Псевдощель в CdBa₂Cu₃O_{7-б} ВТСП материале

В.М. Алиев, С.С. Рагимов, Р.И. Селим-заде

Институт физики НАН Азербайджана, пр. Г. Джавида, 33, г. Баку, AZ 1143, Азербайджан E-mail: v_aliev@bk.ru

Статья поступила в редакцию 24 мая 2012 г., после переработки 28 января 2013 г.

Обнаружены долгоживущие минимумы на зависимости $\rho(T)$ поликристалла CdBa₂Cu₃O_{7- δ} с CП переходом при 86,6 К, наблюдаемые при $T_{\min 1} = 275$ К и $T_{\min 2} = 252$ К. Показано, что избыточная проводимость $\Delta\sigma(T)$ в районе T_{\min} подчиняется классической флуктуационной теории Асламазова–Ларкина. Это указывает на возможность образования флуктуационных куперовских пар в CdBa₂Cu₃O_{7- δ} при $T >> T_c$. По результатам эксперимента рассчитаны длины когерентности $\xi_c(0)$, температуры 2D–3D кроссовера T_0 и постоянные межплоскостного спаривания. Для образца без минимумов найдены величина и температурная зависимость псевдощели, которая оказалась типичной для купратных ВТСП.

Виявлено довгоіснуючі мінімуми на залежності $\rho(T)$ полікристала CdBa₂Cu₃O_{7- δ} з НП переходом при 86,6 К, що спостерігаються при $T_{\min 1} = 275$ К и $T_{\min 2} = 252$ К. Показано, що надлишкова провідність $\Delta\sigma(T)$ в районі T_{\min} підкоряється класичної флуктуаційної теорії Асламазова–Ларкіна. Це вказує на можливість утворення флуктуаційних куперівських пар в CdBa₂Cu₃O_{7- δ} при $T >> T_c$. Використовуючи результати експерименту, розраховано довжини когерентності $\xi_c(0)$, температури 2D–3D кросовера T_0 та постійні міжплощинного спарювання. Для зразка без мінімумів отримано величину й температурну залежність псевдощілини, яка виявилася типової для купратних ВТНП.

РАСS: 74.25.F- Транспортные свойства.

Ключевые слова: CdBa₂Cu₃O_{7-δ}, сверхпроводимость, псевдощель, избыточная проводимость, длина когерентности, температура кроссовера, постоянная межплоскостного спаривания.

Введение

Число работ, посвященных псевдощелевым эффектам в ВТСП материалах, исключительно велико (см., например, [1–9] и ссылки в них). Как отмечается в этих работах, псевдощель — уникальное явление, наблюдаемое в ВТСП. Оно проявляется при исследовании явлений туннелирования, фотоэмиссии, теплоемкости и других свойств ВТСП [10]. Считается, что при некоторой температуре $T^* > T_c$ перераспределяется плотность состояний на поверхности Ферми: на части этой поверхности плотность состояний уменьшается. Ниже температуры T^* соединение находится в состоянии с псевдощелью. В работе [11] предполагается, что величина T^* при низком уровне легирования может достигать значений 300-600 К для разных ВТСП систем. Однако этот вопрос по-прежнему весьма дискуссионный. В перечисленных выше работах обсуждаются возможные механизмы проводимости в рамках моделей нормального, сверхпроводящего и псевдощелевого состояний ВТСП, которые, строго говоря, также до конца не ясны [12].

Недавно появилась работа [13], посвященная изучению псевдощелевого состояния в материале $Pb_{0,55}Bi_{1,5}Sr_{1,6}La_{0,4}CuO_{6+\delta}$ (Pb-Bi2201). Получена серия монокристаллов Pb-Bi2201, на которой проведен широкий ряд исследований для выявления псевдощелевого состояния. Результаты исследований по трем различным экспериментальным методикам указывают на то, что появление псевдощели при $T \approx 132$ К следует воспринимать не иначе как фазовый переход. Таким образом, авторы подтвердили выводы ряда экспериментальных [9] и теоретических работ [14] о том, что по мере понижения температуры ВТСП материал должен испытать два фазовых перехода: сначала появление псевдощели, а затем переход в сверхпроводящее состояние.

