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The emphasis is made on experimentally observed indications of the presence of metastable ion dipoles in 

solid helium. Similar quasiparticles possessing positive scattering length for injected electrons are assumed to 

exist in liquid phases of cryogenic liquids. The observed phenomena allowing to detect and monitor the behavior 

of dipole gas in superfluid helium (referred to as cryogenic electrolyte) are discussed. Most interesting among 

these phenomena are: special features of the dielectric behavior of ion dipole gas, details of the temperature de-

pendence of the ion dipole gas osmotic pressure at the boundary of the liquid 
3
He–

4
He solution stratification, re-

laxation phenomena of collective origin in cryogenic electrolytes, and liquid helium phonon spectrum transfor-

mation due to strong interaction between phonons and heavy dipole quasiparticles.  

PACS: 67.10.–j Quantum fluids: general properties. 
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1. Introduction 

The cloud of charged particles produced by laser irradi-

ation of a cesium (rubidium) substrate at the bottom of a 

pressure chamber filled with helium and carrying zero total 

charge was shown in Refs. 1–3 to exert a surplus pressure 

on the lattice of solid helium. Most prominently this effect 

is observed when an ion column with the size of the order 

of the laser beam radius is produced in the solid helium 

matrix and then the external pressure reduced down to and 

the persistence of cP P , where 25cP  bar is the criti-

cal crystallization pressure of 
4
He. Unexpectedly, under 

these conditions a local “stalactite” (the authors of Refs. 1–3 

refer to this structure as “iceberg”) visually remains in the 

crystalline state. 

Basic results obtained in Refs. 1–3 are related to optical 

properties of alkali metals imbedded into solid helium. 

Traditionally (since 1970's, e.g., see Refs. 4–6), experi-

ments of that kind dealt with nonthermal excitations in 

various cryogenic media and, in particular, addressed the 

effects produced by helium of different densities on the 

outer electron shells of halogens. For our purposes, exten-

sive experimental data (contained both in original and re-

view papers and gathered in Refs. 1–3) can be classified 

into the following three rather conventional kinetics fre-

quency ranges: optical (electron transitions involving 

atomic shells of the particles taking part in the transition), 

intermediate (metastable excitations, such as excitons, 

excimers, exciplexes), and relatively slow relaxation. In 

the last case the evolution is mainly governed by the atom-

ic diffusion parameters of the problem. In semiconductor 

physics, the relevant analogue is the slow fluorescence 

where the exciton recombination is suppressed by trapping 

of excited electrons and holes by the intermediate levels 

[7] (see also, [8–11]). Within this classification scheme, 

one particular result reported in Refs. 1–3 concerning the 

anomalously long (compared with the estimates (1) and (2) 

below) stalactite lifetime is of special interest. According 

to remarks made in Refs. 1–3, the stalactites can persist for 

hours (no special observations to find the upper limit on 

their lifetime were performed). The authors of Refs. 1–3 

believe that the stalactites are only one of the yet few man-

ifestations of a curious and rather general phenomena. No-

body has yet succeeded in combining the prolonged 

striction effects of electric charges on helium with 

quenched recombination even within the scenarios outlined 

in Refs. 7–11. One can only assume that the final part of 

inevitable mutual approach of oppositely charged particles 

stops at some intermediate stage where a system of stable 

ion multipoles (the simplest one being a dipole consisting 

of a single-electron bubble and a “snowball”) without fur-

ther transition of the electron into the atomic shells of posi-

tively charged helium atoms. Schematically, the ion dipole 

is shown in Fig. 1. Just as single charges, loose dipoles can 

produce (although to a less extent) a compressing effect on 

the helium lattice right until their possible recombination. 
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The present work provides description and estimates for 

the processes associated with the natural tendency of oppo-

sitely charged ions to form bound complexes. Obviously, 

the contact stability of the structure consisting of a snow-

ball and a single-electron bubble cannot be proved pheno-

menologically (generally, finding the equilibrium proper-

ties of the dipole is a very hard nonlinear problem), and 

one should just rely on the direct evidence [1–3] indicating 

the existence of these dipoles. The paper concerns with the 

observable consequences of possible existence of a stable 

solution of these dipoles in liquid helium. Considered are 

some proposals for diagnostics of a superfluid dipole solu-

tion allowing to establish their existence and treat the situa-

tion as a whole as an example of a cryogenic electrolyte. 

