular simulation are still limited to small molecules [34–38].
Another approach is to employ molecular liquid theories [39,40], such as the reference hypernetted
chain (RHNC) [41] and the reference interaction site model (RISM) [42,43] theories, which yield
the RDF through statistical-mechanical integral equations. The RHNC theory coupled with the
KB theory was applied to the PMV of ions in aqueous solution [44,45]. However, practically the
RHNC theory which uses the rotational-invariant expansion method may not be used for solutes
of complex shape like biomolecules. The RISM theory which adopts the site-site description of the
correlation functions can be applied to molecules with arbitrary geometry. Especially since Hirata
et al. [46–48] extended the RISM theory to molecules with charged sites by a renormalization of
the Coulomb potentials, the RISM theory has been applied to a wide variety of molecular systems
[40,49]. By combination with the KB theory, the RISM theory has succeeded in calculating and
analyzing the PMV for various molecular systems [29]: ions [50,51], hydrocarbons [52–54], and
biomolecules [55–57] in aqueous solution as well as other nonaqueous solution systems [58–60]. More
recently, the RISM theory was generalized to describe the three-dimensional spatial correlation
functions of solvent around a solute molecule [40,61,62]. The theory, so-called 3D-RISM theory,
was also combined with the KB theory and has been successfully applied to the PMV, especially
of biomolecules such as amino acids [63], peptides [63–65], and proteins [66–71]. Thus, the RISM
theory is the most successful and promising method of investigating the PMV as well as other
thermodynamic properties in molecular solution systems.

1.3. Outline of this review

The remainder of this article is organized as follows. Section 2 summarizes the RISM and 3D-
RISM theories and the PMV calculation using the theories in combination with the KB theory. The
quantitative capabilities of some different approximations adopted in the theories are evaluated for
the PMV of amino acids as instances of multiatomic molecules. Section 3 introduces our recent
applications of the 3D-RISM theory to the PMV of biomolecules, especially proteins. It is shown
that the PMV of proteins can be efficiently analyzed by a theoretical method of volume decompo-
sition. As interesting examples of the volume decomposition analysis, recent studies on the PMV
changes associated with the conformational transition of a protein and with ligand-protein binding
are briefly introduced. Section 4 presents the theoretical description of the effects of intramolec-
ular fluctuation on the PMV. The effects are particularly significant in analyzing the volumetric
properties of polyatomic biomolecules which should considerably fluctuate in solution. Section 5
concludes this review with some remarks.
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2. Molecular theory of partial molar volume

2.1. Partial molar volume calculation based on the RISM theo ry

2.1.1. RISM theory

The RISM integral equation defines the relation between the site-site total and direct correlation
functions, hαγ(r) and cαγ(r) [39,40,42,43]:

hαγ(r) =
∑

η,ν

∫

dr′
∫

dr′′ wαη(r′)cην(|r′ − r
′′|) (wνγ(|r′′ − r|) + ρνhνγ(|r′′ − r|)) , (6)

where wαγ(r) is the intramolecular correlation function, which determines the distances of site
pairs, namely the geometry of each molecular species, and ρν is the number density of the species.
The site-site total correlation function is related to the site-site RDF by hαγ(r) = gαγ(r)− 1. The
RISM equation is generally coupled with the closure equation used for simple liquids:

hαγ(r) = exp (−βuαγ(r) + hαγ(r) − cαγ(r) + bαγ(r)) − 1, (7)

where β = 1/(kBT ) is the inverse of the Boltzmann constant times temperature, uαγ(r) is the
pair potential function, and bαγ(r) is the bridge function, which determines the approximation of
the closure equation. If the approximation bαγ(r) = 0 is adopted, the equation corresponds to the
hypernetted chain (HNC) equation [39,72], which is the most common one.

Although the RISM theory can yield the correlation functions of a multi-component solution
under an arbitrary condition, here let us consider a two-component (solute and solvent) system
at infinite dilution because we usually deal with the PMV under that condition. In the two-
component system, equation (6) can be decomposed into the solvent-solvent and solute-solvent
equations [40,48]:

hvv
αγ(r) =

∑

η,ν

∫

dr′
∫

dr′′ wvv
αη(r′)cvv

ην(|r′ − r
′′|)
(

wvv
νγ(|r′′ − r|) + ρhvv

νγ(|r′′ − r|)
)

, (8)

huv
αγ(r) =

∑

η,ν

∫

dr′
∫

dr′′ wuu
αη(r′)cuv

ην(|r′ − r
′′|)
(

wvv
νγ(|r′′ − r|) + ρhvv

νγ(|r′′ − r|)
)

, (9)

where superscripts “v” and “u” denote solvent and solute, respectively. Using these equations,
we can obtain the solute-solvent correlation functions in the following way. First, we calculate
the correlation functions for bulk solvent from the intramolecular correlations wvv

αγ(r) and the
intermolecular potentials uvv

αγ(r) of the solvent as well as the thermodymanic conditions, ρ and T , by
iteratively solving equations (7) and (8). Then, we calculate the solute-solvent correlation functions
from the obtained solvent susceptibility, wvv

αγ(r)+ρhvv
αγ(r), as well as the intramolecular correlations

of the solute wuu
αγ(r), the solute-solvent intermolecular potentials uuv

αγ(r), and the temperature T
through the combination of equations (7) and (9). In practice, the convolution integrals in equations
(8) and (9) are calculated by the fast Fourier transform technique. The long-range electrostatic
asymptotics are separated out and treated analytically.

