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A new diagram technique based on the generalized Wick theorem has
been elaborated for the systems with strong electronic correlations. Co-
ulomb repulsion of the electrons of the Hubbard model is considered as
the main part of Hamiltonian and is taken into account in a zero order ap-
proximation. The hopping matrix elements are considered as a perturba-
tion. One-particle Matsubara-Green function of the model has been investi-
gated and Dyson equation has been obtained. New elements of the theory
which are characteristic of this new approach are the local many-particle
irreducible Green functions, or Kubo cumulants. They become zero when
Coulomb interaction is zero. The main task of this paper is the summing
of ladder diagrams which take into account the most essential charge and
spin fluctuations of the system. The integral equations, which sum such di-
agrams, have been established for two different channels. The coherent po-
tential approximation has been used to simplify and solve these equations.
On this basis a metal-dielectric phase transition has been investigated.
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1. Introduction

In the previous papers [1-5] a new diagram technique for the systems with
strong electron correlations was elaborated. Such systems contain as the main part
of their Hamiltonian on-site Coulomb repulsion of electrons. This interaction has
to be taken into account in the zero order Hamiltonian of such systems. The other
terms of the Hamiltonian, such as the hopping matrix elements of the Hubbard
model [6] or hybridization of electron states of the periodic Anderson model [7]
are treated as perturbations.

Because the zero order Hamiltonian which contains the above mentioned Cou-
lomb interaction can be diagonalized by using the Hubbard and not a free electron
operators, the ordinary Wick theorem proposed in the weak coupling field theory
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for disentangling chronological averages of an electron operator is not valid. Instead
of a weak coupling, the Generalized Wick Theorem (GWT) has been proposed for
the first time for a one-band Hubbard model with the Hamiltonian

H=H" + Hipe, HO° — ZHZO, HZO = —Man—l—UniTnu,

Hipg = Y t(j = 1) ¢fyCio  Mio = €y Cio, (1)
ijo

where cjg(cj(,) are an electron creation (annihilation) operator with spin o and site
index j. Here U is Coulomb repulsion of an electron, p - a chemical potential of
the system and ¢(j — i) - a matrix element of hopping.

As the zero order density matrix is factorized on the site indices, all the calcu-
lations of the thermodynamic perturbation theory contributions are made in the
local presentation. The sum of such contributions gives us the effect of delocaliza-
tion and renormalization of the dynamical functions.

The new elements of the GWT are one-site many-particle irreducible Green
functions G%O)" or Kubo cumulants. These quantities contain all spin and charge
fluctuations of a strong correlated system. They are identically equal to zero when
Coulomb interaction is zero.

The next simple example can be useful to elucidate this question. We apply
the GWT to the following chronological average:

(Te(x1)c(ze)e(xs)e(za))o = (Te(r1)e(za))o(Te(r2)e(z3))0—

—(Te(w1)e(xs))o(Te(w2)e(wa))o + G [w12a]w324) . (2)

Here x stands for x, o, 7.

All the quantities of the right-hand side of this equation are local. The zero
order or the local approximation of the Matsubara one-particle Green function is
equal to

G (2122) = —(Te(21)2(22))0 = Gy 2, Gy (11 — T2)

0102

Gg'01)0'2 (1 = m2) = —(T'co, (11)C0, (72))o,

where c¢(7) and ¢(7) are interaction presentations of electron operators and 7 —

imaginary time of thermodynamic Green functions. Symbol (...)o stands for the

statistical average with a zero order density matrix. A two-particle irreducible
. 0)ir . T

Green function G5 is a local quantity:

GgO)ir [xlv I2|I3£U4] = 59019025901903 5901964Gg))ir [017 T1502T2 |U37 T35 04, T4] (3)
with the structure of Kubo cumulant:
GV (01, 71502, Tol 03, 733 04, Ta] = (T, (T1)Cor (T2)C (73)ory (T2) Yo

—(T'co, (11)Co, (T4) )0 (T Co (T2)Coy (73) )0 + (T'Coy (T1)Co3 (73))0(T'Coy (T2)C0, (T4) )0 (4)
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This quantity is just a new element of the GW'T because the first two terms of the
right-hand side of equation (2) are the ordinary Wick theorem contributions. The
signs of these terms, and in general of all of them, are determined by the number
of permutation P which is necessary to obtain the final from the initial order of
electron operators. The Hubbard operators appear only at the last stage of such
an investigation — when the local quantities are calculated.

In the Generalized Wick theorem for Hubbard operators X", used in papers
[8-10], the electrons operators are expressed with their aid at the initial stage of the
investigation. Because the Hubbard operators have a more complicated algebraical
structure, the diagram technique for them is more complicated.

