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We report the calculation results of the effect of screening on weakly coupling Fröhlich polaron binding 

energy of the ground state and polaron contribution to the mass for the lowest spin-down subband of the conduc-

tion band in a diluted magnetic semiconductor nanotube. The expressions for the energy of the polaron and the 

polaron contribution to the effective mass was obtained as a function of the magnetic field and the radius of the 

nanotube, taking into account the screening effect as well as virtual transitions from the ground state with n = 0 

to the size-quantized subbands with n' = 1, 2, …, 10. The performed numerical calculations demonstrate that 

the effect of screening decreases the polaronic binding energy and polaronic contribution to the effective mass 

about 35 and 25 , respectively, for the value of the magnetic field equal 0.1 T. It has been established that the 

effect of screening reduces polaron binding energy of the ground state approximately by 30–15  and also re-

duces the polaron contribution to the effective mass by 25–10  with increase of the nanotube radius in the range 

about 10–40 nm. 

PACS: 73.20.Mf  Collective excitation; 

73.63.Fg Nanotubes. 
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1. Introduction 

Diluted magnetic semiconductors (DMS) or semimag-

netic semiconductors are ternary semiconducting com-

pounds. Lattice of these compounds is made up in part of 

substitutional magnetic ions. In other words, DMS are one 

of the best materials to combine semiconductor properties 

with magnetism. 

The presence of magnetic ions leads to localization of 

its spins in DMS materials [1]. Spin-dependent phenomena 

of the DMS have attracted considerably attention in low-

dimensional structures as they have found a lot of applica-

tions in the spintronics. DMS give a possibility to appear-

ance of the spin splitting and spin polarization due to the 

sp–d exchange interaction between electrons and local 

magnetic ions in the external magnetic field [2]. It should 

be noticed that the most characteristic feature of DMS is 

giant splitting [2], which increases the spin polarization of 

the electrons. Recently, it was found that the incorporation 

of Mn ions into the crystal matrix of various A
2
B

6
 semi-

conductor compounds led to the fabrication of DMS quan-

tum dots and hybrid DMS structures [3–6]. 

The physical properties of all structures are mainly de-

termined by electronic processes occurring in them. These 

processes also include electron–phonon interaction. One of 

the evidences of the electron–phonon coupling is polaron 

effect. Especially, considerable interest exists in the study 

of the phonon–polaron states in the nanotube (NT) on 

DMS-based materials. DMS-based A
2
B

6
 compounds are 

usually weakly polar materials. Therefore, Fröhlich pola-

ron of the large radius will be realized in such magnetic 

compounds. 

Recently, there is growing interest in fundamental 

properties of the 2D electron gas, such as the screening of 

the electron–phonon interaction. The theoretical calcula-

tions based on the one-electron approximation predict an 

enhancement of the polaron parameters in the bulk struc-

tures. However, it is experimentally found that the polaron 

parameters in 2D GaAs–AlxGa1–xAs heterestructures are 

smaller than those in the three dimensional GaAs system. 

The theoretical [7–9] and experimental [10–13] studies 

have demonstrated that many-particle effects, i.e., scree-

ning effects, reduce the polaron renormalization of the 

electron effective mass. 

The screening effect also changes the polaron energy. 

Far infrared absorption probes directly the polaron energy 

levels instead of the purely electronic states. The electron 

polarons have been extensively studied by intraband mag-

neto-optical transitions in n-doped quantum dots [14,15]. 
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The results of relevant experimental studies show, that the 

screening effect should reduce the value of both basic pola-

ron parameters such as the binding energy and the effective 

polaron mass mp. From the foregoing follows that the ef-

fect of screening also will change the parameters of the 

phonon–polaron in quasi-2D DMS structures. 

Present paper is devoted to theoretical study of the in-

fluence of the screening effect on phonon–polaron parame-

ters in DMS-based NT, taking into account the exchange 

interaction as well as the transitions to the size-quantized 

subbands in the external uniform magnetic field. 

2. Energy states, electron wave functions and matrix 

element of the electron–phonon coupling 

It is considered NT of DMS with radius 0r on the sur-

face of which there is 2D gas of mobile noninteracting 

electrons threaded by a longitudinal magnetic field. The 

energy spectrum of the similar structure has been obtained 

for DMS-type Cd1–xMnxTe quantum dot with cylindrical 

symmetry [16]. 