Однако, как отмечает, например, Абрикосов [15], псевдощелевое (ПЩ) состояние реально нельзя рассматривать как некое новое фазовое состояние вещества, поскольку ПЩ не отделена от нормального состояния фазовым переходом. Так что вопрос о возможном фазовом переходе при $T = T^*$ также остается открытым. В то же время можно говорить о том, что в ВТСП имеет место кроссовер при $T = T^*$ [16]. Ниже этой температуры, в силу все еще не установленных на сегодняшний день причин, начинает уменьшаться плотность квазичастичных состояний на уровне Ферми. Собственно по этой причине явление и получило название «псевдощель». Впервые этот результат был получен в экспериментах по изучению ЯМР в слабо допированной системе Y123, в которой при охлаждении наблюдалось аномальное уменьшение сдвига Найта [17], прямо связанного в теории Ландау с плотностью состояний на уровне Ферми.

Для получения ответов на обозначенные выше вопросы в настоящей работе проведен анализ избыточной проводимости, полученной из резистивных измерений оптимально допированного (ОД) ВТСП CdBa₂Cu₃O_{7-δ} с температурой СП перехода ~ 86 К. Анализ избыточной проводимости проводился в рамках теории Асламазова– Ларкина [18] и Хиками–Ларкина [19]. Для анализа температурной зависимости псевдощели привлекалась модель, предложенная в [9,20,21].

Экспериментальные результаты и их обработка

Методом, описанным в деталях в работе [22], получен новый сверхпроводящий керамический материал состава CdBa₂Cu₃O_x. Установлено, что при полном замещении иттрия на кадмий в системе Y–Ba–Cu–O (образец CdBa₂Cu₃O_x) наблюдается сверхпроводящий переход при $T_c \approx 86,6$ К (рис. 1). Содержание кислорода в CdBa₂Cu₃O_x определено по методике, описанной в работе [23]. Индексы по кислороду полученных поликристаллических образцов составляют 6,55.

При исследовании температурной зависимости удельного сопротивления ρ CdBa₂Cu₃O_{7- δ} в интервале температур 300–70 К в [22] было обнаружено, что при $T_{\min 1} \approx 275$ К зависимость $\rho(T)$ проходит через глубокий минимум (кривая 1). При повторном измерении

Рис. 1. Температурные зависимости удельного сопротивления оптимально допированного CdBa₂Cu₃O₇₋₈: *1* — первое измерение ($T_{min1} = 275$ K); *2* — измерение через 72 ч ($T_{min2} = 252$ K); *3* — кривая без минимумов, измеренная еще через 24 ч. Во всех случаях $T_c = 86,6$ К.

(через 72 ч) минимум смещается в сторону низких температур ($T_{\rm min2} \approx 252$ K) (кривая 2), а при третьем измерении (еще через 24 ч) минимум исчезает полностью (кривая 3). Подобное явление ранее наблюдалось и в работах [24–27] в интервале температур 260–240 К. В этих работах наблюдаемые переходы трактовались как СП фазовые переходы.

Мы предположили, что если обнаруженный минимум действительно означает попытку образца совершить СП переход с $T_{c1} = T_{min1} \approx 275$ К, то наблюдаемая выше T_{c1} избыточная проводимость должна подчиняться теории Хиками-Ларкина (ХЛ) [19], включающей флуктуационные вклады как Асламазова-Ларкина (АЛ) [18], так и Маки-Томпсона (МТ) [28]. Можно предположить, что в процессе изготовления СdBa₂Cu₃O_{7-б} реализуется некая кристаллографическая структура со своим распределением электронов по объему образца и своими перколяционными путями протекания тока по поликристаллу, при которых СП переход начинается при $T_{\rm on} \approx 280$ К. Исследование образца методом рентгеноструктурного анализа до начала измерений и после третьего измерения показало, что кристаллическая структура CdBa₂Cu₃O_{7-δ} остается неизменной и идентифицированные пики совпадают. Это дает основание считать, что образование при синтезе в составе CdBa2Cu3O7-6 другой кристаллографической структуры исключается. Поэтому появление минимума на зависимости $\rho(T)$ можно объяснить спецификой процессов перколяции в CdBa₂Cu₃O_{7-δ}, а его смещение в область более низких температур и дальнейшее полное исчезновение — изменением перколяционных путей протекания тока по поликристаллу в процессе измерений (рис. 1).