2.1.2. Site-site Kirkwood-Buff theory

The KB equation (5) has been extended to use the site-site correlation functions instead of the
molecular ones [50,55,58]. The PMV at infinite dilution is calculated from the site-site total corre-
lation function of an arbitrary solute-solvent site pair or from all of the site-site direct correlation
functions:

V̄ = kBTχ0
T −

∫ ∞

0

huv
αγ(r) 4πr2dr (10)

= kBTχ0
T

(

1 − ρ
∑

α,γ

∫ ∞

0

cuv
αγ(r) 4πr2dr

)

, (11)
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where χ0
T is the isothermal compressibility of pure solvent. It is an advantage of using the latter

equation that we can obtain each site contribution to the total PMV. In the equation, the total
PMV is naturally expressed by the sum of the site contributions V̄α:

V̄ = kBTχ0
T +

∑

α

V̄α, (12)

V̄α = −ρkBTχ0
T

∑

γ

∫ ∞

0

cuv
αγ(r) 4πr2dr, (13)

where kBTχ0
T is the ideal contribution only from the translational degrees of freedom of the solute

molecule and therefore cannot be divided into the site contributions.

The isothermal compressibility can also be calculated from the site-site direct correlation func-
tions of solvent [55],

χ0
T =

(

ρkBT

(

1 − ρ
∑

α,γ

∫ ∞

0

cvv
αγ(r) 4πr2dr

))−1

, (14)

instead of the usual compressibility equation.

2.1.3. Numerical results for the partial molar volume of ami no acids

Figure 1(a) shows the comparison of the numerical results of the RISM theory with the experi-
mental data for the PMV of twenty amino acids. In these calculations, the solute-solvent RISM
equation (9) was coupled with several different closure approximations (7) for a comprehensive
evaluation of the theory, while the dielectrically consistent RISM (DRISM) theory [73,74] was em-
ployed for obtaining the solvent-solvent correlation functions in common. As the intermolecular
potentials, the Amber99 parameter set [75] and the SPC/E model [76] were used for amino acids
and water, respectively.

It is apparent from the figure that the RISM equation coupled with the HNC closure, which
adopts bαγ(r) = 0 in equation (7), systematically underestimates the PMV, though the theoretical
values show a linear correlation with the experimental data [55]. Based on further careful analysis
and consideration, we found out that the linear correlation is attributed to reasonable description of
the solute-solvent interactions by the theory, while the systematic deviation is ascribed to imperfect
account of the solvent exclusion due to partial neglect of the multi-site correlation effects in the
site-site treatment.

Recently, Kovalenko and Hirata [77] proposed an alternative closure, which is referred to as
the KH closure, to prevent the artificial divergence sometimes occurring in the HNC closure for
strongly associating molecular liquid mixtures. The KH closure combines the HNC approximation
in the spatial regions of density depletion and the mean spherical approximation (MSA), cαγ(r) =
−βuαγ(r), in the enrichment regions. The bridge function for the KH closure is given by

bαγ(r) =

{

0, for dαγ(r) < 0,

−dαγ(r) + ln (1 + dαγ(r)) , for dαγ(r) > 0,
(15)

where dαγ(r) = −βuαγ(r) + hαγ(r) − cαγ(r). Figure 1(a) demonstrates that the PMV values
calculated by the RISM/KH theory are slightly larger than those of the RISM/HNC theory, though
they are still underestimated [78]. This apparent improvement is due to the suppression of the
solute-solvent association, which reduces the PMV, rather than the essential improvement in the
description of the solvent exclusion. In general, a PMV value calculated by the RISM/KH theory
is equivalent to or slightly larger than that of the RISM/HNC theory.

More recently, Kinoshita et al. [56] proposed an efficient bridge function to improve the the-
oretical estimation of PMV. The bridge function is based on what was originally developed for
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Figure 1. Partial molar volume of twenty amino acids calculated (a) by the combinations of the
RISM equation with the five different closure approximations and (b) by the combinations of
the 3D-RISM equation with the four different closure approximations, plotted against the corre-
sponding experimental data. The solid line marks the exact coincidence. New data recalculated
using the Amber99 parameter set instead of the older one employed in our previous studies
[55,56,63] are shown here.

hard-sphere liquids to improve the description of liquid structure [79] and was modified to be used
for polar molecules including charged sites. The site-site bridge function is given by

bαγ(r) =































−
1

2

(

h(0)
αγ (r) − c(0)

αγ (r)
)2

1 +
4

5

(

h(0)
αγ (r) − c(0)

αγ (r)
)

for h
(0)
αγ (r) − c

(0)
αγ (r) > 0,

−
1

2

(

h(0)
αγ (r) − c(0)

αγ (r)
)2

for h
(0)
αγ (r) − c

(0)
αγ (r) < 0,

(16)

where the superscript “(0)” denotes that the function is calculated for the molecule whose site
charges are all switched off. The closure including this bridge function is referred to as the HNC-BF0
closure. As seen in figure 1(a), the use of the HNC-BF0 closure drastically improves the agreement
between the calculated values and the experimental data, in spite of the fact that the bridge
function does not directly incorporate the multi-site correlation effects neglected in the site-site
HNC approximation which cause the substantial underestimation. However, the RISM/HNC-BF0
theory still underestimates the PMV of larger molecules with buried interaction sites because the
multi-site correlation effects become more significant for such molecules, even though the estimation
is much better than that of the RISM/HNC theory [56].