Energy spectrum of the electron on the surface of the 

nanotube has the form [17] 

   

2
22 2 2

0

2
, , 0

1
6

2 22
n k

z

rk
A n

M RM r
. (1) 

Here r0 is the radius of nanotube, H is the magnitude of a 

magnetic field directed along z axes, σ = ±1/2 for spin up ↑ 

and spin down ↓, correspondingly, k is the wave vector 

characterizing an electron motion along z axis of the NT, 

0, 1, 2,...n  is the azimutal quantum number, R  

/ ,e cm /c eeH m c  are the magnetic length and 

the cyclotron frequency, respectively. The longitudinal and 

transverse effective masses of an electron in an external 

uniform magnetic field are determined by the following 

expressions: 

1 1
,

2 (3 )

g

z e gM m A B
 

   
1 3 1

,
4 6 ( ) 2 (3 )

g

e g gM m A B A B
 (2) 

where ,g  
2 23 /4e gm  are the band gap and the 

effective mass of conduction electrons in the absence of 

magnetic field, respectively. 

The terms ( / )A B  and 0( )/6zB N x S  deter-

mine  Zeeman splitting of the conduction and valence bands, 

respectively. Here 0N x  is a magnetic ion concentration; 

P is the Kane’s parameter. The contribution of the ex-

change interaction to the energy of the band electrons are 

characterized by the exchange constants | |S J S  

and | | .X J X  The spin of magnetic ion  = zS  

= – ( )SSB Y  averaged along the direction of the magnetic 

field, is determined by the Brillouin function ( )SB Y  under 

neglecting of the interaction between the magnetic ions: 

   
2 1 2 1 1 1

( ) coth coth ,
2 2 2 2

S
S S

B Y Y Y
S S S S

 (3) 

where 0/( ),BY g SH T  5/2,S  2,g  T  is an abso-

lute temperature, 0  is the Boltzmann constant, and B  is 

the Bohr magneton. 

The expression of the normalized wave function of an 

electron, moving freely on the cylindrical surface of NT 

with the length zL , has the following form [18,19]: 

 ( )1
( , ) e ,

2

i k z n
n k

z

z S
L

 (4) 

where S  is the spin part of wave function, where 

 
1 0

;
0 1

S S .  

Earlier the expression for the matrix element ,n nM q  

of the potential energy ( )e q

q

 was obtained by taking 

into account only transitions within subband which is suit-

able only for the limiting case of small NT radius [19]. 

Here taking into account the expression for Fourier 

component of the scalar potential q  

 0( cos )

2 2

2 1
e zi q r q zL

z

i
V q q

q , (5) 

the matrix element ,n nM q  of the electron–phonon coupling 

is calculated with the wave function (4) for any ,n n  [17]: 
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Here V is the NT volume, F  is the Fröhlich coupling 

parameter and pr  is the polaron radius, given as 
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The effective dielectric constant  is determined by 

the expression  1 1 1
0( ) , where 0  and  are 

the static and high-frequency dielectric constants, respec-

tively. | | 0( )n nJ q r  is the Bessel function of index ,n n  

L  is the longitudinal optical-phonon (LO) frequency. 

The matrix element ,n nM q  is calculated under the 

condition that an electron–phonon interaction leads to the 

virtual transitions of an electron with emission of one 

LO phonon at sufficiently low temperatures. In this work 

the upper temperature limit is determined by the condi-

tion 0 0,0| |T E , where 0,0E  is the polaron binding 

energy of the ground state. In accordance with our esti-

mates for NT with diameter of 20 nm, polaron binding 
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energy is given by the order 1.9 meV, which approx-

imately corresponds to the temperature 12 K. 

3. Dielectric permeability in a nanotube of the DMS 

In semiconductors with the sufficiently high carriers 

concentration, the electron–phonon interaction is screened. 

According to [20], the potential of the electron–phonon 

interaction is screened by replacing the matrix element (6) 

with the following expression: 

 , , / ( , )n n n n nM Mq q q . (7) 

Here ( , )n q  is the electron dielectric function. The ex-

pression for the dielectric function is mainly defined by 

electron energy spectrum of the considered system. 

Our recent paper [21] was devoted to influence of 

screening of electron–phonon interaction on the polaron 

binding energy in a semiconductor NT. In those paper it is 

used the results of a computation of the electron dielectric 

permeability for an infinitely long semiconductor NT [22]. 

In order to solve the similar problem for NT of DMS, 

we first calculate the dielectric function for energy spec-

trum (1), using the same technique [22,23]. 

The dielectric function of the considered system is de-

fined by expression [21,24] 

 0;( , ) 1 ( ) ( , )n n nVq q q , (8) 

where 0; ( )nV q  is the Fourier component of the electron–

electron interaction potential without screening and  is 

the frequency of the external field, ( , )n q is the polari-

zation operator. For an infinitely long NT, the considered 

structure is periodic and homogeneous in z direction along 

the NT axis. It should be noted that similar expression have 

been used previously in [25–29] for the calculation of 

plasma oscillations in cylindrical tubes. 