Для подтверждения нашего предположения в рамках теории флуктуационной проводимости Хиками– Ларкина [19] проведен анализ избыточной проводимости $\Delta \sigma(T)$, наблюдаемой выше T_{\min} . Как обычно, величина $\Delta \sigma(T)$ определялась как разность между экстраполированной в область низких температур линейной при высоких *T* зависимостью $\rho_n(T) = \rho_0 + \alpha T$ и реально измеряемым сопротивлением $\rho(T)$ [9,21,29]:

$$\Delta \sigma(T) = \rho^{-1}(T) - \rho_n^{-1}(T).$$
 (1)

Результаты анализа приведены на рис. 2 для случаев с первым минимумом при 275 К (кривые *1*) и со вторым минимумом при 252 К (кривые *2*).

В теории ХЛ показано, что вне области критических флуктуаций избыточная проводимость $\Delta \sigma$ является функцией приведенной температуры $\varepsilon = (T - T_c^{mf})/T_c^{mf}$. Соответственно, критическая температура в приближении среднего поля T_c^{mf} является температурой, отделяющей область флуктуационной проводимости от области критических флуктуаций [29], расположенной непосредственно вблизи T_c , поэтому ее правильное определение важно для такого анализа [2,21].

Рис. 2. (а) Зависимости $\Delta \sigma^{-2}$ от температуры для первого (**•**) и второго (**•**) минимумов. Сплошные прямые — экстраполяция 3D-области, пересечение с осью температур определяет T_c^{mf} . (б) Зависимости $\ln \Delta \sigma$ от $\ln[(T - T_c^{mf})/T_c^{mf}]$ для первого (**•**) и второго (**•**) минимумов. Прямые линии — теория АЛ для 3D ($\lambda = -1/2$) и 2D ($\lambda = -1$) флуктуаций.

В соответствие с методикой, предложенной в работах [21,29,30], значение T_c^{mf} для обоих СП переходов при 275 и 252 К определялось экстраполяцией линейного участка зависимости $\Delta \sigma^{-2}(T)$ до его пересечения с осью температур (рис. 2(а)). Значение T_c^{mf} для указанных переходов составляет соответственно 289,97 и 267,12 К (рис. 2(а)). Избыточная проводимость $\Delta \sigma$ рассчитана по уравнению (1). На рис. 2(б) представлены зависимости от є избыточной проводимости $\Delta \sigma$ исследованных переходов. Поскольку в теории Асламазова–Ларкина $\Delta \sigma$ является экспоненциальной функцией є, использованы логарифмические координаты. Вблизи T_c (T_{min1} в нашем случае) зависимость $\Delta \sigma(\varepsilon)$ может быть представлена уравнением теории АЛ для трехмерных (3D) флуктуаций:

$$\Delta \sigma_{AL} = \{ e^2 / [32\hbar \xi_c(0)] \} \varepsilon^{-1/2}, \qquad (2)$$

где $\xi_c(0)$ — длина когерентности ВТСП вдоль оси *c*, т.е. перпендикулярно проводящим плоскостям CuO₂. На рис. 2(б) это прямые (1) с наклоном $\lambda = -1/2$, отвечающие области 3D-флуктуаций. При увеличении тем-