Kovalenko and Hirata [80] proposed another bridge function, originally in order to improve the
theoretical estimation of the solvation free energy. The bridge function modifies the solute-solvent
site-site correlations by adding some averaged short-range exclusion effect coming from the other
solvent sites. It thus supplies some effect of the missing multi-site correlations. The bridge function
takes the form:

buv
αγ(r) =

∑

η 6=γ

ln

(
∫

dr′ exp
(

−βuuv(r)
αη (r′)

)

wvv
ηγ(|r′ − r|)

)

, (17)

where the superscript “(r)” denotes a short-range repulsion of the solute-solvent potential. This
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bridge correction is referred to as the repulsive bridge correction (RBC). When we are using the
12–6 Lennard-Jones (LJ) potential function, we may adopt the LJ r−12 repulsive term or the
Weeks-Chandler-Andersen (WCA) short-range repulsive term [81] as the short-range repulsion. It
was found that the former gave better estimations for the solvation free energy than the latter [80].
However, figure 1(a) shows that the RBC using the LJ–12 repulsive term considerably overestimates
the PMV in the whole range [78]. The RBC with the WCA repulsion provides more reasonable
estimations, though it also overestimates for the smaller molecules. This result implies that the
RBC is overabundant in the additional exclusion effect on the PMV.

In addition, Leu and Blankschtein [52] investigated the PMV as well as the structural and some
other thermodynamic properties of hydrocarbons in aqueous solution by using closure approxima-
tions other than described above. They found that the quantitative predictive capabilities of the
RISM theory were improved by adopting the Martynov-Sarkisov (MaS) closure [82] or its generali-
zation, the Ballone-Pastore-Galli-Gazzillo (BPGG) closure [83]. The bridge function for the latter
is given by

bαγ(r) = (1 + s (hαγ(r) − cαγ(r)))
1/s

− (1 + (hαγ(r) − cαγ(r))) , (18)

where s is an adjustable parameter. When s = 1, it reduces to the HNC closure, and when s = 2, it
corresponds to the MaS closure. They found that s = 1.79, 1.96, and 2.05 were the best choices for
reproducing the thermodynamic properties of methane, ethane, and propane, respectively. However,
this closure has not been examined for larger as well as polar molecules. Even if such examinations
are done, the ad hoc determination of the adjustable parameter, which has no physical meaning,
can make little physical sense.

In conclusion, when we employ the RISM theory to calculate the PMV, we should select an
appropriate closure approximation. For a small molecule, typically which consists of less than ten
atomic sites, we may adopt the HNC or KH closure as well as the HNC-BF0. For a molecule
of moderate size, such as an amino acid, the HNC-BF0 closure is the best choice at the present
stage of theoretical development. However, the site-site treatment of the RISM theory would fail
to completely describe the buried sites in larger molecules, such as oligo-peptides and proteins.
In such cases, we should employ a further developed theoretical treatment, namely the 3D-RISM
theory, which will be introduced in the next subsection.

2.1.4. Remark on the partial molar volume of ionic species

For a neutral molecule, the PMV values calculated from the two different expressions of the
site-site KB equation, equations (10) and (11), are identical to each other. However, the PMV
value for an ionic molecule calculated from equation (10), V̄ (h), is theoretically different from that
calculated from equation (11), V̄ (c), by a product of the volumetric properties of solvent and a term
D: V̄ (h) = V̄ (c) − ρkBTχ0

TD [45,50]. D is determined by the net charge of the ionic solute and the
dielectric and thermodynamic properties of the pure solvent, but is not dependent on the molecular
properties of the solute, such as charge distribution. Therefore, for ions whose charges are equal in
magnitude but opposite in sign, the relation D+ = −D− holds and D does not contribute to the
PMV of the salt. For example, D of a monovalent cation in ambient water calculated based on the
RISM/HNC theory is −2.2 cm3mol−1 [51].

Most experiments determine the PMV of salt and separate it into the individual ion contributi-
ons generally based on empirical assumptions which are not related to the term D. An experimental
technique makes it possible to nonempirically determine the individual ion contributions based on
the ultrasonic vibration potentials which are related to the PMV difference between the cation
and anion [84]. It has been found that the PMV of an ion determined from the ultrasonic vibra-
tion potential measurement corresponds to V̄ (c) rather than V̄ (h) [45,85]. Therefore, we usually
calculate the PMV of ionic molecules by equation (11), regardless of whether or not the reference
data are obtained from the ultrasonic vibration potential measurement. It should be noted that
the discrepancy is not concerned with the PMV change associated with changes in the chemical
properties of solute and with chemical reactions, such as the conformational change, unless the net
charge of solute is varied.
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2.2. Partial molar volume calculation based on the 3D-RISM t heory

2.2.1. 3D-RISM theory

The solute-solvent RISM equation has been generalized to describe the 3D spatial correlation
functions of solvent around the solute [40,61,62]. The 3D-RISM equation is given by

huv
γ (r) =

∑

η

∫

dr′ cuv
η (r′)

(

wvv
ηγ(|r′ − r|) + ρhvv

ηγ(|r′ − r|)
)

, (19)

where huv
γ (r) and cuv

γ (r) are, respectively, the 3D total and direct correlation functions of solvent
site γ around the solute. This equation is coupled with the 3D version of the closure equation:

huv
γ (r) = exp

(

−βuuv
γ (r) + huv

γ (r) − cuv
γ (r) + buv

γ (r)
)

− 1, (20)

where uuv
γ (r) is the 3D interaction potential between solvent site γ and the whole solute, which is

generally obtained from the solute-solvent site-site potentials:

uuv
γ (r) =

∑

α

uuv
αγ(|rα − r|), (21)

where rα is the 3D coordinate of solute site α.