Now we shall consider our approach. In the higher orders of the perturbation
theory there appear more complicated irreducible structures. For example, irre-
ducible functions G\ with the number of particles n = 3,4... will appear. Then,
different products of irreducible functions GQ"GQ"Gg” will be obtained, where
the sum my + msy + m3 = n is equal to the number of particles that participate in
the process of delocalization.

We can formulate the GWT in the following form:

GOzy...xn|2)...x)) = (=1)"(Te(xy)...c(zn)E(z))..E(2)))o =
> (=1)PE (@|7))...GOaal)) + D (1) Y GO [y, |2, X

P P m1>1,mg>1,
{ } { } mi+mo+...=n

X G 41 Ty a1 T )+ OO ol (5)
. - _ — In (5) we mean that G\"" (z;]z}) =
Gx|x)s —— = —¢— + GO (z;]2%).

a) The first term of the right-hand side
I SR N B of (5) is of a usual Wick kind, but
b) all the next ones are characteristic of

P S . 2 _ 2 e X strongly correlated systems.
c) The diagrammatic rules for writing
T 9 down the contributions of the pertur-
; ; bation theory series have been formu-
1 (e dl2 .. lated in [1-2]. One-particle Green func-

x | e | i tion GO (z,|2}) is represented by a thin
solid line directed from ) to x; and the

d) .
local quantity
Figure 1. Diagrams of the first two or- GV x| @, 2] — by a rectan-
ders of the perturbation theory for one- |  gle which surrounds n arrows directed

particle Green-function. Diagram a) is of to n points z1...z, and n arrows origi-
the zero order, b) of the first and ¢) and | 1 0ted from ..

d) of the second order contributions. a), In these diagrgms the hopping ma-
b) and c) diagrams are of a chain type

3 = trix elements are represented by thin
and d) of a new kind, containing the first d . .

(0)ir ashed lines, the delocalized electron
Kubo cumulant G5 .

Green function — by a full solid line.
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In figure 1 the one-particle Green function’s diagrams of the first two pertur-
bation theory orders is represented:

The sign of the diagram 1d) corresponds to the enumeration of rectangle ar-
guments G3" [#12'2].

We can see from the first three diagrams of figure 1 that the chain iterative
process leads to the ordinary Dyson equation with hopping matrix element ¢(1'—1)
as a self-energy.

But new diagrams containing charge and spin fluctuations give rise to an ad-
ditional renormalization process resulting in the necessity to introduce a new ir-
reducible strongly linked function Z(z|z’) in the theory. This function is the sum
of all irreducible contributions which cannot be broken into two parts by cutting
a single hopping line.

In the second order of the perturbation theory the diagram of figure 1 d) is a
contribution to this function Z®(z|z").

In paper [1] it was proved that by introducing function A(z|z') (z ==, 0,7)

A(z]z") = GO (z|2)) + Z(z|2") (6)

we get the Dyson equation for the renormalized one-particle Green function G(z|z")
of the Hubbard model:

Glrlz') = Azle’) + Y Aalen)t(@r — 22)G(a2a), (7)
T1,2T2

where t(x1 — x9) = t(x1 — €2)0,0,0(T1 — 72) and summations stand for summing
by discrete indices and integration by imaginary time.

In the Fourier representation we have

A, (kliw) (8)
1= &(k) Ay (Kliw)
Here k is the momentum of an electron, w, = (2n + 1)7/f — Matsubara odd fre-
quency and £(k)— Fourier component of the hopping matrix element and electron
band energy.

Equation (8), in distinction from (7), supposes diagonality by spin indices of
all the quantities. If we sum only chain diagrams, without taking into account
correlation contributions, we obtain the so-called Hubbard I approximation:

GV (iw)
1— £(k)GY (iw)’

G, (k|iw) =

GL(k|iw) =

(9)

where G (iw) is the local Hubbard-Green function of an electron. As it is well
known, the energy spectrum in this approximation consists of two lower and upper
Hubbard subbands.

The complicacy of irreducible contributions to one-particle Green function
makes impossible the obtaining of the exact result of a Dyson-type for Z(z|z’)
function. There are some possibilities to sum a class of irreducible diagrams which
contain the most important information about the role of spin and charge fluctu-
ations.
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2. Ladder diagrams

The task of this paper is to demonstrate the possibility to sum a special class
of irreducible diagrams which take into account two-particle correlation effects.

In figure 2 we demonstrate some diagrams for Z(x|z') function which are es-
sentially for strong correlated systems and will be summed.