пературы наблюдается переход (кроссовер) в область 2D-флуктуаций, которая в данном случае может быть описана 2D-уравнением Асламазова–Ларкина:

$$\Delta \sigma_{AL} = \{ e^2 / [16\hbar d] \} \varepsilon^{-1}, \qquad (3)$$

где *d* обычно толщина образца, а в ВТСП *d* = 11,7 Å — расстояние между проводящими плоскостями. На рис. 2(б) это прямые с наклоном $\lambda = -1,032$ и -1,4. Такое поведение в области 2D-флуктуаций типично для поликристаллов, где МТ вклад в $\Delta \sigma$ не наблюдается [29]. Как показано в работах [21,30], флуктуационный МТ вклад наблюдается только в хорошо структурированных ВТСП системах, например в тонких пленках YBCO, получаемых методом лазерного напыления.

Используя измеренные значения температуры кроссовера ε_0 , можно определить значения $\xi_c(0)$ в исследуемом образце. Очевидно, что система становится трехмерной, когда длина когерентности, возрастая с уменьшением температуры, связывает проводящие плоскости CuO₂ джозефсоновским взаимодействием [31], т.е. $\xi_c(T) \ge d$. Отсюда находим, что

$$\xi_c(0) = d\varepsilon^{1/2},\tag{4}$$

что дает в два раза большие значения, чем получаемые из формулы теории ХЛ для температуры кроссовера:

$$T_{\rm cr} = T_0 = T_c \left\{ 1 + 2(\xi_c(0)/d)^2 \right\}.$$
 (5)

Рассчитанные по уравнению (4) значения длины когерентности куперовских пар $\xi_c(0)$ для СП переходов при 275 и 252 К составляют соответственно 1,7 и 1,96 Å, а измеренные температуры кроссовера T_0 — соответственно 298,5 и 274,1 К.

Тот факт, что измеряемая в эксперименте избыточная проводимость может быть описана в рамках классических теорий сверхпроводящих флуктуаций, на наш взгляд, прямо указывает на возможность существования флуктуационных куперовских пар в исследуемом образце при столь высоких температурах. А это, в свою очередь, говорит о том, что в ВТСП действительно наблюдается попытка СП фазового перехода при T_{min} . В то же время вопрос о том, почему при дальнейшем уменьшении температуры сопротивление образца восстанавливается, остается открытым.

Используя полученные значения $\xi_c(0)$ для обоих СП переходов при 275 и 252 К, согласно выражению $J = (2\xi_c(0)/d)^2$ [29], находим постоянную межплоскостного спаривания *J*. Для первого и второго переходов она соответственно равна 0,084 и 0,105. Для основных переходов с $T_c = 86,6$ К величина J = 0,117.

Для изучения температурной зависимости псевдощели $\Delta^*(T)$ в CdBa₂Cu₃O_{7- δ} с СП переходом при 86,6 К проведен анализ избыточной проводимости для случая, когда минимумы на зависимости $\rho(T)$ при высоких температурах уже не наблюдались (рис. 1 (кривая 3) и рис. 3). В работах [14,21,33–35] возможность возникновения псевдощели обусловливалась тем, что при температуре открытия псевдощели T^* в спектре возбуждений образуются так называемые локальные пары, которые конденсируются только при $T_c \ll T^*$, ниже которой возникает когерентность в объеме образца и устанавливается сверхпроводящее состояние. Соответственно, наличие таких пар при $T_c < T < T^*$ должно отражаться на температурной зависимости сопротивления в этой области температур.

На рис. З показана температурная зависимость удельного сопротивления ρ для образца CdBa₂Cu₃O_{7- δ}. При высоких температурах (от 300 до 130 K) зависимость $\rho(T)$ хорошо описывается выражением вида $\rho_n = \rho_0 + \alpha T$. Экстраполяция этой зависимости в область низких температур приводит к соотношению $\rho_n = 5,42 + 0,0075T$.

Принимая отклонение сопротивления от линейности ниже T^* как следствие образования при этой температуре локальных пар, мы провели анализ экспериментальных данных в предположении о возникновении добавочной (или избыточной) проводимости $\Delta \sigma$, определяемой уравнением (1), т.е. методом, аналогичным тому, что используется при исследовании флуктуационной добавки к проводимости в сверхпроводниках при температурах, немного превышающих критическую.