In the 3D-RISM theory, we in advance obtain the site-site total correlation functions of solvent
from a single-component RISM theory of pure solvent, equations (7) and (8). Then, we calculate
the 3D correlation functions by the combination of equations (19) and (20) from the correlation
functions of bulk solvent as well as the thermodynamic properties. The convolution integral in
equation (19) is calculated by the 3D fast Fourier transform technique.

The 3D potential function may be calculated using the minimum image convention and the
Ewald summation methods. In that case, the special electrostatic correlations for the 3D supercell
finiteness are added to equation (20) in order to provide an accurate calculation for a solute
containing site charges [86].

2.2.2. 3D-RISM expression of the Kirkwood-Buff theory

The KB equation (5) has also been generalized to the expression using the 3D correlation
functions [63]:

V̄ = kBTχ0
T −

∫

huv
γ (r) dr, (22)

V̄ = kBTχ0
T

(

1 − ρ
∑

γ

∫

cuv
γ (r) dr

)

, (23)

where the isothermal compressibility χ0
T is calculated from the site-site correlation functions of

solvent, as described in subsection 2.1.2. Equations (22) and (23) also give PMV values differing
by a factor of ρkBTχ0

TD for ionic species, as described in subsection 2.1.4.

Unlike the site-site KB equation (11), the 3D-KB equation cannot immediately provide the
solute-site contributions to the PMV. The site contributions can be obtained through the RISM
equation in the following way. First, we convert the 3D total correlation functions huv

γ (r) into
the site-site total correlation functions huv

αγ(r) by numerical averaging over the solute orientation.
Second, we calculate the site-site direct correlation functions cuv

αγ(r) through the RISM equation
(9). Finally, we obtain the site contributions from equation (13). This decomposition uses only the
RISM ansatz (the decomposition of the molecular direct correlation function into a sum of additive
contributions from interaction sites); it does not include the site-site closure approximation.
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2.2.3. Numerical results for the partial molar volume of ami no acids

Figure 1(b) compares the PMV values of twenty amino acids calculated by the 3D-RISM theory
with the corresponding experimental data. The 3D-RISM equation (19) was coupled with some
closure approximations (20) again in order to evaluate the quantitative predictive capabilities of
the theory. In the calculation, the potential parameters and the solvent correlation functions are
the same as those used in the RISM calculation described above.

As seen in figure 1(b), the theoretical values of the 3D-RISM theory adopting the 3D-HNC
approximation, buv

γ (r) = 0, are in quantitative agreement with the experimental data [63]. The
drastic improvement as compared to the RISM/HNC theory is ascribed to the perfect description of
the solvent-exclusion effect due to the solute. In the 3D-RISM theory, the solute sites are put in the
3D space; therefore, the solvent can never come into the solute repulsive core. The solvent-exclusion
effect is an essential factor to quantitatively reproduce the PMV. As described above, the site-site
treatment in the conventional RISM theory, especially under the HNC and KH approximation,
underestimated the solvent-exclusion effect.

The ability of the other closure approximations has been also examined [78]. Figure 1(b) shows
that the 3D-RISM/KH theory, in which the bridge function is given by the 3D version of equation
(15), yields slightly larger PMV values compared to the 3D-RISM/HNC theory as in the case of
the conventional RISM theory. The comparison with the experimental data indicates that the 3D-
RISM/KH theory is as practicable for the PMV calculation as the 3D-RISM/HNC theory. However,
the 3D-RISM theory including the RBC, the 3D version of equation (17), overestimates the PMV,
regardless of whether it adopts the WCA or LJ–12 repulsive term. The overestimation is more
pronounced for the LJ–12 repulsion than for the WCA. The RBC is effective in the calculation of
the solvation free energy, but not in the PMV calculation.

In conclusion, the 3D-RISM theory, especially when adopting the 3D-HNC or 3D-KH closure,
is currently the most reliable and promising method for calculating the PMV of a solute molecule
of complex shape with site charges. The theory has also been successfully applied to the calculation
and analysis of the PMV of larger biomolecules such as proteins in aqueous solution. Some instances
of the applications are introduced in the following section.

3. Applications to the partial molar volume of proteins

3.1. Partial molar volume of proteins

We have succeeded in calculating the PMV of several proteins by using the 3D-RISM/HNC
theory in combination with the 3D-KB equation [66,67]. Figure 2 shows the comparison of the
theoretical values with the corresponding experimental data. It is obvious that the theoretical
results have a remarkable correlation with the experimental data. It was not until we employed the
3D-RISM theory that we had this almost perfect agreement with experimental data. In fact, the
conventional RISM theory gave unphysically small, even negative, values of the PMV for peptides
and proteins [63,87,88].

The slight deviation between the theoretical and experimental values can be caused by some dif-
ferent factors. One is concerned with the intramolecular fluctuation of solute (protein) molecules.
A protein molecule fluctuates in solution, and experiment observes the PMV of the fluctuating
protein. On the other hand, this theory calculates the PMV of the protein fixed at the coordinates
obtained from X-ray crystallography. The effect of intramolecular fluctuation on the PMV is di-
scussed in the next section. The difference in the conditions of solution between the theory and
each experiment might also influence the results. In experimental conditions, the solution contains
protein molecules at a finite concentration. Moreover, some cosolvents, such as salt and buffer, are
added to the solution. The theory ignores these effects. However, the effects of the self-association
of protein and the protein-cosolvent interaction are generally insignificant with respect to the whole
amount of the PMV [89]. Of course, some intrinsic imperfection in the potential function as well as
the theory itself can cause the deviation. Nevertheless, our results demonstrate that those effects
are only minor in considering the PMV of proteins.
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Figure 2. Partial molar volume of five representative proteins, bovine pancreatic trypsin inhibitor
(BPTI), bovine pancreatic ribonuclease (RNase) A, hen egg-white lysozyme, bovine milk β-
lactoglobulin A, and bovine pancreatic α-chymotrypsinogen A, calculated by the 3D-RISM/HNC
theory, plotted against the corresponding experimental data. The solid line marks the exact
coincidence.

