
© M.Yu. Kagan and V.V. Valkov, 2011 

Fizika Nizkikh Temperatur, 2011, v. 37, No. 1, p. 84–99 

Anomalous resistivity and superconductivity 
in the two-band Hubbard model with one narrow band 

(Review Article) 

M.Yu. Kagan 
P.L. Kapitza Institute for Physical Problems of the Russian Academy of Sciences 

2 Kosygina Str., Moscow 119334, Russia 
E-mail: kagan@kapitza.ras.ru 

V.V. Valkov 
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences 

Akademgorodok, Krasnoyarsk 660036, Russia 

Received September 7, 2010 

We search for marginal Fermi-liquid behavior in the two-band Hubbard model with one narrow band. We 
consider the limit of low electron densities in the bands and strong intraband and interband Hubbard interactions. 
We analyze the influence of electron–polaron effect and other mechanisms of mass-enhancement (related to 
momentum dependence of the self-energies) on effective mass and scattering times of light and heavy compo-
nents in the clean case (electron–electron scattering and no impurities). We find the tendency towards phase-
separation (towards negative partial compressibility of heavy particles) in a 3D case for large mismatch between 
the densities of heavy and light bands in a strong coupling limit. We also observe that for low temperatures and 
equal densities the resistivity in a homogeneous state R(T) ~ T 2 behaves in a Fermi-liquid fashion both in 3D 
and 2D cases. For temperatures higher then effective bandwidth for heavy electrons T > Wh

* the coherent beha-
vior of heavy component is totally destroyed. The heavy particles move diffusively in the surrounding of light 
particles. In the same time the light particles scatter on the heavy ones as if on immobile (static) impurities. In 
this regime the heavy component is marginal, while the light one is not. The resistivity goes on saturation for 
T > Wh

* in the 3D case. In 2D the resistivity has a maximum and localization tail due to weak-localization cor-
rections of Altshuler–Aronov type. Such behavior of resistivity in 3D could be relevant for some uranium-based 
heavy-fermion compounds like UNi2Al3 and in 2D for some other mixed-valence compounds possibly including 
the layered manganites. We also consider briefly the superconductive (SC) instability in the model. The leading 
instability is towards p-wave pairing and is governed by enhanced Kohn–Luttinger mechanism of SC at low 
electron density. The critical temperature corresponds to the pairing of heavy electrons via polarization of the 
light ones in 2D. 

PACS: 71.10.–w Theories and models of many-electron systems; 
71.27.+a Strongly correlated electron systems; heavy fermions; 
71.28.+d Narrow-band systems; intermediate-valence solids. 

Keywords: marginal Fermi-liquid, electron–polaron effect, two-band Hubbard model, weak-localization correc-
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Dedicated to the memory of Prof. David Shoenberg 

1. Introduction 

The physics of uranium-based heavy-fermion com-
pounds and the origin of a heavy mass *

hm ~ 200me in them 
is possibly very different (see [1]) from the physics of ce-
rium-based heavy-fermions, where the Kondo-effect is 
dominant [2,3]. The point is that uranium-based heavy-
fermions are usually in the mixed valence limit [4] with 
strong hybridization between heavy and light components. 
On the level of two-particle hybridization interband Hub-
bard interaction leads to an additional enhancement of the 
heavy electrons mass due to electron–polaron effect (EPE). 
Physically EPE is connected with a nonadiabatical part of 
the many-body wave function describing a heavy electron 
and a cloud of virtual electron–hole pairs of light electrons. 
These pairs are mixed with the wave function of the heavy 
electrons but do not follow it when a heavy electron tun-
nels from one elementary cell to a neighboring one. It is 
shown in [1] that in the unitary limit of the strong Hubbard 
interaction between heavy and light electrons an effective 
heavy mass could reach the value *

hm /ml ~ (mh/ml)
2 and if 

we start from the ratio mh/ml ~ 10 between bare masses of 
heavy and light electrons, on the level of local-density ap-
proximation (LDA), for example, we could finish with an 
effective value *

hm  ~ 100 ml, which is typical for uranium-
based heavy-fermion compounds. 

The similar effect could be described also with the help 
of the strong one-particle hybridization between heavy and 
light bands [1]. 

A natural question arises: whether the two-band Hub-
bard model with one narrow band is a simple toy-model to 
observe non-Fermi-liquid behavior and in particular a well-
known marginal Fermi-liquid behavior [5]. Remind that in 
marginal Fermi-liquid (MFL) theory the quasiparticles are 
strongly damped (Im ε ~ Re ε ~ T). The strong damping 
γ ~ T of the quasiparticles (instead of a standard damping 
for Landau Fermi-liquid picture γ ~ T2 /εF) could explain, 
according to [5] a lot of experiments in HTSC compounds 
including a linear resistivity R(T) ~ T for T > Tc at optimal 
doping concentrations. The MFL picture was also propo-
sed to describe the properties of UPt3 doped by Pd includ-
ing the specific heat measurements [6]. 