- O,

e -

1FE— T 1 2 2 a1
2(xx)=- | €| (L | eqmmmpee &
- | TT | eafmmabe
% X' X 3 3 x'
a) b:l
SN NN BN NN NN BN NN NN BN BN BN BN BN N BN BN BN BN,
1 2 2 & 4 S 1
1 | edmmmdee godaaatee &l
T4 | gapmmmb gobmmmbe e
X 3 3 5 5 X'
c)
iy SN NN NN NN NN NN NN NN NN NN BN BN BN BN BN BN BN BN BN AN ANy,
7 £ 1 1 4 4 22
+ = Mammmty Mdmmmre e Foeee
- frtmmmfre eelmmmbie
X 3 3 5 5 3

d)

Figure 2. Ladder diagrams for irreducible Z(z|z') function. They repeat the
infinite number of times the irreducible two-particle Green functions. The dashed
lines represent renormalized hopping matrix elements. The rectangles in these
diagrams stand for two-particle irreducible Green functions Ggo)zr.

The renormalized hopping matrix element (x —z') is the result of the summing
of some elements of diagrams and are determined by the equation:

o' —2)=t(a —a2)+ Y ta' —21)G(mi]w)t(xy — ), (10)

T1,T2

Fourier representation &, (k|w) of quantity #(z" — z) is equal to

. 2 . §(k)
£J(k|2wn) - f(k) +€ (k)GJ<k|an) - 1 — f(kﬂ)AJ<k|’lwn)’ (11)
where £(k) is a tight-binding dispersion law of non-interacting electrons.

For some of the diagrams in figure 2, especially for the diagram in figure 2a,
the renormalization process is very important because this diagram with the un-
renormalized hopping line is equal to zero, noting that ¢(z' = x) = 0. The other
diagrams in figure 2 are delocalized (& # x') and their contributions are not zero
when single dashed lines are used.

27



V.A.Moskalenko, L.Z.Kon

In figure 2 we have two different kinds of ladder diagrams. One of them rep-
resented by diagrams a), b),c) and the next diagrams of the higher order of the
perturbation theory are repetitions of the process of scattering two electrons with
the conservation of their sum of moments and frequencies.

The second ladder shown by the diagram in figure 2d and the next diagrams
represent the process of repeated electron-hole scattering with the conservation of
their differences of momenta and frequencies.

In the weak coupling theory of the solid state such a summation is known very
well and is the realization of the Random Phase Approximation.

The difference between the classical RPA and our ladder generalized RPA
consists in the instant in the first case and the retarded in the second case character
of electron scattering, which in our case is determined by four imaginary times
of irreducible two-particles Green functions represented in the diagrams by the
rectangles.

To sum the first class of ladder diagrams of figure 2 for Z(z|z') function we
shall investigate a more simple process of delocalization of two-particle irreducible
Green functions represented in figure 3. This renormalized function is determined
as G

The graphical integral equation (figure 3b) for the delocalized irreducible Green
function GY [z1,2|z5 x;] has the form:

i ir 1 ir N
GY [, xo|xy, 2] = Ggo) (1, xo|2y, 2] + 3 Z Ggo) [21,22]1,2]
11'22'
xt(1' = 1)t(2 - 2)GT (2, 1|y, z,). (12)

Here x; stands, as usual, for @,,01,74; 1— for 1, aq,6;.
The sum ) stands for the summing by lattice sites 1, spin «; and integration

1
by imaginary time 6, in the (0, ) interval. The site dependence of the renormalized
GY function is partially diagonal, as it can be seen from figure 3a:

GY (w1, mo|2h, 2] = 5w17w25w37w/2G§r[w1 — & o171 027'2|0'/27'2/; 0/17'1/]. (13)

The delocalized irreductible Green function, which depends on relative lattice
sites, obeys the equation:

ir /. . /SR (0)ir . SR
Gy lx1 — @3 01715 09me| 0y Ty; 07| = 59;193/1G2 01715 0972|0975 01 T+

B B
1

—|—§/.../d91d92d9/1d9/2ZZGgo)ir[a'ﬁ'l;0'2T2|0419/170429/2]X

0 0 ajae 1
X?C”(.’El — 1|9/1 — 91)ta2<.’131 — 1|9l2 — 92)G22r[1 — .’Ell;Oé2,92;0é191|0';,7'é;0'1,7'{]. (14)

To advance the solution of this equation we introduce the momentum and fre-
quency representation of our functions:

Golo171; 09me|0hy; 0 T]] =
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1 : : L4 / L4 /
=5 Z Ga o1, iwy; 09, iws |0, twh; 0, fw] Je WIT w2 W T Ty
wlwng/wlr
—ik(z—z')—iw(T—7")
Z @l = g5 ZZZW (Kliw)e ). (15)
That permits us to rewrite equation (14) in the form:
Xy X% Xy
Gir ¥ ,x x.,x. = .e &. = .e é‘ +
2[ 1 2| 2 1] = - e -
X, X, X, X,
X, T 1 X,
+1_ .e é‘l ---ll.e &.
+
2 .e &. - —- -.& 9
X, 2 2 X4
X, 1T 1 3 3 X,
+1_ wE— et - o e + . .
4 [ gepmmmpet gabmmmb- ’
%4 2 2 4 4 X,
a)
Xy NooX Xy
- _ ol +
S N
X, X, X, X,
X, T 1 X},
’e 9 k- I.e &.
X, 2 2 Xy
b)

Figure 3. Ladder diagrams (figure 3a) for the delocalized two-particle irreducible
Green function G¥ and the graphical integral equation (figure 3b) for their sum-
ming. The rectangles with full lines stand for delocalized and with thin lines —
for localized irreducible functions.

r (0)ir S . I e
2q[al,zwl,ag,zw2|02,zw2,al,zwl] Gy " o1, iwr; 09, tws |0y, iws; o, iw; |+

1 G(O ir
2ﬁ2 § E [01,%01,02,2w2|a1,2w1,a2,zw2]x
12 12

Q102 W7 Wy
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X & g1, iwy; g, iwl] ’;q [va, 1wy i, iw] |0y, twy; 07, 1w ], (16)
where
Ea,glan, Wy, ag, iwy] = me (q:1]iwy) Ea, (@ — qyin?) - (17)

All the irreducible functions demonstrate spin and frequency conservation accord-
ing to the fact that the total spin and frequency of the annihilated electrons are
equal to those of the created electrons:

G (o iwn; 0o iwn| o3 itws; 04 iwa] = BO(wn + wa — ws — wa) X

GV [y, iwr; 02, iws |05, iws; 04, Wil = Goyos00ses [K1[01, iwr; 02, iws|or, iws; 02, iwa]+
326 (w1 + wa — wy — wa)d (w1 — wz) GO (iw1) GO (iwn)] + Gy Forgery X
[K3|oiws; ogiws|ogiws; 011w, — 525(w1 + wy — w3 — wy)o (w1 — wg) X

ét(fol) (iwl)é((fog) (iwz)] — 010300y, —0, 00y —a3 K3 [01, iwr; =01, iwa|03, iws; —03,wy] . (18)

The functions Kj;, i = 1,2,3, are the contributions of different spin channels
from the two-particle on-site Green function, while the bilinear on G (iw) terms
are the substracted from Kubo cumulant members. All the K; functions are pro-
portional to the factor $d(w; + ws — w3 — wy) which expresses the frequencies
conservation law. Some values of these K; functions may be found in [1]. These
laws of conservation are also valid for the renormalized GY quantity.

To take into account the frequency conservation law we go from G to Gir
functions and define new frequencies using the even quantity Q = 2mn /3

[0’ 2(w—l—Q) 01,1 ( —Ql)|02,iw1;a’,iw] =
= G2 "oy i(w + Q); 01,0 (wr — Q)|og, iwr; oy iw] +
Z G(O " [U Z<M+Q) 01,1 (wl )|a17i(w1 _Ql);a%i(w—i_Ql)] (19)

91041042
X q 0, i(wr — Q); g, i(w + Q)]

Xég;q [Oég,i(td + Ql); aq, (w1 — Ql)|02,iw1; a’,iw] .

Using the definition of renormalized G¥ function we can write down the contribu-
tion of the first class of the ladder diagrams in figure 2 to the function Z(x|z’) in
the form:

7N (z]2) = ZG" [z, x|}, 2| t(2) — 1)

xlxl

On the basis of (13) and (18) this equation may be rewritten as

Zio_/ (x—a|r—7)=-= > fdeldT{G’{ [ — x';0r1, 0111|0715 0'T]
01,0
Xtoro (T — 2,7 — T1) = —% Y. toe(x —x;iwn) (20)

/ /
01,0,W,w",w1

. . . . . s sl
XGY [x — ', 0,iw; o1, iwi| o], iw; o iw] e @TTT
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or

Zl(qliw) = ——= Z Gr 1y [0, 1W; 01, Wi |01, Twy, 0, 1w] * &Gy (k1 — qliwr). (21)

k1w101

According to equation (21), to find Z! we need a more simple modification of
renormalized G¥ function with equality in pairs of frequencies and spins. But it is
necessary, at the beginning, to find this function for a more general case and then
to put a specific condition 2 = 0 in it.