3.2. Volume decomposition analysis

The PMV of a solute can be decomposed into the geometric volume of the solute itself, the
so-called molecular volume VM, and the changes in the solvent volume caused by immersion of the
solute, the so-called solvation volume ∆Vs [7,90,91]:

V̄ = VM + ∆Vs. (24)

The molecular volume consists of the van der Waals volume VW, which is the sum of the van der
Waals volumes of all the solute constitutive atoms, and the void volume VV, which is the volume of
structural voids within the solvent-inaccessible core of the solute that result from imperfect atomic
packing. The solvation volume also includes two contributions. One is the so-called thermal volume
VT which results from thermally induced molecular fluctuation between the solute and solvent and
is considered as average empty space around the solute due to imperfect packing of solvent. The
other is the change in the solvent volume induced by the intermolecular interaction between the
solute and solvent, which is referred to as the interaction volume VI. There is another contribution,
though it is not explicitly given in the above equation. It is the ideal contribution only from the
translational degrees of freedom of the solute, which is given by kBTχ0

T irrespective of the chemical
properties of the solute. Thus, the volume decomposition is reexpressed by

V̄ = VW + VV + VT + VI + kBTχ0
T . (25)

All the volume terms can be defined and calculated within the framework of the 3D-RISM-KB
theory in combination with the conventional geometric volume calculation [64,67]. The van der
Waals VW is the volume occupied by the atomic spheres. The void volume VV is defined as void
space inside the solute and its surface that the solvent probe cannot access. The two geometric
terms are obtained from the conventional volume calculation [11–13], using the atomic diameters
converted from the LJ parameters employed in the 3D-RISM calculation. In a possible conversion,
the diameter of each atom is set to the distance where the LJ potential energy reaches the thermal
energy kBT . This definition has been found to be reasonable [67]. The thermal volume VT is defined
by V̄0−kBTχ0

T−(VW +VV), where V̄0 is the PMV of a hypothetical molecule whose atomic charges
are completely removed. The interaction volume VI = V̄ − V̄0 is defined as the contribution of the
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electrostatic interaction. The PMVs V̄ and V̄0 are calculated from the 3D-RISM-KB theory. The
ideal term kBTχ0

T is naturally included in the 3D-KB equation (23).

We have applied the volume decomposition to the PMV of several peptides and proteins [67].
The results are shown in figure 3. The ideal term is omitted from the figure because it takes a small
constant value of 1 cm3mol−1 under the thermodynamic condition of ambient water. It is obvious
that the van der Waals volume accounts for the most part of the PMV. The void volume also makes
up a significant part of the PMV. In contrast, the solvation components, especially the interaction
volume, make only a minor contribution to the PMV. However, this result never implies that the
solvation components are insignificant in analyzing the PMV of proteins. When we consider the
volume change upon a protein reaction such as a conformational transition, it is most likely that
the change in the van der Waals volume is negligible unless unusual van der Waals overlaps occur.
In such cases, the solvation effects would become significant. In fact, the thermal volume always
plays an important role in the PMV changes upon protein reactions. Two instances of the kind will
be presented in the following subsections. In addition, further careful analysis showed that there is
a nearly linear relation between the thermal volume and the protein surface area, which is known
as the solvent-accessible surface area (ASA). The interaction volume is also roughly proportional
to the ASA. However, there is a complicated correlation with chemical properties of the functional
groups exposed to aqueous phase.

Figure 3. Volume components in the PMV of eight representative peptides and proteins, (1)
honey bee venom melittin, (2) sea snake venom erabutoxin B, (3) bovine pancreatic trypsin
inhibitor (BPTI), (4) human erythrocyte ubiquitin, (5) bovine pancreatic ribonuclease (RNase)
A, (6) hen egg-white lysozyme, (7) bovine milk β-lactoglobulin A, and (8) bovine pancreatic
α-chymotrypsinogen A, calculated by the 3D-RISM/HNC theory in combination with the geo-
metric calculation.

It should be noted here that if we employ the conventional RISM theory instead of the 3D-
RISM theory, this volume decomposition is not effective in analyzing the PMV. That is because
the RISM theory cannot completely incorporate the contribution of the molecular volume into the
PMV, as described above. Even in that case, the estimation of the interaction volume VI = V̄ − V̄0

is valid, because the molecular volume contributions included in V̄ and V̄0 will be cancelled.

Before closing this subsection, it is worth briefly explaining the relations to other volume con-
tributions generally used. The intrinsic volume defined in the SPT [20] conceptually corresponds to
VW +VV +VT. The solvent-excluded volume, which is defined as the volume of the space where any
center of solvent molecules cannot access [11], contains the molecular volume and the additional
volume on the surface. However, the latter contribution cannot be related directly to any solvent
contribution in this volume decomposition.
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3.3. Volume change upon structural transition of protein

The pressure-induced structural transition of proteins has been continuously attracting the
attention of biochemists and biophysicists [92–94]. As described in Introduction, the molecular
mechanism can be revealed by analyzing the PMV change upon the transition through equation
(3). We have recently applied the 3D-RISM theory to the investigation of the PMV change of a
protein, ubiquitin, associated with a conformational transition induced by pressure [71]. Ubiquitin
is one of the few proteins whose 3D structural data in aqueous solution under high pressure have
been resolved. The low- and high-pressure structures (LPS and HPS) under 3 MPa and 300 MPa,
respectively, were determined by high-pressure NMR technique [95]. The LPS and HPS are shown
in figure 4.