Of special interest are the consequences of the coupling 

arising between the massive dipoles and the liquid helium 

phonons (for details, see the section “Some properties of 

cryogenic electrolytes”). 

2. Typical processes involved in formation of ion 

dipoles 

To get a quantitative estimate for the characteristic re-

laxation time He  of excited electron-ion cloud in cryo-

genic media it is useful to consider the processes occurring 

during formation of cosmic ray tracks in cryogenic gas 

chamber (the problem well known since the pioneering 

work of Wilson [8]). Analysis [9–11] reveals that at quali-

tative level kinetics governing positive and negative charg-

es approaching each other under the conditions of [8] is 

described by Smoluchovsky equation involving correlation 

functions of different complexity levels. At the final 

(which is simultaneously the slowest one) stage this equa-

tion assumes the form of Eq. (1) for the pair correlation 

function ( , )c r t  complemented with a suitable boundary 

condition which ensures at the last stages the recombina-

tion of a pair of charges into neutral molecule  

2= , ( ) = / ( ), ( , ) = 0,i

c c
D c U U r e r c R t

t T
 

  (1) 

where ( , )c r t  is the current probability of finding a particle 

at a distance r  from the attracting central body of radius 

iR  in the Coulomb field in the presence of diffusion coef-

ficient D  and  is the media dielectric constant. In that 

case the problem features two parameters. One of them is 

the characteristic distance cr , the other one — the typical 

charges mutual approach time   

 
2 2/ ( ) 1, /c ce r T r D  . (2) 

The details of the solution of Eq. (1) depend on the rela-

tionship between the initial relative position 0r  of charged 

particles and the scale cr : either 0 < cr r  or 0 > cr r . In both 

cases the time  (2) remains the typical time scale in the 

relevant scenario. For the situations involving the iceberg-

effect [1–3], i.e., under the conditions 1.08 , 1.5 KT  

the typical length scale is 
310cr  cm. Bearing also in 

mind the available data on D  in helium (at pressure 

26.6cP  bar (crystallization pressure), 810D cm
2
/s 

[12]) one obtains for He   

 
2 2

He He/ 10 s.cr D  (2a) 

This estimate is considerably shorter than the observed 

[1–3] lifetime of the iceberg-effects whose upper boundary 

has actually not been established (exceeds several hours). 

The approach involving Eqs. (1), (2) assumes the ions 

recombination when they approach each other at a distance 

ir R  (which is why the boundary condition ( , ) = 0ic R t  

(1) is imposed). This recombination produces a rather 

weak but still optically detectable luminescence (phospho-

rescence) [7]. The authors of Refs. 1–3, although employ-

ing time-resolved techniques and reporting observation of 

fluorescence with the duration of several hundreds micro-

seconds for the kinetics with intermediate frequencies, do 

not mention anything on this phenomena at the time scale 

of about He . Thus, two phenomena are clearly observed: 

anomalous lifetime of the macro-stalactite and the absence 

of any signs of fluorescence from the pace they occupy. If 

this is true, one can talk of the suppression of the relaxa-

tion process of the system of charged particles to the equi-

librium state at the level of loose dipoles consisting of a 

single-electron bubble and a snowball or similar more 

complex multipole structures. At the same time, there are 

no visible reasons which could prevent preservation of 

such metastable formations also in liquid phase where the 

“merging” process can be identified with the association 

phenomena typical of oppositely charged ions in the elec-

trolyte of arbitrary nature. 

It is appropriate here to address the local mechanisms of 

preserving helium in solid state under the action of the 

system of ions (dipoles) whose finite density is necessary 

Fig. 1. Schematic diagram of the ion dipole ( 0  is the electron 

ground state wave function). Typical sizes of the single electron 

bubble and the snowball indicated in the figure are taken from 

Ref. 12. 
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for observing the iceberg-effect. One of the possibilities 

mentioned by authors of Refs. 1–3 is related to the exist-

ence of a higher density domain in the vicinity of each ion. 

In liquid helium this domain has a finite radius snR  usual-

ly assumed to have been introduced by Atkins [13] (correct 

description of the solid phase nucleation center involving 

electrostriction effects can be found in the textbook [14] 

which mentions Refs. 8–11). In the range of cP P  the 

Atkins radius has a finite value of the order of sn 6R  Å. 