На рис. 4 приведены зависимости логарифма избыточной проводимости ln $\Delta \sigma$ от обратной температуры. Такой подход к анализу $\Delta \sigma(T)$ предложен в работе [20]. Из кривых ln $\Delta \sigma(1/T)$ видно, что в интервале температур 110–182 К зависимость ln $\Delta \sigma(1/T)$ уменьшается почти линейно, в соответствии с предложенной в [20] формулой ln $\Delta \sigma(T) = a+b/T$, т.е.

$$\Delta \sigma = D \exp(b/T), \tag{6}$$

где *a*, *b*, *D* — константы. Экспоненциальная температурная зависимость избыточной проводимости и ли-

Рис. 3. Зависимость удельного сопротивления ОД CdBa₂Cu₃O_{7- δ} от температуры. Сплошная линия — экстраполированная зависимость $\rho_n = 5,42 + 0,0075T$.

нейный участок, характерные для ВТСП, также наблюдались в работах [9,20,36]. Такое характерное поведение зависимостей $\ln \Delta \sigma$ и $\Delta \sigma$ от температуры было достаточно строго проанализировано в [20], и подобная методика теоретического расчета привлечена нами для анализа экспериментальных данных.

В интервале 192 К < $T < T^* = 280$ К характер уменьшения экспериментальной кривой заметно меняется (рис. 4). Введение множителя ($1 - T/T^*$) в уравнение (6) [20] позволяет существенно улучшить аппроксимацию экспериментальной кривой в области высоких температур:

$$\Delta \sigma = A \left(1 - T/T^* \right) \exp\left(\Delta^*/T \right), \tag{7}$$

где Δ^* и А — константы, определяемые при аппроксимации экспериментальных данных.

Тем не менее в работах [9,22] расчет в рамках описанной модели показал, что уравнение (7) не полностью описывает экспериментальные зависимости $\ln \Delta \sigma(T)$, так как не учитывает область флуктуационных куперовских пар вблизи T_c . Это же следует и из нашего анализа. Поэтому в [9,21] в рамках модели локальных пар для параметра псевдощели Δ^* предложено выражение

$$\Delta^{*}(T) = T \ln \left\{ \frac{A(1 - T/T^{*})e^{2}}{\Delta\sigma(T) 16\hbar\xi_{c}(0)\sqrt{2\epsilon_{c0}^{*} \mathrm{sh}(2\epsilon/\epsilon_{c0}^{*})}} \right\}.$$
 (8)

Как и в работах [9,21], рассчитанные нами по выражению $\Delta^*(T) = Q (T^* - T)^{1/2}$ [20] зависимости ln $\Delta\sigma(T)$ описывают только высокотемпературную часть экспериментальных кривых. Для лучшего совпадение расчета с экспериментом параметр $\Delta^*(T)$ рассчитан по уравнению (8). Как и ожидалось, с учетом локальных пар теория намного лучше описывает эксперимент (рис. 4).

В выражениях (7) и (8) $\Delta \sigma(T)$ — значение избыточной проводимости, определяемое в эксперименте. Для определения длины когерентности куперовских пар

Рис. 4. Зависимость логарифма избыточной проводимости от температуры. Сплошная кривая — аппроксимация экспериментальных данных с учетом уравнения (8).

Low Temperature Physics/Физика низких температур, 2013, т. 39, № 6

вдоль оси *c*, т.е. перпендикулярно проводящим плоскостям CuO₂, для СП перехода при $T_c = 86,6$ К сначала была найдена критическая температура в приближении среднего поля ($T_c^{mf} = 91,59$ К) из зависимости $\Delta \sigma^{-2}$ от температуры (рис. 5(*a*)). Далее из зависимости $\ln \Delta \sigma$ от ln [($T - T_c^{mf}$)/ T_c^{mf}] (рис. 5(б)) получено значение температуры кроссовера $\varepsilon_0 = 0,0295$ (ln $\varepsilon_0 \approx -3,52$). Согласно уравнению (4), длина когерентности куперовских пар $\xi_c(0) \approx 2$ Å. Отметим, что по-прежнему $\varepsilon = (T - T_c^{mf})/T_c^{mf}$ и d = 11,7 Å, а также $T^* = 280$ К.