Figure 4. Solid ribbon representation of low-pressure (3 MPa) and high-pressure (300 MPa)
structures of ubiquitin. Each ten superimposed structures included in PDB files 1V80 and 1V81
are displayed. The theoretical values of the partial molar volume change and its components are
also given.

The PMV values of the LPS and HPS calculated by the 3D-RISM/HNC theory were
5788.4 cm3mol−1 and 5741.2 cm3mol−1, respectively, each of which is the average value for the ten
most probable structures from NMR data. The PMV decreases by −47.2 cm3mol−1 accompanying
the pressure-induced structural transition. The theoretical result is in fair agreement with the cor-
responding experimental data, −24 cm3mol−1 [96]. Then, we decomposed the PMV change into the
volume components described above. The changes in the van der Waals, void, thermal, and inter-
action volumes were ∆VW = −3.6 cm3mol−1, ∆VV = −101.3 cm3mol−1, ∆VT = 34.9 cm3mol−1,
and ∆VI = 22.8 cm3mol−1, respectively. The result demonstrates that the total PMV reduction is
primarily caused by the decrease in the void volume, which is partially cancelled by the increases
in the two hydration contributions. The van der Waals volume change is negligible, as the pressure
did not cause any unusual van der Waals overlaps. The volume changes can be related to the
changes in the protein structure as follows. The decrease in the void volume indicates a partial loss
of the structural voids in the protein. The increase in the thermal volume implies the generation of
additional empty space around the protein, primarily due to the extension of the protein surface.

Based on those findings, we concluded that the PMV reduction was caused by the penetration
of water molecules into the protein interior. That is because the water penetration can eliminate
the void space within the protein and at the same time can expand the protein surface. It is
an important point that the former rather than the latter effect governs the total PMV change.
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Further detailed analysis, in which the contributions of the volume changes from some fragments
of the protein were estimated, showed that the total volume changes were primarily determined
by the volume changes of a certain small part of the protein. It follows that the water molecules
penetrated into the particular part of the protein. Actually, the water penetration was confirmed
in terms of the water distribution around the protein, which was also obtained by the 3D-RISM
theory.

In fact, penetration of water into a protein is considered to be a potential candidate for the
driving force of the pressure-induced denaturation (unfolding) of proteins [92,93]. The theoretical
analysis of volume decomposition proved that the water penetration reduces the PMV of a protein.
This implies that the increasing pressure stabilizes the structure swelled by the water penetration,
which would be the denatured structure itself or its precursor.

3.4. Volume change upon ligand binding to protein

The volume decomposition based on the 3D-RISM theory has also been applied to the analysis of
the PMV change accompanying a ligand-protein association, xenon-lysozyme binding [68]. Actually,
that study was performed for elucidating the molecular mechanisms of the pressure reversal of
general anesthesia. The pressure reversal phenomenon is an important feature of general anesthesia
[97–100]. Currently, it is believed that anesthetics interact with specific sites of transmembrane
proteins such as ion channels, which regulate signal transduction [101,102]. It is considered that the
anesthetic-protein binding is a physicochemical or thermodynamic process at the molecular level.
In that case, the pressure reversal of anesthesia should also be explained by the thermodynamic
relation (3); in other words, the question “why and how the anesthetic-protein binding expands
the PMV” should be answered. We chose the xenon-lysozyme binding as a model system because
the xenon binding sites in lysozyme had been resolved by X-ray analysis [103] and xenon is an
actual anesthetic.

Lysozyme has two xenon binding sites: one corresponds to the binding pocket of native ligands
(substrate binding site), the other is located in a cavity inside the protein (internal site) [103], which
are shown in figure 5. Using the 3D structures of the two xenon-lysozyme complexes modelled

Figure 5. Van der Waals surface representation of the structure of xenon-lysozyme complex.
The theoretical values of the partial molar volume changes and its components accompanying
the xenon binding to the two sites are also presented.

on the basis of the NMR structure of lysozyme in aqueous solution and the X-ray structure of
xenon-lysozyme complex [104], we calculated the PMV changes associated with the xenon binding
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to the two binding sites by the 3D-RISM/HNC theory. The PMV changes were 9.5 cm3mol−1

at the substrate binding site and −1.8 cm3mol−1 at the internal site. On the basis of equation
(3), the result implies that the increasing pressure reduces the binding constant of xenon to the
substrate binding site, whereas it has little effect on the binding to the internal site. The former
is in accordance with the pressure reversal phenomenon of anesthesia. To find the factors causing
the PMV changes, we carried out the volume decomposition analysis. The result showed that
∆VV = 23.4 cm3mol−1, ∆VT = −15.7 cm3mol−1, and ∆VI = 3.2 cm3mol−1 for the substrate
binding site, and ∆VV = 19.9 cm3mol−1, ∆VT = −19.1 cm3mol−1, and ∆VI = −1.2 cm3mol−1

for the internal site. For the both cases, the changes in VW were negligible, and the changes in
the ideal term were −1.3 cm3mol−1, which is only the ideal effect due to the association of two
molecules.