Now we take into account that the spin of the propagating electron is conserved
o = o' (no magnetic fields and magnetic structures), and so is the conservation
law of the spin in all the intermediate scattering processes. Then we have oy = 0
and 0 + 01 = a1 + as. Because o7 can be equal to o, we shall consider these two
possibilities separately. In the first case 0y = 0 we have a; = as = ¢ and equation
(19) in a more simple form:

Gl [0, i(w + ), 0, i(wn — Q)0 iwn; 0, iw)] =
= GV (o, i(w+ Q); 0, i(w — Q)|o, iws, 7, iw]
+3 Qng”“‘ [0, i(w + Q); 0, i(w — Q)]o,i(wy — Q) 0yi(w + Q)] (22)

_ x&gqloi(wr — )0 i(w + )]
XGY o, i(w + Q) 0, i(wr — Q)0 iws; 0, iw].

But in the second case 0; = —o,we have two possibilities to select a; = —ay = 0
and equation (19) takes the form:

Gy o, i(w + Q); =0y i(wn — Q)] = 0, iwn; 0, iw] =
= GO [0,i(w + Q), =0, i(w1 — Q)| — 7, w0, iw] +
+% QZGgo)zr [0, i(w + Q); —0,i(w — Q)|o,i(w — Q)5 —0,i(w + 1))
_ ngq[O' i(w1 —Ql),—a,i(w—l—Ql)] (23)
xGY (=0 i(w+ M);0,i(w — Q)| — 0,iw; 0, iw] +
+35 QZGgo "o i(w + Q); —0,i(wr — Q)| — 0, i(wy — Q1); 0,0 (w + Q)]

_ X&a,q (=0, i(w1 — D), 0,i(w + Q)]
xG’éfq [o,i(w~+ Q); —0,i(wr — )| — 0, iwr; 0, iw] .

In the second term of the right-hand side of equation (23) we can make the fol-
lowing substitution of €; by variable Q; = w; — w — Qf and take into account
the antisymmetric properties of local and delocalized irreducible Green functions
according to the permutation of their arguments. The result is the equality of the
last two terms of (23). We can use only one of them multiplying by the coefficient
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two. We have

~227;q [U7i(w + Q)? _U7i(w1 - Q)| - 0, iwl; g, ’ltd] =
= GO [0,i(w + Q); —0, i(w) — Q)| — 7, iw0, iw] +
+L G [oyi(w + Q) 0w — Q)] = oyilwr — Q) i(w + Q)] (24)
Q1

_ X&a,q [0, i(w1 — Q)5 0,i(w + Q1))
xG’éfq [0,i(w+ ); —0,i(w — )| — 0, iw; 0,1w)] .

To solve equations (22) and (24) it is necessary to know two kernels of these
integral equations, namely, G3" [o,i(w +); 0, i(w) — Q)|, i(wi — Q) 0, i (w + Q)]
and GV [0, i(w + Q), —0, i(w) — Q)| — oi(wi — Q), 7i(w + Q)] which were studied
in papers [1-2] and will be discussed below.

To find the second contribution to the irreducible function Z(z|z") we have to
analyse diagrams d) in figure 2 and the analogous diagrams of the higher order of
the perturbation theory (see figure 4).The infinite series of such kind of diagrams
belong to the new renormalized and delocalized function HY" [z1xa|zo]].

All such diagrams have a coefficient equal to one. The sign of the diagrams
corresponds to a special order of arguments of all the irreducible functions. It
must be of a clockwise order if we begin to count from the lower left corner of the
rectangle or counter-clockwise if the count begins from the lower right corner of
the rectangle. The function HY has partial local properties

H [w1, 2|2, 2] = 0y a0y o HY' [1 — @3 017100, |0, 73507, 7] (25)

This new function, which depends on the relative arguments x; — x/, obeys the
integral equation (see figure 4b):

i /. R RSS2 (0)ir . A A
Hy [z — @501, 71505, Ty|oo, To; 0171 = =05, 2 Gy ' (01, T15 02, Ta|oy, To5 01, 7] +
0)
+ E E / /d91d92d9/d9/G( o [0’1,7’1,0[191|0’2T20429/]
1 ajas

Xta1<1 .’B1|9 — 91) OQ(.’Bl 1|9 — 92)
x Hir [1 — & an, 0000, 0 |09, T3 0%, T |- (26)