In the static field ( 0)  we have [21] 

 
2

0;| | | | | |
0

2
( ) ( ) ( )n n n n n n

z

e
V z I z a K za

L
, (9) 

where 0 / ,pa r r  ,z pz q r  0  is the background dielec-

tric constant, and | |( ) ,n nI za | |( )n nK za are the modified 

Bessel functions of the first and second kind, respectively. 

In the static field for degenerated electron gas the op-

erator of polarization | | ( ,0)n n q  with the energy spec-

trum (1) is defined by the expression [21–23] 
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_______________________________________________ 

Here Fk  is the Fermi wave vector. Then by means of 

expressions (8), (9) we obtain the following expression for 

the dielectric function: 

 
2
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z

e
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  (11) 

4. Phonon–polaron energy and its mass 

In the present paper we investigate the influence of 

screening effect on the basic phonon–polaron parameters 

on NT surface of the DMS. In order to obtain the analytical 

expression for the polaron parameters it is necessary to 

calculate the contribution to the electron energy due to 

electron interaction with the LO-phonons. The calculation 

is carried out within the framework of the standard pertur-

bation theory. 

Taking into account the screening effect, in accordance 

with (7), the expression for the polaron contribution to the 

electron energy , ,n kE  in the second-order perturbation 

theory is defined as follows: 

 

2
,

, , 2
, | |,

| |

( ) ( )
z
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n nk n k q L n n z

M
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qq

.  

  (12) 

Equations (6) and (12) yield the following expression 

for the polaron binding energy: 

2
, ,

4
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  (13) 

We transform the summation in Eq. (13) into integra-

tion in cylindrical coordinates ( , , ) ( , , )zq q x z  taking 

into account of expression (1), and after integrating over 

the polar angle ,  one gets the expression for the polaron 

binding energy in the new dimensionless variables  

px q r , z pz q r , pk r : 
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The notation nnb  introduced into Eq. (14) is defined by the following expression: 
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Integration over x in Eq. (13) yields the following expression: 
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By means of the Eq. (16) we obtain for (14) 
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Restricting ourselves to second-order terms, we expand the integrand in Eq. (17) over powers of : 
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Here the first term in the brackets corresponds to the polaron binding energy ,0nE  and the second term does to the pola-

ron kinetic energy, i.e., expression (18) can be presented as follows: 

 
2

, , ,0, ,n n nE E A . (19) 

From (18), (19), the polaron binding energy ,0,nE  and polaron factor nA  for the correction to the kinetic energy are 

determined as 
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Taking into account the second term in expression (19) we obtain for the polaron contribution to the effective mass of 

electron, expressed in terms of nA [17]. 
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5. Numerical calculations 

It is interesting to analyze the formulas (11), (20), (21) 

for the limiting case of small NT radius with condition 

0 / 1.pa r r  With the decreasing of the value of NT ra-

dius (that is the value of a < 1) the distance between the 

levels of size quantization increases. 

Then, from the expression of the integrand (11) follows 

that the main contribution to the integral comes from the 

region of the variable z < 1. As a result of this situation, we 

can limit ourselves with state n = 0. Contribution to the 

dielectric function due to the free carriers in this region is 

small compared with unity. 

Taking into account weak logarithmic dependence of 

the dielectric function from the z variable which follows 

from the known asymptotics of modified Bessel functions, 

the average value of the dielectric function we can take out 

from the integrand expression. Integrals (20), (21) for the 

energy and mass in this case are analytically calculated and 

reduced to the Meyer functions. 

It is known that the Meyer functions have logarithmic 

asymptotics for small values оf a. Therefore, as with the 

screening or without screening the binding energy and the 

polaron mass increases logarithmically with decreasing ra-

dius of the NT, that is observed below in Figs. 1(a) and 2(a). 

Now in the further calculations we will be limited only 

the lowest conduction band with spin down . The depen-

dences of the basic polaron parameters as the function of 

the magnetic field and the nanotube radius were calculated  

according to formulas (20), (21) and (10), (11). The calcu-

lations were performed at temperature T = 1 K taking into 

account the following specific features of the problem un-

der consideration: 

i) The Fermi level lies between the size-quantized sub-

bands with 0n  and 1n  (also as well as below of spin 

up conduction band). Such position of location of the Fermi 

level we obtain at fixed concentration 6 11.5 10 mcn  

with 2 /F pk r , where 0.1.  

ii) With the increasing of the magnetic field the Fermi 

level rises. In order that the polaron band could be located 

below the bottom of the conduction band with spin down 

(i.e., in the band gap) the condition 0,0 0| |FE k T  

should be realized. 