In the present paper we evaluate the damping and trans-
port times for heavy and light electrons. We verify these 
times on marginality and find that for low temperatures 
T < *

hW  — the effective bandwidth for heavy electrons and 
equal densities of heavy and light bands in a homogeneous 
state we have a standard behavior for Landau Fermi-liquid 
with a resistivity R(T) ~ T2  for the case of electron–
electron scattering both in 3D and 2D. For higher tempera-
tures T > *

hW  ( *
hW ~ 50 K for *

hm  ~ 200me) the heavy 
band is totally destroyed and heavy particles move diffu-
sively in the surrounding of light particles while the light 
particles scatter on the heavy ones as if on immobile (stat-
ic) impurities. For these temperatures the heavy component 
is marginal, while the light one is not. We try to make a 
light component marginal also taking into account weak-
localization corrections of Altshuler–Aronov type [7] for 
scattering time of light electrons. We do not get marginal 
behavior of light component, but we get a very interesting 
anomalous resistivity characteristics especially in a 2D 
case, where for T ~ *

hW  resistivity has a maximum and a 
localization tail at higher temperatures [8]. In 3D the resis-
tivity goes to saturation for T > *

hW . Such resistivity cha-
racteristics could possibly describe some 3D uranium-
based heavy-fermion compounds like UNi2Al3 and some 
other mixed-valence systems. In 2D the behavior of resis-
tivity possibly has some relation to layered manganites 
where we deal with two degenerate (eg) conducting orbi-
tals (bands) of d-electrons of Mn. However for manganites 
an alternative explanation is possible [9]. According to it, 
the resistivity is governed by electron tunneling from one 
metallic FM polaron to a neighboring one via an insulating 
AFM or PM barrier in the regime of a nanoscale phase 
separation in electronic subsystem. It will be interesting to 
compare these two mechanisms for resistivity in layered 
manganites more accurately. 

We also consider other mechanisms of heavy-mass en-
hancement different from EPE and find a very pronounced 
effect in 3D connected with momentum dependence of the 
self-energy of heavy electrons due to «heavy–light» inte-
raction. In a strong coupling limit this effect could provide 
even larger ratios of *

hm /mh than EPE. It leads to negative 
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compressibility of heavy particles and thus reveals the ten-
dency towards phase-separation or at least charge redistri-
bution between the bands for a large density mismatch 
nh >> nl in qualitative agreement with the results of [10]. 

In the final section of the paper we study the leading SC 
instability which arises in the two-band model in a 2D 
case. The leading instability at low density is proved to be 
towards triplet p-wave pairing. It describes the pairing of 
heavy electrons via polarization of light electrons [11,12] 
in the framework of the enhanced Kohn–Luttinger [13] 
mechanism of SC and provides rather realistic critical tem-
peratures in a 2D or layered case, especially for the situa-
tion of the geometrically separated bands belonging to 
neighboring layers. 

2. The two-band Hubbard model with one narrow band 

The Hamiltonian for the two-band Hubbard model reads: 

ˆ ( )

, (1)
2

L h
h i j l i j ih i i

ij ij i i

hl
hh ih ih ll il il il ih

i i i

H t a a t b b n n n

UU n n U n n n n

+ + σ
σ σ σ σ σ σ

< >σ < >σ σ σ

↑ ↓ ↑ ↓

′=− − +Δ −μ + +

+ + +

∑ ∑ ∑ ∑

∑ ∑ ∑
 

where Uhh and Ull are intraband Hubbard interactions for 
heavy and light electrons respectively, Uhl is interband 
Hubbard interaction between heavy and light electrons, th 
and tl are transfer integrals for heavy and light electrons, 

,ih i i il i in a a n b bσ + σ +
σ σ σ σ= =  are the densities of heavy and 

light electrons on site i with spin-projection σ, μ is chemi-
cal potential, Δ is the difference between the bottoms of the 
bands. After Fourier transformation we get: 

'

ˆ ( ) ( )

( ) , (2)
2

h p p l p p
p p

hh llp p p q p q p p p q p q
pp q pp q

hl
p p p q p q

pp q

H p a a p b b

U a a a a U b b b b

U
a b b a

+ +
σ σ σ σ

σ σ
+ + + +

′ ′ ′ ′↑ ↓ − ↓ + ↑ ↑ ↓ − ↓ + ↑
′ ′

+ +
′ ′ ′ ′σ σ − σ + σ

′
σσ

′= ε + ε +

+ + +

+

∑ ∑

∑ ∑

∑

 

where in D-dimensions for the hypercubic lattice 

0
1 1

( ) 2 cos ( ) , ( ) 2 cos ( )
D D

h h a l l a
a a

p t p d p t p d
= =

ε =− −ε −μ ε =− −μ∑ ∑
 

are the quasiparticle energies for heavy and light bands 
(see Fig. 1), pa = {px, py, …} are Cartesian projections of 
the momentum. For low densities of heavy and light com-
ponents tot ( ) 1D D

h ln d n n d= +  the quasiparticle spec-
tra read: 

 
2 2

0

2 2

( ) ( ) ;
2

( ) ( ) ,
2

h
h h

l
l l

W
p t p d

W
p t p d

ε = − + − ε −μ

ε = − + −μ
 (3) 

where Wh = 4Dth and Wl = 4Dtl are the bandwidths of 
heavy and light electrons for the D-dimensional hypercubic 

lattice, d is intersite distance. Hence introducing the bare 
masses of heavy and light component: 

 2 2
1 1;  

2 2
h l

h l
m m

t d t d
= =  (4) 

and Fermi energies: 

 
2

0 ;
2 2 2

Fh h l
Fh Fl

h

p W W
m

ε = = +μ + ε ε = +μ , (5) 

we finally get for the quasiparticle spectra for T → 0: 

 
2

( ) ;
2h Fh

h

pp
m

ε = − ε  
2

( )
2l Fl

l

pp
m

ε = − ε . (6) 

In deriving (4)–(6) we implicitly assume that the difference 
between the bottom of the bands Δ on Fig. 1 is not too 
large, so parabolic approximation for the spectra of both 
bands is still valid. 

Note that there is no one-particle hybridization in the 
Hamiltonians (1), (2) but there is a strong two-particle hy-
bridization  

2
h lhl
i i

i

U
n n∑ . 