Как отмечается в работе [9], преимущество представления экспериментальных данных в координатах $\ln \Delta \sigma(1/T)$ заключается в том, наклон линейного участка кривой, определяемой уравнением (7), чувствителен к $\Delta^*(T_c)$, что позволяет правильно подобрать величину этого параметра. Для определения значения коэффициента A в соотношении (7) константа Δ^* рассчитана при $T = T_c$, т.е. $\Delta^* = \Delta^*(T_c)$. Как отмечено в [9], величина A подбирается таким образом, чтобы совместить

Рис. 5. (а) Температурные зависимости $\Delta \sigma^{-2}$ для основного СП перехода. Сплошная прямая — экстраполяция 3D-области, пересечение которой с осью температур определяет T_c^{mf} . (б) Зависимость $\ln \Delta \sigma$ от $\ln \varepsilon$. Прямые линии — теория АЛ для 3D ($\lambda = -1/2$) и 2D ($\lambda = -1$) флуктуаций. Стрелкой обозначена температура кроссовера.

рассчитанные согласно (7) кривые с экспериментальными данными $\Delta\sigma(T)$ в области 3D-флуктуаций вблизи T_c . Оптимальная аппроксимация в [9] для YBCO достигается при значениях $\Delta^*(T_c)$, определяемых из соотношения $2\Delta^*(T_c)/kT_c \approx 5$. В нашем случае оптимальная аппроксимация достигается при $2\Delta^*(T_c)/kT_c = 5,2$. Таким образом, полученное из соотношения (7) значение $\Delta^*(T_c)$ составляет 225,51 К, соответственно A = 2,72.

Рассчитанная согласно уравнению (8) температурная зависимость $\Delta^{(T)}$, представленная на рис. 6, была использована для расчета $\Delta \sigma(T)$ по методике, предложенной в работах [9,21] для улучшения совпадения с экспериментом. Как видно на рис. 4, в этом случае рассчитанные значения $\ln \Delta \sigma(1/T)$ хорошо согласуются с экспериментальными данными. Из представленных данных (рис. 6) также видно, что в CdBa₂Cu₃O_{7-δ} величина псевдощели при уменьшении температуры сначала возрастает, а затем, при приближении температуры к Т_с, пройдя через максимум, уменьшается за счет увеличения избыточной проводимости. Такое поведение Δ при уменьшении температуры, аналогичное обнаруженному в наших экспериментах (рис. 6), впервые наблюдалось на пленках ҮВСО [9,21] с разным содержанием кислорода и, по-видимому, является типичным для купратных ВТСП. Таким образом, можно сказать, что, как и в YBCO, в CdBa2Cu3O7-б возможно образование локальных пар при температурах заметно выше критической $T^* >> T_c$, что и создает условия для образования псевдощели [11] с последующим установлением фазовой когерентности флуктуационных куперовских пар при $T < T_c$.

Анализ результатов исследований также показал, что длины когерентности куперовских пар (1,7; 1,95 и 2,0 Å), а также величины постоянной межплоскостного спаривания (0,084; 0,105 и 0,117) мало изменяются в процессе эксперимента. Это может служить доказательством правильности проведенного нами анализа и

Рис. 6. Температурная зависимость псевдощели Δ^* в ОД СdBa₂Cu₃O_{7- δ}.

подтверждает сделанные выводы о возможности формирования в оптимально допированном CdBa₂Cu₃O_{7-δ} флуктуационных куперовских пар при очень высоких температурах.