Under supercritical with respect to pressure conditions 

cP P  the presence of a finite (although rather low) den-

sity of nucleation centers in the form of snowball-ions is 

sufficient for maintaining of bulk helium plasma in the 

solid phase [14]. 

Another (less obvious) scenario of pressure increase 

within a spatial domain acted upon by laser radiation has a 

thermodynamic origin. Appearance of finite density of 

impurities (ions and dipoles) should result in local pressure 

enhancement P  of the osmotic nature [15]:  

 ,P cT  (3) 

where c  in the volume density of ions in the irradiated 

domain. Here the role of the membrane separating the solid 

solution containing ions from the liquid phase is played by 

the image force at the liquid–solid helium interface which 

is repulsive from the solid phase side and proportional to 

the square of the charge it acts upon. 

3. Some properties of cryogenic electrolytes 

Let us now consider several effects allowing to detect 

the presence of ion dipoles in liquid helium and study the 

details of their behavior; in liquid helium their finite equi-

librium density could be rather useful for the physics of 

liquid helium as a whole introducing a new type of quasi-

particles in the problem of calculating osmotic pressure 

and dielectric constant as well as providing a possibility of 

manipulating a new type of impurities in superfluid 
3
He, 

etc. 

First of all, we should discuss the mechanism of for-

mation of finite dipole density in liquid helium. One of the 

possible ways — liquid irradiation by a weak radioactive 

source — has long been used to work with ions in helium. 

Among recent related references one should mention a 

series of works [16–18] on the study of stability of charged 

liquid helium surface. The source integrated in the sub-

strate of the cell used to study the properties of helium 

films allowed to maintain the charged liquid helium sur-

face in a state close to the critical one. If necessary, the 

supercritical conditions resulting in the loss of stability of 

the vapor–liquid interface could also be produced. The cri-

tical surface charge density cn  is easily estimated to be 
1010cn  cm 2  with average distance between charges of 

the order of 
510  cm. This estimate allows to understand 

the processes occurring in bulk helium. In the absence of 

charge selection, the system considered in Refs. 16–18 can 

maintain within the bulk helium the charged pairs density 

not less than 14 1510  cm 3 . 

Second, the dielectric constant  is affected. Indeed, 

appearance of ionic dipoles with anomalously high dipole 

moment 20p  D in nonpolar liquid dielectric with small 

atomic polarizability 
25

0 5 10  cm
3
 can dramatically 

change the properties of  (its value is raised, and it be-

comes temperature and field dependent). 

Basic equations describing the volt-polar properties of 

the system of ion dipoles are [19]  

 
1 < >

= ,
4

P

E
 (4) 

 
sn

< > = < cos >, < cos > = ( ) = cot 1/ ,

= / , ( ).

P Np L

pE T p e R R
 

Here N  is the number of dipoles with strength p  in the 

unit solvent volume, sn,R R  are the bubble and snowball 

radii, respectively, T  is the temperature, ( )L  is the so-

called Langevene function,  is the volt-polar (depending 

on the dimensionless filed strength ) dielectric constant 

of liquid dielectric consisting of polar molecules (the sub-

script  is used to emphasize the existence of additional 

ion concentration dependent dielectric constant  [20] in 

the system of polar molecules). In the weak field limit  

 0| ,   

with the average dipole polarizability 2= / 3p p T . 

It is interesting to note that in usual liquids the limit 

1  is practically unattainable. For dipoles in helium one 

has ( 20p  Deb, 1E  CGSE, 1T  K)  

 = / 0.5,pE T   

i.e., transition to the domain 1  can be easily realized. 