Using the Fourier representation we obtain

(©ir

+52 Z Z Z 52 q [ah Zwl ; A2, %UQ] G(O ”’ [017 Zwl? ay, Zwl |027 Zw27 Q, ng]
w] Wi arag

Hir | al,zwl,02,zw2|02,zw2,01,w1]
Gy

[01, 1wy ; 09, twa|ah, iwh; o, iw]] +

(27)
XHZq [ova, iwys oy, iwy |09, twa; 0], iw]]

Here we suppose diagonality by spin indices of the renormalized hopping elements
and an even symmetry of tight-binding electron energy {(k) = £(—k).
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X, X, % X,
ir . . e I e e
X, %%, %] = = +
Hz[ 1 2| 2 1] —e— N - €
x1 x1 JC1 x1
xz 1 1 xz
+ — T - —e +
.e &. = -- -.& 9
%, 2 2 X
xz 1 1 3 3 xz
+ — S o - —»en - —e + . .
.& 9 TEr -.e &. TEr Il& é. ’
Xy 2 2 4 4 X4
a)
X, X, % %2
S R T
w— | T e <
x1 x1 x1 Jc1
X, 1 1 X,
.& 9 = -- I.e &.
X, 2 2 X3
b)

Figure 4. The summation of the second class of ladder diagrams. a) Infinite series
of diagrams for the renormalized HS" function. b) Graphical integral equation for
the renormalized Hi™ function.

Now we shall take into account the law of frequency conservation both for the

local and delocalized irreducible functions. The latter have the property
HY' o, iwn; 0, iw)|oa, dws; 0 iw)] = BO(wr + way — wh — w))

Xﬁgfq [0'1, z’wl; O’é, z’w§|02, iwg; O’ij(u)l + wo — wﬂ . (28)

Then we use in (27) and (28) new frequencies which obey the law:

" / 1

Wy =wo + Q, wy =w; — . (29)
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Here Q and €2 are even Matsubara frequencies. On the basis of equations (27)-(29)
we obtain:

f[ﬁr [0, iw; 01, (w1 + Q)]0 iwr; 0’ i(w — Q)] =
_o@r

5 oy iw;oq,iwr o], i(wr + Q)0 i(w — Q)] +
+1 3 GY [oyiwsani(w + Q1+ Q) i(wn + Q)sas,iw+ Q)] (30)

Q1,a1,02

" sz—q [ahi(wl +Ql +Q),&2,Z(M+Ql)]
XH%Z [Oég,i(td + Ql), al,i(w + Q1 + Q)|0’1,iw1; 0/,i<w — Q)] .

The law of spin conservation is fulfilled here in the form o + o1 = o' + o}
and o + a; = o] + as. If we are interested in the case ¢/ = o, then we have to
discuss only the equalities 0] = 0y and 0 + oy = 01 + as. As a consequence, when
01 = 0 wehave oy = ay = £0, but when 0; = —¢ we have a; = —ay = —0.

The corresponding integral equations are the following:

Tl o 01+ ) = s o — V)] =
_Ggo)" 0, iw; —0,iwi| — 0,i(w1 + Q);0,i(w — Q)] +
+E G (o iw; — oy i(wn — D + Q)| = 0w + Q)0 i(w — )] (31)
Q1
N X& g [0, i(w1 — Q1 +Q);0,i(w — Q)]
x Hir [0,i(w — ); —0,i(wn — Qu + Q)| — 0 itn; 0, i(w — Q)]

and

f[gfq [0,iw;0,i(w) + Q)]o,iw;0,i(w — Q)] =
—égo)" [0, iw; 0, iw; |0, i(wr + Q),0,i(w — Q)] +
+%%:59"hnwxmﬂwy+91+Qﬂ@ﬂwy+9ﬁ@ﬂw+{hﬂ
1 X&o_qlo,i(wr + Q1 + Q);0,i(w + )]
< HY [0,i(w + ), 0,i(wn + Q1 + Q)|o, iwn, 0, i(w — Q)] +
+3 Qz GV [0, iw; —0, i(w1 + Q4 + Q)| i(wr + Q); —a, i(w + Q)]

_ X£27_q [—U,i<w1 +Ql +Q)7_J7Z<M+Ql)]
ngfq [—0,i(w+ Q1); —0,i(wr + Q% + Q)|o, iw;0,i(w — Q)] .

In distinction from (31) equation (32) is not closed because a new function
with quite different spin indices appears in the right-hand side of it.