Заключение

Возможность описания избыточной проводимости Δσ, измеряемой в области обнаруженных в эксперименте минимумов на зависимости $\rho(T)$, в рамках классических теорий сверхпроводящих флуктуаций, на наш взгляд, прямо указывает на возможность образования флуктуационных куперовских пар в исследуемом образце при $T > T_{\min} >> T_c$. Это позволяет говорить о том, что в CdBa₂Cu₃O_{7-б} наблюдается попытка СП фазового перехода при T_{min}. Этот вывод представляется нам наиболее интересным и значимым результатом наших исследований. В то же время вопрос о том, почему при дальнейшем уменьшении температуры сопротивление образца восстанавливается, остается открытым. Расчет длины когерентности и постоянной межплоскостных спариваний для предполагаемых СП переходов при температурах 275 и 252 К, а также для основного СП перехода при T = 86,6 К показал, что значения этих величин практически не меняются, что может служить доказательством правильности проведенного нами анализа. Впервые на основе экспериментальных данных по проводимости и проведенных расчетов было подтверждено образование псевдощели в CdBa₂Cu₃O_{7- δ} с T_c = 86,6 К и проведена оценка ее температурной зависимости.

- Г.Г. Сергеева, А.А. Сорока, ФНТ 33, 864 (2007) [Low Temp. Phys. 33, 659 (2007)].
- А.Л. Соловьев, В.М. Дмитриев, ФНТ 32, 753 (2006) [Low Temp. Phys. 32, 576 (2006)].
- Г.Г. Сергеева, ФНТ 32, 761 (2006) [Low Temp. Phys. 32, 582 (2006)].
- М.А. Оболенский, Р.В. Вовк, А.В. Бондаренко, ФНТ 32, 1488 (2006) [Low Temp. Phys. 32, 1131 (2006)].
- Е.Б. Амитин, К.Р. Жданов, А.Г. Блинов, М.Ю. Каменева, Ю.А. Ковалевская, Л.П. Козеева, И.Е. Пауков, ФНТ **31**, 323 (2005) [Low Temp. Phys. **31**, 241 (2005)].
- 6. М.В. Садовский, *УФН* **171**, 539 (2001).
- 7. М.Р. Трунин, *УФН* **175**, 1017 (2005).
- Л.А. Боярский, ФНТ 32, 1078 (2006) [Low Temp. Phys. 32, 819 (2006)].
- А.Л. Соловьев, В.М. Дмитриев, ФНТ 32, 139 (2006) [Low Temp. Phys. 32, 99 (2006)].
- 10. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 161 (1999).
- А.И. Головашкин, ВТСП необычные объекты физики твердого тела, препринт №10, ФИАН им. П.Н. Лебедева, Москва (2005).
- 12. L. Taillefer, Ann. Rev. Condens. Matter Phys. 1, 51 (2010).