We assume that mh >> ml and thus  

 Wh/ Wl = ml/mh << 1. (7) 

We also assume that Uhh ~ Ull ~ Uhl >> Wl >> Wh — 
strong-coupling situation (Uhl is large because in reality 
light particles experience strong scattering on the heavy 
ones as if on a quasiresonance level). Finally we consider 
the most simple case when densities of the bands are of the 
same order: nh ~ nl (note that in 3D n = pF

3/3π2 while in 
2D n = pF

2/2π). 

3. The Kanamori T-matrix approximation 

According to renormalization scheme of Kanamori the 
strong Hubbard interactions [14] in case of low electron 

Fig. 1. The band structure in the two-band model with one nar-
row band. Wh and Wl are the bandwidths of heavy and light elec-
trons, εFh and εFl are the Fermi energies Δ is the energy differ-
ence between the bottoms of the heavy and light bands μ is 
chemical potential.

Wl Wh

�

�Fh

�

�Fl
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density (practically empty lattice) should be replaced by 
the corresponding vacuum T-matrices (see Fig. 2). 

In the 3D case the solution of the corresponding Bethe–
Salpeter integral equations in vacuum yields for T-matri-
ces: 

 

3 3

3 vac

3 3

*

;
1 (0,0) 1

8

; ,
1 1

88

hh hh
hh

hh hh hh

h

hl ll
hl ll

hl ll

lhl

U d U dT
U d K U

t

U d U dT T
U U

tt

= =
−

+
π

= =

+ +
ππ

 (8) 

where  
3

vac
3 2(0,0)

(2 )
h

hh
mdK
p

= −
π∫
p  

is a Cooper loop for heavy particles in vacuum (a product 
of two vacuum Green functions of heavy particles in a 
Cooper channel for total frequency and total momentum 
equal to zero),  

*
2*

1
( )2

h l
hl l

h lhl

m mm m
m mt d

= = ≈
+

 

for mh >> ml is an effective mass for the T-matrix Thl (for 
scattering of light electrons on heavy ones) and according-
ly *

hl lt t≈ is an effective transfer integral; Ud3  plays the 
role of zeroth Fourier component in 3D. As a result for 
Uhh ~ Ull ~ Uhl >> Wl >> Wh: 

 3 38 ; 8 .hh h hl ll lT t d T T t d= π ≈ ≈ π  (9) 

The s-wave scattering length for the Hubbard model 
[11] is defined as 2/(4 ) /(8 )a mT T td= π = π  and thus: 

 ahh = ahl = all = d (10) 

in a strong-coupling case. 
Correspondingly the gas parameter of Galitskii f0 = 

= 2apF/π [15,16] for the case of equal densities of heavy 
and light bands nl = nh reads: 

   0 0 0( 2 / ) ( 2 / ) 2 /l h
Fl Fh Ff f dp f dp dp= = π = = π = π . (11) 

(it is convenient to include the factor 2/π in the definition 
of the gas-parameter in 3D). In the 2D case for strong 
Hubbard interactions and low densities with logarithmic 
accuracy the vacuum T-matrices read for nl = nh [11,12]: 

2 2

21/ 2
2 2

2
2

2 2

2 2 2 2

;
11 ln

81
8

; ,
1 11 ln 1 ln

8 8

hh hh
hh

d hh
hh

h F
h

pF

ll hl
ll hl

ll hl

l F l F

U d U dT
U

U dp t p dt p

U d U dT T
U U

t p d t p d

= =
⎛ ⎞ ⎛ ⎞

+⎜ ⎟ ⎜ ⎟⎜ ⎟π+⎜ ⎟ ⎝ ⎠π⎜ ⎟
⎝ ⎠

= ≈
⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟π π⎝ ⎠ ⎝ ⎠

∫
  (12) 

where Ud2  plays the role of zeroth Fourier component of 
the Hubbard potential in 2D. As a result in a strong coupl-
ing case the 2D gas parameter of Bloom [17] for equal 
densities nl = nh reads: 

 0 0 0
1

2ln (1/ )l h
F

f f f
p d

= = = . (13) 

4. Evaluation of the self-energies of heavy and light 
bands 

Let us evaluate the imaginary part of the self-energies 
Im Σ in a two-band Hubbard model considering a clean 
case (no impurities) and taking into account only electron 
— electron scattering. It is important for evaluation of the 
scattering times for heavy and light electrons and further 
calculation of the resistivity R(T).  

In the two-band model (see Fig. 3): 

 Σh = Σhh + Σhl  and  Σl = Σll + Σlh . (14) 

The full T-matrices in substance which enter in the dia-
grams for Σ in Fig. 3 have the form in 3D case: 

 
3

3( , ) ,
1 ( , )

hh
hh

hh hh

U d
T

U d K
Ω =

− Ω
p

p
 (15) 

where: 

  
3

1 ( ) ( )
( , )

( ) ( )(2 )

F FD h p p h
hh

h h

n ndK
p p p io

′ ′+ −− ε − ε′
Ω =

′ ′Ω − ε + − ε − +π∫ ppp  (16) 

is a Cooper loop in substance (a product of the two Green-
functions in the Cooper channel), ( )F

hn ε  is the Fermi–
Dirac distribution function for heavy particles, and analo-
gously for the full T-matrices Thl, Tlh and Tll and Cooper 
loops Khl, Klh and Kll 

Fig. 2. T-matrices hhT , Tll and hlT  for the two-band model with
heavy (h) and light (l) electrons. 
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Fig. 3. The T-matrix approximation for the self-energies of a hea-
vy particle. hhT  and hlT  are the full T-matrices in substance. 
The diagrams for Σl have the analogous character. 
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If we expand the T-matrix for heavy particles in first 
two orders in gas-parameter, than according to Galitskii 
[15] we get: 