Let us also estimate (at the level of polarizabilities) typ-

ical parameters related to ion dipoles. Instead of traditional 

effective polarizability  

 
2

0=
3

p

p

T
  

it is useful to have the estimate for relative importance of 

the contributions due to liquid with density 0N  and polar 

gas with the density 1N  in the form  

 
2

21
0 0 1 0

0

or = 3 / .
3

Np
N N T p

T N
 (5) 

For helium,  

25 3 22 3 8
0 0 1 05 10 cm , 2 10 cm , / 10 .N N N (5a) 

As already mentioned earlier these densities are quite 

achievable in today experiments [16–18]. 
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Of special interest is the statistical behavior of the gas 

consisting of large and heavy ion dipoles (possessing ef-

fective radius dR a , a  being the interatomic distance, 

and mass 4dM m , where 4m  is the helium atom mass) 

in liquid helium with well-defined quasiparticles, namely, 

phonons forming the helium normal component. The asso-

ciated mass of a sphere in a normal liquid has a square root 

singularity at zero frequency 
1/2( )dM  due to finite 

viscosity (described by Navier–Stokes equations) [21,22]. 

In statistical applications this singularities cannot be re-

moved by known methods of classical nonequilibrium 

thermodynamics (i.e., by introducing Einstein relations or 

by employing the more general detailed balance principle 

allowing to relate viscous dynamics to the equilibrium 

characteristics of the ensemble of particles which do not 

depend on kinetics of the system). As a result, the effective 

mass appearing in the Maxwell distribution for massive 

particles in the solvent proves to be energy dependent at 

low frequencies (this difficulty one could still put up with). 

However, what is even worse, the energy dispersion proves 

to have very bad structure: it depends on viscosity which 

should never take place in a consistent theory. The sug-

gested way of lifting the arising conflict is to prohibit mo-

tion of massive particles with respect to the superfluid he-

lium normal components. This forcible decision shifts the 

main efforts in the problem from the statistical behavior of 

massive impurities (in particular, helium ion dipoles) to the 

details of phonon dynamics in the presence of a finite den-

sity of impurities which is well known in physics of super-

fluids. The problem is also of interest for helium physics as 

a whole since normally superfluid helium does not accept 

any bulk impurities different from 
3
He atoms. 

Phonon vibrations in the systems with embedded impu-

rities have long been thoroughly studied in the general 

case. Basic results obtained by Lifshits (e.g., see Ref. 23) 

concern phonon spectra in disordered systems. However, 

they can be easily extended to phonon dynamics in liquid 

helium. This is most naturally done in the low-frequency 

range which is of particular interest to us from the view-

point of ion dipoles and where the so-called quasi-local 

vibrations due to impurities can be excited. Following 

Ref. 24 where the general formalism of Ref. 23 is de-

scribed in detail, we cite here final results on the phonon 

spectra of liquid helium perturbed by the presence of finite 

density c  of heavy impurities. In the low density limit 

2 2
* 4 4 4< [ / ( )] = [ / ( )] 1dc c m M m m m , 

  

2 2
2 2 2* 0

0 *2 2 2 2
0

[ ( ) ]
= ( ) 1 , .

[ ( ) ]

d
D

d

k
k c

k
 (6) 

In the range of k  the general dispersion law 

reaches the asymptotics  

 0 0 0 4= , = / , = 1 ( / ).sk s s n n c m m  (6a) 

Here 
2
0 ( )k  is the phonon dispersion law for zero impuri-

ties density, k  is the phonon wavenumber, D  is the De-

bye frequency, d  is the heavy impurity quasi eigenfre-

quency, and  is its decay rate. The origin of these 

parameters in the problem “heavy impurities + phonons” in 

liquid media is explained in the Appendix by the example 

of vibrations occurring in the system “heavy ion + vortex 

line”. Behavior of the phonon spectrum in the limit *<c c  

is shown in Fig. 2 taken from Ref. 24. 

In the opposite limit *>c c  an anti-crossing between 

the phonon part of the spectrum and the quasi-local 

eigenfrequency of the heavy impurity occurs. For this sce-

nario, we cite here expressions for the asymptotics “1” and 

“2” in Fig. 3 (also taken from Ref. 24) (results similar to 

straight lines in Fig. 2) 

 
0

1 2 0= , =
1 ( / )

s k
s k

c m m
, (7) 

where 0s  is the sound velocity in pure helium. Here quali-

tatively new effect compared to Fig. 2 is the development 

of the gap 0   

Fig. 2. Phonon spectrum of helium in the limit of low concentra-

tion of massive impurities, *<c c . The branch 0= s k  represent 

unperturbed phonons with the sound velocity 0s . = sk  is the 

asymptotics (6a) for the dispersion law for the case of finite den-

sity of heavy impurities. At the point 0=k k  found from the con-

dition 0( ) = kk , the frequency shift is zero. 