- Rui-Hua. He, M. Hashimoto, H. Karapetyan, J.D. Koralek, J.P. Hinton, J.P. Testaud, V. Nathan, Y. Yoshida, Hong Yao, K. Tanaka, W. Meevasana, R.G. Moore, D.H. Lu, S.-K. Mo, M. Ishikado, H. Eisaki, Z. Hussain, T.P. Devereaux, S.A. Kivelson, J. Orenstein, A. Kapitulnik, and Z.-X. Shen, *Science* 331, 1579 (2011).
- 14. В.М. Локтев, *ФНТ* **22**, 3 (1996) [*Low Temp. Phys.* **22**, 2 (1996)].
- 15. A.A. Abrikosov, Phys. Rev. B 64, 104521 (2001).
- 16. J.L. Tallon and J.W. Loram, *Physica C* 349, 53 (2001).
- H. Alloul, T. Ohno, and P. Mendels, *Phys. Rev. Lett.* 63, 1700 (1989).
- 18. L.G. Aslamazov and A.L. Larkin, *Phys. Lett. A* **26**, 238 (1968).
- 19. S. Hikami and A.I. Larkin, Mod. Phys. Lett. B 2, 693 (1988).
- Д.Д. Прокофьев, М.П. Волков, Ю.А. Бойков, ФТТ 45, 1168 (2003).
- А.Л. Соловьев, В.М. Дмитриев, ФНТ 35, 227 (2009) [Low Temp. Phys. 35, 169 (2009)].
- В.М. Алиев, С.А. Алиев, С.С. Рагимов, Г.Дж. Султанов, Б.А. Таиров, *ΦΗΤ* 37, 351 (2011) [Low Temp. Phys. 37, 273 (2011)].
- Ю.М. Байков, В.Э. Гасумянц, С.А. Казьмин, В.И. Кайданов, В.И. Смирнов, В.А. Целищев, *СФХТ* 3, 254 (1990).
- И.Г. Гусаковская, С.И. Приумова, Л.О. Атовмян, *СФХТ* 3, 1980 (1990).
- Б.Я. Сухаревский, Е.О. Цыбульский, Н.Е. Письменова, А.М. Быков, Ф.А. Бойко, Г.Ю. Бочковая, Г.Е. Шаталова, ФНТ 14, 1108 (1988) [Sov. J. Low Temp. Phys. 14, 608 (1988)].
- А.В. Леонтьева, Г.А. Маринин, В.М. Свистунов, Б.Я. Сухаревский, *Тез. докл. 2-ой Всесоюзн. конф. по ВТСП, Киев*, 3, 199 (1989).
- И.Г. Гусаковская, С.И. Пирумова, Л.О. Атовмян, *СФХТ* 2, 61 (1989).
- K. Maki, Prog. Theor. Phys. 39, 897 (1968); R.S. Tompson, Phys. Rev. B 1, 327 (1970).
- B. Oh, K. Char, A.D. Kent, M. Naito, M.R. Beasley, T.K. Geballe, R.H. Hammond, A. Kapiltunik, and J.M. Graybeal, *Phys. Rev. B* 37, 7861 (1988).
- А.Л. Соловьев, Н.-U. Habermeier, and T. Haage, *ΦHT* 28, 24 (2002) [Low Temp. Phys. 28, 17 (2002)].
- 31. Y.B. Xie, Phys. Rev. B 46, 13997 (1992).
- 32. А.А. Варламов, Д.В. Ливанов, ЖЭТФ 98, 584 (1990).
- V.J. Emery, S.A. Kivelson, and O. Zachar, *Phys. Rev. B* 56, 6120 (1997).
- V.B. Geshkenbein, L.B. Ioffe, and A.I. Larkin, *Phys. Rev. B* 55, 3173 (1997).
- 35. E. Babaev and H. Kleinert, Phys. Rev. B 59, 12083 (1999).
- А.Ф. Прекул, В.А. Рассохин, А.Б. Рольщиков, Н.И. Щеголихина, *Сверхпроводимость: физика, химия, техника* 3, 381 (1990).

Pseudogap in CdBa₂Cu₃O_{7- δ} HTSC material

V.M. Aliev, S.S. Ragimov, and R.I. Selim-zade

The long-life minima on the $\rho(T)$ dependence (at $T_{\min 1} = 275$ K and $T_{\min 2} = 252$ K) in CdBa₂Cu₃O_{7- δ} ($T_c = 86,6$ K) have been revealed. It is shown that the observed excess conductivity $\Delta\sigma(T)$ around T_{\min} follows the classic Aslamazov–Larkin fluctuation theory. This suggests that the formation of Cooper electron pairs at $T >> T_c$ in CdBa₂Cu₃O_{7- δ} is quite possible.

The experimental data are used to calculate coherence lengths $\xi_c(0)$, 2D–3D crossover temperature T_{cr} , and interlayer coupling strength. The value and temperature dependence of pseudogap have been calculated for a minimum-free sample which proves to be typical of cuprate NTSC.

PACS: 74.25. F- Transport properties.

Keywords: $CdBa_2Cu_3O_{7-\delta}$, superconductivity, pseudogap, coherence length, crossover temperature, excess conductivity, interlayer coopering strength.