 

2
vac

3
vac 2

4 4( , ) ( )

4 ( ) ,

h h
hh hh hh

h h

h
hh hh

h

a aT K K
m m

ao K K
m

⎛ ⎞π π
Ω = + − +⎜ ⎟

⎝ ⎠
⎡ ⎤⎛ ⎞π⎢ ⎥+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

p

 (17) 

where 

 
3

3 vac
4

1
h hh

h hh hh

a U d
m U d K

π
≈

−
 (18)  

and coincides with Kanamori approximation for the vacu-
um T-matrix  

3 3
vac

2 2
/ (2 )( , )

( )
2 2

hh

h h

dK
p

m m

′ π
Ω =

′ ′+
Ω − −

∫
pp

p p
 

is the Cooper loop in vacuum (rigorously speaking the 
scattering length is defined via vac (0,0)hhK  but the differ-
ence between vac ( , )hhK Ω p  and vac (0,0)hhK  is proportional 
to the gas-parameter h Fha p  and is small). Khh in (17) is full 
Cooper loop (cooperon) in substance for heavy particles 
given by (16). If we consider the low densities and the 
energies close to Fε  we can show that the terms which we 
neglect in Thh are small with respect to the gas parameter 

vac4 ( )h
hh hh h Fh

h

a K K a p
m
π

− ∼ . 

The self-energy of heavy particles hhΣ  in the first two 
orders of the gas-parameteris given by: 

2
vac 3

( ) ( ) ( )

4 4( ) ( ) ( ) ( ) .

hh hh h
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h h
h hh hh h h Fh

h hk k
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⎝ ⎠

∑

∑ ∑
 

  (19) 
First term will get (4 / )h h ha m nπ . It is just Hartree–Fock 

contribution. For the second term we can make an analytic 
continuation ni ioω →ω+  for bosonic propagator Khh and 
fermionic propagator Gh. As a result (having in mind that 

vacIm 0hhK = ) we get for imaginary part of (2)
hhΣ : 
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2
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and analogously for the real part of (2)
hhΣ : 
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where for the real part of a Cooper loop in vacuum: 
3

vac
3 2 2 2 2

2
Re ( , )

(2 ) ( )
h

hh k p
mdK P

′
ε +ε + =

′ ′π + − + + −∫
pk p

k p p k p p
 (22) 

is calculated in resonance for k pΩ = ε + ε  (or for pε = ε ), 
P is principal value. In (20), (21)  

/
1( )

e 1
B Tn

Ω
Ω =

−
  and  /

1( )
e 1

F Tn
Ω

Ω =
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are bosonic and fermionic distribution functions and cor-
respondingly: 

 
( )1( ) ( ) cth th

2 2 2
k k

B k F kn n
T T

ε + ε ε⎡ ⎤ε + ε + ε = −⎢ ⎥⎣ ⎦
. (23) 

The real part of a Cooper-loop in substance for heavy 
particles reads: 

 
( )3

Re ( , )

1 ( ) ( )
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h h

h h h

K

n nd
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′ ′′ − + + − −
=
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∫
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.  

The analytic continuation for (2)
hhΣ in a 2D case is similar to 

3D case. 
Note that for / 1TΩ  the bosonic distribution function 
( ) 0Bn Ω → and the fermionic distribution function 
( ) ( )Fn Ω →θ Ω  — step-function. As a result for 0T →

Im hhΣ  and Re hhΣ  acquire the standard form [15,16,18]. 
In fact for low temperatures  h lT W W the most con-
venient way is to evaluate (2)Im ( )hhΣ ε  for T → 0, thus get 
the standard Fermi-liquid result (2) 2Im ( )hhΣ ε ε∼ and then 
make the temperature averaging with the corresponding 
fermionic distribution function ( )Fn ε . Thus Tε ∼  for the 
lifetimes (or as we will show later for the scattering times) 
of the quasiparticles. The evaluation of hlΣ , lhΣ  and llΣ
at low temperatures in first two orders in gas-parameter is 
similar to the evaluation of hhΣ  both in 3D and 2D cases. 

However for higher temperatures we should have in 
mind that ( ) /Bn TΩ → Ω  for T Ω . The fermionic dis-
tribution function is «washed» out by temperature. Accor-
dingly ( ) ½(1 / 2 )Bn TΩ = −Ω . These approximations are 

Fig. 4. An exchange-type diagram for the self-energy hh
σΣ  which

contains the matrix element a a a a+ +
σ σ σ σ  and thus is absent in the

Hubbard model. 
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important when we evaluate ImΣ  for higher temperatures 
T>Wh [22]. 

Note that in contrast with the model of slightly non-
ideal Fermi-gas (see [15,16,18]) the Hubbard model does 
not contain an exchange-type  diagram for hhΣ (see Fig. 4) 
since the T-matrix in this diagram corresponds to incoming 
and outgoing heavy particles with the same spin-projection 

   a a a a+ +
σ σ σ σ  while the Hubbard model contains only the 

matrix elements a a a a+ +
↓ ↑↑ ↓

. 
Note also that when we expand the T-matrix till second 

order of gas-parameter we implicitly assume that the T-matrix 
itself does not have a simple pole-structure of a type of a bo-
sonic propagator. This is a case for partially filled band 

1D
hn d  and low energy sector where 0 h hhW U< ε < . 