The volume changes are characterized by the compensation between the void volume changes
and the thermal volume changes. This is explained as follows. Prior to the binding, xenon as well
as the binding sites are hydrated and have some empty space between them and water molecules,
which is involved in the thermal volume. When xenon binds to the sites, they are dehydrated and the
corresponding thermal volume vanishes; at the same time, some void space between xenon and the
binding sites is created. The cancellation was incomplete and the void volume expansion dominated
at the substrate binding site, whereas the cancellation was almost complete at the internal site.
The result was supported by the changes in the coordination numbers of water molecules at the
sites, which were calculated from the distribution functions of water that were also obtained from
the 3D-RISM theory. In fact, accompanying the xenon binding, one xenon atom expelled two water
molecules from the substrate binding site, whereas it expelled one water molecule from the internal
site. The former result implies that the packing between xenon and the substrate binding site is
looser than that between water and the site. The loose binding is most likely to make additional
void space. In the latter case, xenon fits into the internal site as water does.

It is interesting that the interaction volume did not significantly contribute to the PMV changes.
In fact, some early workers proposed that the PMV expansion upon the anesthetic-protein binding
is mainly due to the release of “freezing” or “electrostricted” water molecules on the protein surface
[98,99]. The effect should be included in the interaction volume change in our volume decomposition
scheme. However, our results demonstrated that the interaction volume changes are not significant
to the PMV change associated with the xenon-lysozyme binding. Our model study argues that the
packing between ligand and protein is of primary importance for considering the PMV change.
The pressure reversal of anesthesia can be caused by loose packing between the anesthetics and
the action site. The phenomenon can be distinguished from tight binding with ordinary ligands
which would not undergo a significant volume change.

3.5. Summary

It has been demonstrated that the 3D-RISM theory can reproduce the experimental data for
the PMV of proteins and its changes as well. Moreover, the volume decomposition analysis provides
a molecular picture of the PMV changes of protein reactions. A change in the PMV is determined
not only by changes in the geometry but also by changes in the solvation. In most cases, the balance
between the changes in the geometric and solvation volumes, especially in the void and thermal
volumes, is the most significant to the total PMV change. In other words, the difference between the
intramolecular packing of solute (protein) and the solute-solvent intermolecular packing can cause
the PMV change. The solute-solvent electrostatic interaction can also contribute to the PMV
change, depending on the reaction process. However, the interaction volume has a complicated
relation to the protein structure, which has not been fully comprehended.
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4. Effects of intramolecular fluctuation on the partial molar volume

4.1. Equilibrium partial molar volume in the conformationa l ensemble

So far we have calculated the PMV of a solute molecule by assuming that the molecule is rigid
and fixed to a single conformation. However, solute molecules should fluctuate in the conformational
space in actual solution. In this section, we consider the effects of the intramolecular fluctuation
on the PMV.

Starting with the equilibrium chemical potential of a solute molecule at infinite dilution, we
derived the equilibrium PMV [53]. It is given by

V̄eq =
〈

V̄ (Φ)
〉

, (26)

where the bracket denotes the conformational ensemble average of a function depending on the
internal coordinate Φ. For example, the conformational ensemble average of a function f(Φ) is
defined by

〈f(Φ)〉 ≡

∫

f(Φ) exp (−β (U(Φ) + µex(Φ))) dΦ
∫

exp (−β (U(Φ) + µex(Φ))) dΦ
, (27)

where U(Φ) is the conformational energy in real gas phase and µex(Φ) is the excess chemical
potential or the solvation free energy. As a result, the equilibrium PMV is expressed simply by the
conformational average of the PMVs of conformers, though the result is actually not trivial.

We can calculate the equilibrium PMV by combining the (3D-)RISM theory with an appropriate
molecular simulation [105–107]. In the hybrid method, various conformers are sampled by the
simulation and the PMV of each conformer is calculated by the (3D-)RISM theory. The solvation
free energy of each conformer, which is necessary in the calculation of equation (27), can be also
obtained from the (3D-)RISM theory [40,108].

The intramolecular fluctuation has only a minor effect on the total quantity of the PMV of
a protein. However, our recent study [65] suggests that the intramolecular fluctuation is signifi-
cant when we consider the PMV change of a protein reaction, because the PMV fluctuation is
comparable in magnitude to the PMV change.

4.2. Equilibrium partial molar compressibility in the conf ormational ensemble

The equilibrium partial molar compressibility (PMC) is generally defined by the pressure deriva-
tive of the equilibrium PMV:

K̄eq ≡ −

(

∂V̄eq

∂p

)

T

, (28)

where we consider the isothermal compressibility rather than the adiabatic one. (PMC takes slightly
different definitions such as −

(

1/V̄eq

) (

∂V̄eq/∂p
)

, depending on the field where it is used.) The
intramolecular fluctuation has a more essential effect on the PMC than on the PMV. If we assume
that a protein alone can be regarded as a thermodynamic system of the NPT ensemble and that
the coupling between the protein and the solvent is negligible, the protein compressibility Kp is
related to the mean square fluctuation of the protein volume Vp [109]:

Kp = β
〈

(δVp)
2
〉

, (29)

where δVp = Vp−〈Vp〉. Under this assumption, the compressibility of a protein with a fixed confor-
mation is zero. Thus, the protein fluctuation is necessary for considering the protein compressibility.
However, the assumption is probably not realized in a real solution system. In what follows, we
consider the actual intramolecular fluctuation effect on the PMC, which should be coupling with
the solvation effect.