34



Diagram technique for the Hubbard model

Returning to equation (30), we can find the lacking equation:
flgf’? [~ 0, iw; =0, i(wi + Q)|o, iwr; 0, i(w — Q)] =
O iw; oiwy | — o, i (w1 + Q); 0, i(w — Q)]
IS G =0 iw; o, i(w + D+ Q)| — 0w + Q)0 i(w + )]

B X&o_qlo,i(wr + Q1 + Q);0,i(w + )]
XH;T[I [U7i(w + Ql)7 0-7i<w1 + Ql + Q)|0', ’iwl; a,i(w — Q)]
_% QZG&O)”, [_07 Zw? _0-7,i(w1 + Ql + Q)| - U,i(wl + Q), —U7Z(w + Ql)]

(33)

_ X£27_q [—U,i<w1 +Ql +Q)7_J7Z<M+Ql)]
ngfq [—0,i(w + Q1); —0,i(wr + Q% + Q)|o, iw;0,i(w — Q)]

Equation (32) and (33) have to be solved together, while (31) — separately. To
do that, it is necessary to know the kernels of these equations which are localized
irreducible two-particle Green functions.

In a special case of half-filling, when the number of electrons is equal to the
lattice sites number, the chemical potential of the system pu is equal to % and,
supposing the independence of the on-site electron energy of a spin index, we have

[1] the following values for such irreducible functions:

GéO)ir (07 ZCUl) g, iw2|0-7 Zwv?)? g, ZCU4) = 5(&]1 w2 — Wi — w4))

[0(w1 — wi) — 0(w1 — w3)]
(Wi + p?)(wi + p?)

x f2” (34)

Ggo)" [0, iw1; =0, iws| — 0,iws; 0, iwy)] = Bud(wr + wy — w3 — wy)

«{ Bud(wy — wy)(1 — ) B 21130 (w1 — ws)ePr
(e + 1) (wi + p2) (Wi +p?) (P + 1)(wi + p?) (w3 + 12)
2uB6 (w1 + wo)
(wf + p2)(wi + p2) (e + 1)
| 2 [wiwawawy — P (WF + Wi + Wi + wiws — wWawz — wiws) — 3/~L4]} (35)
(Wi + p2) (w3 + p2) (w3 + p?) (Wi + )
G [0, iwn; — 0, i o, iws; — 0, iw] = Bud(wr + ws — ws — wy)

{ Bud(wy — ws)(eP* —1) 2113515 (w1 — wy)

T+ T+ T @4 D) W+ )+ )P D)
2036 (w1 + wo)
(wi + ) (@i + p?) (e + 1)
2 [wiwowswy — P (w? + wi + w3 + wiws — Wiws — wows) — 3]
2 2\ (12 2\(,,2 2\ (12 2 1 (36)
(Wi + p?) (w3 + p?)(w5 + p2) (wi + p?)

The corresponding functions with a simultaneous change of all the spin indices to

the opposite value are supposed to be identically equal to the initial ones because
of the independence of electron energies of a spin index.
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Really, to find contribution Z!/(x|2’) of these ladder diagrams to function
Z(x|z") we have to extract some superfluous diagrams and, therefore, to deter-
mine a new function:

Hy w1, ahlws, @] = HY a1, ab|wa, 2] + Gy [o1, wala, 2]
+ 5 G (a1, 21 G 2t ] 42 -2 e —1). B7)
11722
The contribution of the second kind of the ladder diagrams to irreducible function
Z(x|x") is
21 (w1|w) = Yty — o) Ha(wn, whlwa, 7). (38)

$2$%

The contribution of the both kinds of the ladder diagrams to the Z(z|z’) function
is

Z (1)) = Z" (21|2)] + Z" [ ]2}]. (39)
There are also more complicated diagrams that must be taken into account to
obtain a more correct value of this function.

3. The coherent potential theory

In the given section attention is paid to the solution of the equation for one-
particle Green function in the coherent potential approximation. A special case of
half-filling, when the number of electrons is equal to the lattice sites number, is
considered. The following approach is taken into account: the renormalized quan-
tity G¥ is determined only by equation (22).

Applying expression (34) to the localized irreducible two-particle Green func-
tion, equation (22) can be solved and we obtain

a (iw;iw) (1 — 6 (w —w1))

40
1 —a(iw,iw) €24 [0, iw; 0, iw]’ (40)

~227;1 [07 Zw? g, iwl |J7 Zwl) g, Zw] = /B

where )
1

(W + p?) (@f + p2)
On the basis of expressions (6), (21) and (40) function A, (g|w) in this approxi-
mation can be found as

a (iw,iw) =

AJ <q|2w) = j_wﬂ 4 Z Z 50 kl q|iw1) ﬁ(l - 5(&] - wl)) . (41)