Effectively we neglect the lattice in this expansion. 
However an account of the lattice produces two poles 

for the full (unexpanded) T-matrix of heavy particles in 
(15). First one is connected with the so-called antibound 
state predicted by Anderson [20] and corresponds to large 
positive energy ε ~ Uhh. Second pole found by Engelbrecht 
and Randeria [21] corresponds to negative energy and 
yields in 2D case: 

 
22

2 (1 2 ) 1 .Fh h
Fh h

h hh

W
n

W U
⎛ ⎞ε

ε = − ε − − −⎜ ⎟
⎝ ⎠

 (24) 

It describes the bound state of the two holes below the 
bottom of the heavy band ( 2 Fhε < − ε ). Thus it has zero 
imaginary part and does not contribute to Im T. (This mode 
produces non-analytical corrections to 5/2Re | |hhΣ ε∼  in 
2D). We can neglect both these  two contributions for the 
self-energy when we will calculate the effective masses 
and lifetimes in the forthcoming sections. The more rigor-
ous approach to the generalization of Galitskii results for 
the self-energy [15] on the case of finite temperatures 
which is important for kinetic applications will be a subject 
of separate publication. 

5. Electron–polaron effect and other mechanisms 
of the heavy mass-enhancement.  

The tendency towards phase-separation 

The Green-functions for heavy and light electrons for 
T → 0 read: 

   

*

*

1( , ) ;
( ) ( , ) ( )

and  analogously

( , ) ,
( )

h
h

h h h

l
l

l

Z
G

q q io

Z
G

q io

ω = ≈
ω− ε −Σ ω ω− ε +

ω ≈
ω− ε +

q
q

q

 (25) 

where 

 
2 2

*
*

( )
2

Fh
h

h

q p
q

m

−
ε =  

2 2
*

*
  and  ( )

2
Fl

l
l

q p
q

m

−
ε =  (26) 

are renormalized quasiparticle spectra: 

 

(2)
1

0

(2)
1

0

Re ( , )
1 ;

Re ( , )
1

h
h

q pFh

l
l

q pFl

Z

Z

−

ω→
→

−

ω→
→

⎛ ⎞
⎜ ⎟∂ Σ ω

= −⎜ ⎟
∂ω⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟∂ Σ ω

= −⎜ ⎟
∂ω⎜ ⎟⎜ ⎟

⎝ ⎠

q

q

   (27) 

are Z-factors of heavy and light electrons. Substitution of 
the leading contribution from (2)Re ( , )hlΣ ω q  to (2)Re ( , )hΣ ω q  
in (27) yields: 

2(2)

*0

Re ( , ) 4
lim ~hl hl

hlq pFh

a
mω→

→

⎛ ⎞∂ Σ ω π
− ×⎜ ⎟⎜ ⎟∂ω ⎝ ⎠

q
 

2
[1 ( ) ( )] ( )

,
(2 ) (2 ) [ ( ) ( ) ( )]

F F FD D
l h l

D D
l l h

n n nd d ′ ′′ − + − − −
×

′ ′π π ε − − ε + − ε −∫∫
p p p p qp p

p q p p p  
(28) 

where nB(Ω) → 0, nF(Ω) is a step-function for Ω/T >> 1; 
ahl ≈ d is connected with the vacuum T-matrix Thl; *

hlm ≈  
.lm≈  Replacing in (28)  

(2 ) (2 )

D D

D D
d d ′

π π

p p  

by 2 (0) ( ) ( )l l lN d d ′ε εp p  (where Nl(0) is a density of states 
for light particles), and taking into account that 

( ) 0Lε − <p q  while ( ) 0L ′ε + >p p  we can easily check 
that for mh >> ml (or equivalently for Fl Fhε ε ) this ex-
pression contains a large logarithm. Thus for Z-factor of 
the heavy particles: 

 1 2
01 2 ln ,h

h
l

m
Z f

m
− ≈ +  (29) 

where f0 = 2pFld/π is the gas parameter in 3D and equiva-
lently 0 1/ [2 ln (1/ )]Flf p d=  in 2D. Note that the contribu-
tion to Zh from (2)Re hhΣ  does not contain a large logarithm. 
Correspondingly for effective mass of a heavy particle in 
(25) according to [16,18] we get: 

 
(2)

*
( ) 0

Re ( ( ), )
1

( )
hh hl

h
hh qh

m
Z

m
ε →

⎛ ⎞
∂ Σ ε⎜ ⎟= +⎜ ⎟∂ε⎜ ⎟

⎝ ⎠

q q
q

. (30) 

Thus, as usual, Z-factor contributes to the enhancement 
of a heavy-mass:  

 
*

1 2
0~ ~ 1 2 ln .h h

h
h l

m mZ f
m m

− ⎛ ⎞
+⎜ ⎟

⎝ ⎠
 (31) 

The analogous calculations for Zl with Re Σlh and Re Σll 
yields only 1 2*

0/ ~ ~ (1 )l l lm m Z f− + . If the effective pa-
rameter 2

02 ln ( / ) 1h lf m m >  we are in the situation of 
strong electron–polaron effect. In this range of parameters, 
to get a correct polaron exponent diagrammatically, we should 
sum up so-called maximally crossed diagrams for Re Σhl. 
The exponent evaluation could be fulfilled, however, in a 
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different technique which is based on the non-adiabatic 
part of the many-particle wave-function [1] which de-
scribes a heavy particle dressed in a cloud of electron–hole 
pairs of light particles. This yields: 

 
* 11~ ,

b
bh h

h
h l

m m
Z

m m

−− ⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (32) 

where b = 2f0
2. For b = ½ or equivalently for f0 = ½ (as for 

the coupling constant of the screened Coulomb interaction 
in the RPA scheme) we are in the so-called unitary limit. 
In this limit according to [1] the polaron exponent is: 

 1 ,
1

b
b
=

−
 (33)  

and thus: 

 
*
h h

h l

m m
m m

= , (34) 

or equivalently: 

 
2*

.h h

l l

m m
m m

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

  (35) 

Hence starting from the ratio between the bare masses 
mh/ml ~ 10 (obtained, for instance, in LDA approximation) 
we finish in the unitary limit with *

hm /ml ~ 100 (due to 
many-body EPE), which is a typical ratio for uranium-ba-
sed heavy-fermion (HF) systems.  