Fig. 3. Phonon spectrum in liquid helium containing heavy impu-

rities in the limit *>c c . Two oscillation branches with their in-

teraction neglected (a). The same branches with their interaction 

taken into account. A quasi-gap 0  (8) separating two branches 

of the long wavelength vibrations is clearly seen (b). 
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 0 4= 1 ( / )d c m m . (8) 

The difference between the phonon spectrum presented 

in Fig. 2 and that plotted in Fig. 3 can be directly observed 

experimentally. 

4. Summary 

Attempts to explain practically stationary iceberg-effect 

reported in Refs. 1–3 in the absence of luminescence from 

this domain led to the hypothesis (which needs further ver-

ifications) on the possibility of the existence of stable ion 

dipoles consisting of single-electron bubbles and snow-

balls. This hypothesis can be confirmed in several ways. 

Apart from the special behavior of the dielectric constant 

and appearance of specific osmotic pressure at the bounda-

ry of phase-separated 
3
He–

4
He solution “loaded” with fi-

nite density of ion dipoles, there is a peculiar transfor-

mation of the liquid helium phonon spectrum in the low-

frequency range. The point is that any heavy impurity (in-

cluding helium dipoles) should exhibit a nontrivial beha-

vior of the associated mass ( )M  in the low-frequency 

range 
1/2

0( )M  due to viscosity. This system 

provides a unique example of viscous dynamics and, which 

is less trivial, can be used to search for possible ways for 

statistical description of the gas of heavy impurities with 

rather exotic associated mass ( )M . In the proposed sce-

nario of this statistics, heavy impurities are firmly bound to 

the solvent normal component, i.e., in the case of liquid 

helium, to phonons. Therefore, relative motion between the 

impurities and the helium normal component (which is 

responsible for the solvent viscosity) is cancelled thus 

eliminating any reasons for the effective mass singularity 
1/2

0( )M ). The price paid for this cancellation 

is rather serious: the phonon spectrum of liquid helium is 

substantially transformed and its perturbations which are 

proportional to the ion dipole density can be observed ex-

perimentally. 

The work was partly supported by RFBR grant 12-02-

00229-a and Program of the Presidium of Russian Acade-

my of Sciences “Disordered Structures”. 

Appendix 

Among the known problems illustrating interaction of a 

heavy particle with the elastic medium possessing acoustic 

phonon spectrum, we choose to consider dynamics of a hea-

vy ion localized at the vortex ring. 

Equations of motion are  

 
22

2
= ( )

4

y x
x

u u
F z

t z
, (A.1) 

 

22

2
= ( )

4

yx
y

uu
F z

t z
, (A.2) 

 =0= , = , = ln (8 / )i i zM R ar F u r , (A.3) 

where  is the vortex circulation, R  is the ring radius, a  

is the vortex core radius, and iM  is the ion mass. The ring 

is assumed to have a finite radius to avoid discussions of 

typical vortex divergencies (in particular, that related to the 

parameter  in (A.3)). That radius will be assumed to be 

sufficiently large to justify replacement of summation with 

integration over the phonon frequencies in Eq. (A.4). 

A critically important point in the main text pinning 

heavy particles to the normal component of the superfluid 

liquid is introduced in dynamics (A.1)–(A.3) through the 

equation =0 =zu r  (A.3) firmly relating the ion position r  

to the string vibration amplitude ( , )u z t  at the point = 0z  

where the ion is localized at the vortex line. 

In the limit 4iM m  (which is quite suitable for the 

ion dipole dynamics) Fourier transformed equations of 

motion result in the following dispersion law:  

 
3 2 2 4 2 2

=
( / 4 )i

dq

M q
. (A.4) 

Here the sum over discrete phonon frequencies of the ring 

is replaced with the integral over q . 

Solution of this dispersion equation yields  

 

1/2 1/22
2 1

2 4 4
i

i

i

RM R
. (A.5) 

For 4100iM m  and 410R  cm,  

 
9 1 2Re 10 s , Im 10 Rei i i . (A.6) 

Re i , Im i  explain physical meaning of the eigenfre-

quency d  and its decay rate  appearing in Eq. (6) of 

the main text. 
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