From equations (26) and (28), we finally obtained the statistical-mechanical expression of the
PMC [53]:

K̄eq =
〈

K̄(Φ)
〉

+ β
〈

(

δV̄ (Φ)
)2
〉

, (30)
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where K̄(Φ) = −
(

∂V̄ (Φ)/∂p
)

is the PMC of the conformer fixed to an internal coordinate Φ.
The first term results from perturbation of the solvation structure by the pressure, which causes
a change in the PMV of each fixed conformer. The second term is the mean square fluctuation of
the PMV, which also includes the solvation effect, unlike the protein volume in equation (29).

Just like the PMV (equation (24)), the PMC can be decomposed into the molecular (or intrinsic)
KM and the solvation ∆Ks terms [8,110,111]:

K̄eq = KM + ∆Ks. (31)

By substituting equation (24) into equation (30), we obtain explicit expressions of the two terms
using the molecular volume VM and the solvation volume ∆Vs:

KM = β
〈

(δVM(Φ))
2
〉

, (32)

∆Ks = β
〈

(δ∆Vs(Φ))
2
〉

+ 2β 〈δVM(Φ)δ∆Vs(Φ)〉 −

〈

∂∆Vs(Φ)

∂p

〉

, (33)

where the reasonable assumption that the molecular volume does not depend on the pressure is
adopted. The molecular compressibility is the mean square fluctuation of the molecular volume,
which corresponds to equation (29). This is contributed exclusively due to the fluctuation of the
void volume, since the van der Waals volume takes an almost constant value regardless of the con-
formation. The solvation compressibility consists of three terms. The first term is the contribution
of the mean square fluctuation of the solvation volume. The second one is not a pure contribution
from the solvation, but is the coupling term of the molecular volume fluctuation and the solvation
volume fluctuation. The last one is the effect of the solvation structure change by the pressure. (It
implicitly includes the ideal contribution: −kBT

(

∂χ0
T/∂p

)

.)
The experimentally observed values of the equilibrium PMC of proteins, which were converted

from adiabatic to isothermal [8], are commonly positive. The molecular compressibility is neces-
sarily positive by its definition. On the other hand, the solvation compressibility is generally con-
sidered to be negative from empirical viewpoint [110,111]. Since the first term should be positive,
the negative contribution comes from the second or third term or both. The negative correlation
between the void volume and the thermal volume [65] implies a negative contribution of the sec-
ond term. The third term can also contribute negatively. In fact, the PMC values for small polar
organic compounds such as amino acids, for which it can be assumed that the fluctuation effects
are negligible, are negative [112,113].

The molecular compressibility of proteins has been investigated by molecular simulation [114–
122]. (In some of those studies, other geometric volumes such as the solvent-excluded volume and
the Voronoi volume were used instead of the molecular volume.) However, a complete evaluation
of the solvation compressibility has not been carried out so far. The hybrid approach of the (3D-
)RISM theory and molecular simulation described above enables us to calculate the equilibrium
PMC and to determine the molecular and solvation compressibility terms. Work in this direction
is in progress.

5. Concluding remarks

The PMV is a thermodynamic rather than a geometric quantity. Although the geometric volume
contributions are dominant in the total quantity of the PMV of large molecules such as proteins, the
solvation has substantial effects on the PMV changes associated with chemical reactions, including
structural transition of protein and ligand-protein binding. When we employ a theory in order
to analyze a PMV change, the theory should be capable of describing the solvation effects. As
introduced above, the RISM theory, especially its 3D generalization version, is currently the most
promising method of investigating the PMV for various molecular systems, including biomolecular
systems. In the theory, the solvation effects are naturally included in the PMV because it is directly
calculated from the correlation functions between the solute and solvent, or the distribution of
solvent around the solute, obtained by the theory. It is noteworthy that the 3D-RISM theory
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is capable of reproducing the water molecules isolated and confined in the protein interior as
well as the ordinary hydration [123,124]. The finding means that the theory successfully takes
into consideration the effects from each individual solvent molecule into the PMV. Thus, the 3D-
RISM theory has a great advantage over other conventional methods in investigating the PMV of
complicated biomolecules.
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Молекулярна теорiя парцiального молярного об’єму i її
застосування до бiомолекулярних систем

T.Iмаi

Факультет бiологiї та бiоiнформатики, унiверситет Рiцумейкан, Кусацу, Японiя

Отримано 3 травня 2007, в остаточному виглядi – 8 червня 2007

Парцiальний молярний об’єм (PMV) є термодинамiчною величиною, яка мiстить важливу iнформа-
цiю про взаємодiї розчинена речовина-розчинник, а також про структуру розчиненої речовини в

розчинi. Крiм того, PMV є найбiльш суттєвою величиною при аналiзi впливу тиску на перебiг хiмiчної

реакцiї. Ця стаття мiстить огляд сучасного стану молекулярних теорiй PMV, зокрема, молекулярної

теорiї базисної моделi взаємодiючих центрiв (RISM) i її тривимiрного узагальнення (3D-RISM), якi,
для обчислення PMV, є об’єднанi з теорiєю Кiрквуда-Баффа для розчинiв. Тут також представленi
застосування теорiї для ряду випадкiв, що стосуються PMV бiомолекул. Ми також коротко обгово-
рюємо вплив мiжмолекулярних флуктуацiй на PMV, який є важливими для бiомакромолекул.

Ключовi слова: парцiальний молярний об’єм, вплив тиску, бiомолекулярний розчин, теорiя
Кiрквуда-Баффа, теорiя RISM

PACS: 05.20.Jj, 05.70.Ce, 62.50.+p, 65.20.+w, 82.60.Lf, 87.15.Aa
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