Note that rigorously speaking (see (30)) the momentum 
dependence of (2)Re ( ( ), )hhlΣ ε q q  is also very important for 
the evaluation of the effective mass. 

Very preliminary estimates of N.V. Prokof’ev and the 
author of a present paper [23] show that in zeroth approx-
imation in ml/mh in 3D case close to the Fermi-surface (for 

2 2
( ) 0

2
Fh

h
h

q p
q

m
−

ε = →  and q → pFh):  

 

(2)

2 3

3

Re ( ( ), )

4
2 (0, ) ( ) ,

(2 )

hl h

Fhl
ll h

l

a d n
m

Σ ε ≈

⎛ ⎞π
≈ Π −⎜ ⎟

π⎝ ⎠
∫

q q

p p p q  (36) 

where 

 
3

3

( ) ( )
(0, ) ,

( ) ( )(2 )

F F
l p p l p

ll
l l

n nd ′ ′+ε − ε′
Π =

′ ′ε − ε +π∫
pp

p p p
 (37) 

is a static polarization operator for light particles. Having 
in mind that Fhp− <p q ; q ≈ pFh in (36) we can see that 

0→p  and use the asymptotic form for (0, )llΠ p  at small 
p << pFl (if the densities of heavy and light bands are not 
very different and pFl ~ pFh): 

 
2

20
lim (0, ) (0) 1 ,

12
ll l

p Fl

pN
p>

⎡ ⎤
Π = −⎢ ⎥

⎢ ⎥⎣ ⎦
p  (38) 

where Nl(0) = mlpFl/2π
2 is the density of states for light 

electrons in 3D. The substitution of 
0

lim (0, )ll
p→

Π p  from 
(38) to (36) yields: 

 

(2)

2 2 2
(2) 0

Re ( ( ), )

Re (0, ) ,
2 9

hhl

Fh h h
Fhhl

h l l

q p f m n
p

m m n

Σ ε ≈

−
≈ Σ −

q q

 (39) 

where f0 = 2dpFl/π is a 3D gas parameter, nh = pFh
3/3π2, 

nl = pFl
3/3π2 are the densities of heavy and light bands. 

The first term in (39) describes (2)Re ( ( ), )hhlΣ ε q q  on 
the Fermi-surface (for εh(q) = 0 and q = pFh): 

 
2 2

(2) 0
2

4 2
Re (0, ) ~ 1 0

3 15
h Fh

Fh Flhl
l Fl

f n p
p

n p

⎛ ⎞
Σ ε − >⎜ ⎟⎜ ⎟

⎝ ⎠
 (40) 

for ~Fh Flp p . 
It is renormalization of an effective chemical potential 

of the heavy band in the second order of the gas parameter 
due to the interaction of light and heavy particles. 

Note that according to [15,16] the renormalized heavy-
particle spectrum reads: 

 ( )

2
eff*

2 2
(2)

*

2( ) ( )
2

Re ( ), ,
2

h h l hl
h l

Fh
hl h

h

qq n a
m m

q p
m

⎛ ⎞ π
ε = −μ + μ +⎜ ⎟⎜ ⎟

⎝ ⎠
−

+ Σ ε =q q  (41) 

where the scattering length ahl ≈ d, an effective chemical 
potential eff

0/ 2h hh Wμ = μ + + ε  is counted from the bottom 

of a heavy band, and the Hartree–Fock term (2π/ml)nl(μ)ahl 
represents the first-order in gas-parameter contribution to 
the self-energy (1)Re hlΣ . Thus collecting the terms propor-

tional to 
2 2

( )
2

Fh
h

h

q p
q

m
−

ε =  we get from (41): 

 
2 2 2

0
* ( ) 1

92
Fh h h

h
l lh

q p f m n
q

m nm

⎡ ⎤−
= ε −⎢ ⎥

⎢ ⎥⎣ ⎦
. (42) 

Correspondingly the effective mass of a heavy particle is 
given by: 

(2) 2
0

*
0

Re ( ( ), )
1 1 .

( ) 9
hh hl h h

h l lh
h

qm f m n
q m nm

ε →

⎛ ⎞∂ Σ ε
= + = −⎜ ⎟⎜ ⎟∂ε ⎝ ⎠

q
 (43) 

As a result we get much more dramatic enhancement of 
*
hm  than EPE which yields only 2*

0/ 1 2 ln ( / )h h h lm m f m m≈ −  
via Z-factor of a heavy particle. Note that the contribution 
to *

hm /mh from (2)Re ( ( ), )hhh qΣ ε q  connected with «heavy–
heavy» interaction is small in competition with the contri-
bution to *

hm  from (2)Re hlΣ  (which is connected with 
«heavy–light» interaction) due to the smallness of the ratio 
between the bare masses: ml/mh << 1. Now we can collect 
the terms which do not depend upon εh(q) in (41). Thus we 
get for the effective chemical potential of heavy electrons: 

 
2

(2)eff 2 ( ) Re (0, )
2

Fh
h l hl Fhhl

lh

p
n a p

mm
π

μ = + μ + Σ . (44) 

Note that the contributions to eff
hμ from the Hartree–

Fock term (2π/mh)nh(μ)ahh of a heavy electrons and from 
(2)Re (0, )Fhhh pΣ (which is connected with «heavy–heavy» 
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interactions) are small in comparison with «heavy–light» 
contributions due to the smallness of the ratio between the 
bare masses: ml/mh << 1.  