For computation the following values of the parameters 

for Hg1–xMnxSe compound with 0.066x  are chosen: 

16.8L meV, 0  = 28.5, =13, P = 5.09∙10
–8

 eV∙cm, 

0 0.32 eV,N  0 0.92 eV,N  24 meV,g  2,g  

5/2,S  1 K,T  20.6 nmpr , 31
0 9.1 10 kg,m e  

191.6 10 C,  
83 10 m/ sc  [17]. 

Numerical calculation results for the dependences of the 

dimensionless polaron binding energy 0, 0( / )F LE

and polaron contribution to the effective mass

( / )z p F zm M  on the dimensionless magnetic field 
2 2/ph r R  (up to H = 0.1 T) are depicted in Fig. 1 for the 

value of 0 1/ 2.pa r r  Computation of the basic pola-

ron parameters is carried out taken into account the transi-

tions from the ground state with 0n  to the size-

quantized subbands with 1, 2,..., 10.n  

According  to the curves 1, 3 and 2, 4 presented in 

Fig. 1, the effect of the screening results in a considerable 

dependence of the polaron binding energy and polaron  

contribution to the effective mass on the magnetic field 
2( / ) .ph r R  

From comparison of calculation results for the curves 1, 

3 (Fig. 1) is followed that decreasing of polaron binding 

energy, as a result of the screening effect of polaron bind-

ing energy and polaron contribution to the effective mass, 

constitute about 35 and 25%, respectively, for the consi-

dered values of H up to 0.1 T. 

The results of the calculations for the dependences of the 

dimensionless polaron binding energy 0,0( / )F LE  of 

the ground state and polaron contribution to the effective  

mass ( / )z p F zm M on the dimensionless NT radius 0 / pr r  

are depicted in Fig. 2 at H = 0.1 T. From comparison of nu-

merical data for the curves 2, 1 and 4, 3 it follows that the 

Fig. 1. Dependences of the polaron binding energy (a) and pola-

ron correction to the electronic mass (b) on the magnetic field: in 

the absence of the exchange interaction and screening effect (1); 

taking into account of the exchange interaction in the absence of 

screening effect (2); taking into account of screening effect in the 

absence of the exchange interaction (3); taking into account of 

screening effect in the presence of the exchange interaction (4). 

The transitions from the ground state n = 0 to the subbands 

1, 2,..., 10n are taken into account at 0 / 1/2.pr r  
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screening effect reduces a polaron binding energy of the 

ground state and polaron contribution to the effective mass 

about by 30–15  and 25–10  with increasing the values of  

the parameter 0 / pa r r  in the range about 0.5–2, respec-

tively. 

Comparison of curve 2 with 1 and curve 4 with 3 in 

Fig. 2 show that the screening effect considerably decreases 

polaron binding energy and polaron contribution to the ef-

fective mass on the NT radius in the presence of the magnet-

ic field with increasing of NT radius. 

From comparison of calculation results for the curves 2 

and 1 presented in Fig. 2(a) is followed that as a result of 

the effect of the screening, the dimensionless polaron bind-

ing energy decreases approximately from 35 to 15  with 

an increasing of 0 / pr r  from 0.5 to 2. As a result of com-

parative investigations of the curve 2 with curve 1 in 

Fig. 2(b), it has been established that with an increasing of 

the value of 0 / pr r from 0.5 to 2 the decrease in the polaron 

contribution to the mass owing to the screening effect con-

stitutes about 25 to 15 , respectively. 

Conclusion 

It has been presented a detailed description of the 

screening effect on the phonon–polaron states for the de-

generate electron gas in NT of DMS type compounds. 

The performed numerical calculations make possible to 

evaluate the influence of the screening effects on the pola-

ron parameters. These evaluations were carried out for NT 

of Hg1–xMnxSe compound with x = 0.066 at T = 1 K. The 

dependencies of the polaron binding energy and polaron 

contribution to the effective mass on the magnetic field and 

NT radius for the ground state were obtained. Owing to 

screening effect the decrease of polaron binding energy 

and polaron contribution to the effective mass constitute 

about 35 and 25%, respectively, for all the considered val-

ues of H. The screening effect leads to a considerably de-

crease of the polaron binding energy for values of 

0 / 0.5.pr r  

Moreover the screening effect is an important method 

for the interpretation of the magneto-optical, cyclotron 

resonance and far-infrared absorption experiments. Thus 

the obtained numerical calculation results confirmed the 

significance of screening effect for the polaron binding 

energy and polaron contribution to the effective mass. 
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