1 —a(iw,iw) &k, [0, iw; 0, iw:]

In order to solve equation (41), the coherent potential approximation is used.
[11]. After analytical continuation (iw — E ) we obtain the following equation:

E T,(E)a(B, E)

A; (O|E) = p?—E2 1 —-T2(E)a(E,E)

(42)
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Here

_ 1 ¢(g)
T8 = 5 2 T a0y 9

It is convenient to determine function g(F) as

o) = LoV XE) (44)

where

A (O|EYW = 2X,(E),
M(E) = A (B) = AE).
W is the width of the band energy. Then,

T,(B) = “ro(B) (¢*(B) + 1) ME) =

and equation (42) may be rewritten as

29(E)[L — pa(E, E)(¢*(E) +1)°/(40?)] =

W B (E) + 1)/ (2 — B [1 - ia(E, E)(¢*(E) + 12¢*(B)/(4”)], D)
where
2n U
v = W

In order to obtain the condition for the Mott metal-dielectric transition we put
E =0 1in (45) and then obtain

25(40 — (7 +1)°) = 0. (46)

Here
g=9(E=0).

From equation (46) it can be seen that the critical value of Coulomb interaction
is equal to v, = % On the condition that v > v, the Mott metal-dielectric transition
takes place. This condition is reached on the basis of equation (22), taking into
account only a contribution of the irreducible function G4 with parallel spins.
Therefore, it is different from the one of work [2] by factor v/3, in work [2] v, = @

4. Conclusions

Our main concern was to investigate the properties of the systems with strong
electron correlations taking into account a special ladder kind of perturbation
theory’s diagrams.

We have obtained integral equations that realize the generalized random phase
approximation for different spin channels of the scattering processes and have
determined one-particle Green function.
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One of these equations has been solved by using the coherent potential approx-

imation.

The exact solution of the integral equations can be done only for special as-

sumptions about the theory parameters and remains our next task.
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AiarpamHa TexHika B mogeni Xad06apaa. [lpabuHkoBe
HaONMXXEeHHA

B.A.MockaneHko 2, J1.3.KoH ?

O6’enHaHNM IHCTUTYT aaepHUX gocnimxeHb, 141980 lyoHa, Pocis

IHCTUTYT NpukNagHoi di3unkn,
MonpoBa, 277028 m. Knwwunis, Byn. Npocyn, 5

OtpumaHo 20 6epesHsa 1998 p.

Ha ocHoBi y3aranbHeHoi TeopemMu Bika po3pobneHo HOBY aiarpamMmHy Tex-
HiKy 0191 CUCTEM 3 CUJTIbHUMMW EIEKTPOHHMMUN Kopensauismun. KynoHiBCbke
BiALLUTOBXYBaHHS €/1EeKTPOHIB B Moaeni Xabbapaa po3rnaaaeTbes K ro-
JIOBHA YaCTUHa ramMifibTOHiaHa i BPaxOBYETLCS B HYJIbOBOMY HAOIMXKEHHI.
MaTpuyHnin eneMeHT MiXXKBY3/10BOIrO NEPECKOKY ENEKTPOHIB BPaXOBYETb-
cs 9K 30ypeHHs. JocniokeHo OoQHOYaCTUHKOBY MauybapiBCbKy dYHK-
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uito NpiHa 1 oTpuMaHo piBHAHHSA [daricoHa. HoBuMu enemeHTamm Teopii,
O XapakTepHi Ans aaHoro HabnuxeHHs, € 6arato4acTUHKOBI HE3BIOHI
dyHKUii Kybo. BoHM 06epTaloTbCs B HYJb, KOJIN KYJTIOHIBCbKa B3aEMOL,N
piBHa Hy”no. loNOBHA MeTa AaHoi poboTK — Le CyMyBaHHS ApPabUHKOBUX
Jiarpam, LWo BpaxoByOTb HANBiNbLL CYTTEBI CMIHOBI i 3apsa0Bi prykTyau,ii
cuctemun. OTpUMaHi iHTerpanbHi PIBHAHHSA A5 ABOX KaHANIB PO3CIHHS.
MeToa KOrepeHTHOro NoTeHUiany BUKOPUCTOBYETLCS OJ1S1 CAPOLLEHHS i
pPO3B’A3yBaHHS LMX PiBHSAHb. Ha uin OCHOBI BCTAaHOBNEHA YMOBA NEPEXO-
Oy MeTan-aienekTpuk.

KniouvoBi cnoBa: y3arasibHeHa Teopema Bika, apabuHKOBI giarpamu,
monesnb Xabbapna

PACS: 71.28.+d, 71.27.+a
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