In 2D the static polarization operator reads:  
2

2
4

(0, ) 1 Re 1
2

l Fl
ll

m p
p

⎡ ⎤
⎢ ⎥Π = − −

π ⎢ ⎥
⎣ ⎦

p   

and thus, for p < 2pFl, (0, ) /(2 )ll lmΠ = πp  does not con-
tain any dependence upon p2 in contrast with 3D case. 
Thus in 2D EPE is a dominant mechanism of the heavy-
mass enhancement. 

More accurate evaluation of momentum dependence of 
(2)Re ( ( ), )hhl qΣ ε q  for the higher densities in the bands to-

gether with the summation of the higher order contribu-
tions to Re Σhl will be a subject of a separate investigation. 

Note that for the light particles momentum dependences 
of (2)Re lhΣ and (2)Re llΣ  yield only ml

*/ml ~ 1 + f0
2 and thus 

the light mass is not strongly enhanced both in 3D and 2D 
cases. 

Note also that for higher densities of the heavy band 
nh ~ nc ≤ 1 (and large difference in densities between the 
bands: nl << 1, so ntot = nh + nl ≤ 1) another mechanisms 
of heavy-mass enhancement become more effective. 
Namely for these densities and large mismatch between nh 
and nl we could have a tendency towards phase-separation 
in a two-band model [10].  

Note that if we analyze the effective chemical potential 
of the heavy band (44) in the limit of the high density 
mismatch nh >> nl in 3D and evaluate the partial compres-
sibility (sound velocity squared of heavy particles) 

1 2~ h h
hh h

h h

n
c

m n
− ⎛ ⎞∂μ

κ = ⎜ ⎟∂⎝ ⎠
 

we already see the tendency towards phase-separation (to-
wards negative compressibility) in the strong coupling lim-

it and low densities for 2
0 1h Fh

l Fl

m p
f

m p
≥  in qualitative 

agreement with the results of [10]. The more careful analy-
sis of all the partial compressibilities in the system at larger 
f0 and large mismatch between the densities will be a sub-
ject of the separate publication. 

In the end of this Section we would like to emphasize 
that the physics of EPE and evaluation of Zh in [1] is to 
some extent connected with the well-known results of P. 
Nozieres et al., [24] on infrared divergences in the descrip-
tion of the Brownian motion of a heavy particle in a Fermi-
liquid and on the infrared divergences for the problem of 
x-ray photoemission from the deep electron levels, as well 
as with the famous results of P.W. Anderson [25] on the 
orthogonality catastrophe for the 1D chain of N electrons 
under the addition of one impurity to the system. 

Finally we would like to mention here a competing me-
chanism of P. Fulde et al., [26] worked out firstly for the 
explanation of the effective mass in praseodymium (Pr) 
and in some uranium-based molecules like U(C8H8)2. Lat-

er on P. Fulde et al., generalized this mechanism on some 
other uranium-based HF compounds with localized and 
delocalized orbitals. This mechanism has a quantum-
chemical nature and is based on the scattering of conduc-
tive electrons on localized orbitals as if on the two-level 
systems. The mass-enhancement here is governed by non-
diagonal matrix elements of Coulomb interaction which 
are not contained in the simple version of a two-band mo-
del (1). In this context we would like to mention also [27] 
where the authors considered the mass-enhancement of 
conductivity electrons due to their scattering on local f-
levels splitted by crystalline field.  

Note that dHvA experiments [28] together with ARPES 
experiments [29] and thermodynamic measurements [30] 
are the main instruments to reconstruct the Fermi-surface 
for HF compounds and to determine the effective mass 
(thus verifying the predictions of different theories on the 
mass-enhancement in uranium-based HF compounds). 

6. Imaginary parts of the self-energies in the 
homogeneous state 

For T → 0 all the imaginary parts of the self-energies in 
the homogeneous state for equal densities of heavy and 
light electrons behave in a standard FL manner. For εq > 0 
they read: 
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q q

q
q q

. (45) 

Accordingly for Σhl and Σlh we get: 
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0
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hhl
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l h
llh
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f

m
f

m

ε
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ε

ε
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ε

q
q q

q
q q

 (46) 

Note that nB(Ω) → 0 and nF(Ω) → θ(Ω) for Ω/T >> 1 
in the general expression for Im Σ obtained in Sec. 4. 

7. The scattering times and Drude conductivities 

For the inverse scattering times (more rigorously for the 
lifetimes) of the heavy and light particles for ε ~ T we get: 

 2 2
01/ (1 / 1/ ) ( / ).h hh hl Fhf Tτ = τ + τ = ε  (47) 

Analogously for light particles: 

  
2

2
01/ (1/ 1/ ) 1/ 1/ .h

l ll lh lh h
Fh l

mTf
m

τ = τ + τ ≈ τ ≈ > τ
ε

  (48) 

Now we can calculate the Drude conductivities accord-
ing to the standard formulas σ = ne2τ/m. For light elec-
trons: 

 
22 2 2

2 2 2 2
0 0

~l l l Fh l l Fh
l

l h l Fh

n e n e m n e
m m m Tf T f p
τ ε ε⎛ ⎞σ = = ⎜ ⎟

⎝ ⎠
.  (49) 

Introducing the minimal Mott–Regel conductivities: 
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2 2

min min( / )   in 3D   and   /   in 2D,Fe p eσ = σ =h h  (50) 

and working in the units where 1=h  we get for equal den-
sities of heavy and light bands nl = nh: 

 
2

min
2

0

Fh
l Tf

εσ ⎛ ⎞σ = ⎜ ⎟
⎝ ⎠

.  (51) 

Analogously for σh: 

 

22 2 2

2 2 2 2
0 0

1~h h h Fh h Fh
h

h h Fh

n e n e n e
m m Tf T p f
τ ε ε⎛ ⎞σ = = ⎜ ⎟

⎝ ⎠ .  (52) 

Thus the scattering times for heavy and light particles 
1/τh and 1/τl differ, but the conductivities σ ~ τ/m have the 
same order of magnitude [1]: 

 
2

min
2

0
~ ~Fh

h lTf
εσ ⎛ ⎞σ σ⎜ ⎟

⎝ ⎠
.  (53) 

The total conductivity reads: 

 
2

min
2

0
~ Fh

h l Tf
εσ ⎛ ⎞σ = σ +σ ⎜ ⎟

⎝ ⎠
 (54) 

and hence the resistivity: 

 
22

0

min

1

Fh

f TR
⎛ ⎞

= = ⎜ ⎟σ σ ε⎝ ⎠
 (55) 

behaves in a Fermi-liquid manner R(T) ~ T2  at low tem-
peratures. 

8. The difference between lifetimes and transport times 

Strictly speaking we calculate lifetimes and not trans-
port times. However an exact solution of coupled kinetic 
equations [31] for heavy and light electrons with an ac-
count of umklapp processes for not too small densities of the 
bands shows that for mh >> ml and for pFh ~ pFl ~ pF ≤ 1/d 
for all the times including τlh, τhl we get [22]: 

 τtransp = τlife-time . (56) 

Note that umklapp processes for the interaction of 
heavy and light electrons imply: 

 1 2 3 4 ,h l h l+ = + +p p p p K  (57) 

where K ~ π/d is the wave-vector of the reciprocal lattice. 
For pFh ~ pFl it means that densities in light and heavy 
bands cannot be very small (otherwise resistivity will be 
exponentially small). Hence within the accuracy of our es-
timates: 

 
22

0

min
~

h

f TR
W
⎛ ⎞
⎜ ⎟σ ⎝ ⎠

 (58) 

and in all the estimates for inverse scattering times and 
conductivities we can replace εFh on Wh and εFl on Wl. 
Moreover for *

hm /mh >> 1 we can replace mh on *
hm  (or 

equivalently Wh on *
hW ) and thus the final result for the 

resistivity reads: 

 
22

0
*min

~
h

f TR
W

⎛ ⎞
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. (59) 

9. The chemical potential at higher 
temperatures T > hW ∗  

If *
hT W>  the heavy band is totally destroyed (more pre-

cisely, it is destroyed for 2 *
0 hf T W=  as we will see soon). 

To be accurate let us first calculate the effective chemical 
potential eff

0/2h hWμ = μ + + ε  in (3) in this situation. 
Generally speaking nh + nl = ntot = const and only a to-

tal density is conserved. However in our case for large dif-
ference between the bare masses mh >> ml, each density of 
the band is conserved practically independently nh ≈ const, 
nl ≈ const. For heavy particles all the states in the band will 
be uniformly occupied at these temperatures. For T > Wh 
(assuming *

hm /mh ~ 1) an effective chemical potential of 
the heavy particles reads: 

 eff
0

1~ ln  
2
h

h D
h

W
T

n d

⎛ ⎞
μ = μ + + ε − ⎜ ⎟⎜ ⎟

⎝ ⎠
. (60) 

Thus we have Boltzman behavior for eff
hμ . The Fermi–

Dirac distribution function for heavy particles: 

12 eff/2 12 eff /

12eff eff/ /

( ) e 1 1 e 1
2

e 1 e const . (61)
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≈ + ≈ =⎜ ⎟⎜ ⎟
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For light particles for the temperatures Wh << T << Wl 

since mh >> ml an effective chemical potential will be ap-
proximately in the same place as for T = 0. Indeed for 

eff /2l
lWμ = μ +  we get: 

12 eff/2 12 2( )/2

2

( ) e 1 e 1

for   e (62)
2

p ml h p p m TlFlTl

Fl Fl
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p T
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−
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ε = + ≈ + ≈⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠
⎝ ⎠

⎛ ⎞
≈ θ − ε⎜ ⎟⎜ ⎟

⎝ ⎠

 

and hence for the effective chemical potential of light par-
ticles: 
 eff

l
Flμ ≈ ε .  (63) 

10. Evaluation of the scattering times at higher 
temperatures hW ∗  < T < Wl 

For light particles the scattering time 1/τll = f0
2T 2/Wl 

does not change. However: 

 2
0

1 h
h

lh l

m
f W

m
=

τ
 (64) 
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almost elastic scattering of light electrons on the heavy 
ones as if on immobile (static) impurities in zeroth order in 
Wh/Wl. Note that Whmh = * *

h hW m . 
For heavy electrons we should take into account that 

bosonic contribution nB(Ω) ≈ T/Ω and fermionic contribu-
tion nF(Ω) ≈ ½(1 – Ω/2T) for Ω/T << 1 in Im Σ(2) and thus 
in scattering times. This yields: 

 2
0

1
h

hh
f W=

τ
 (65) 

for scattering of heavy electrons on each other in the situation 
when they uniformly occupy the heavy band and can transfer 
to each other only the energy ~Wh [1]. For *

hm  >> mh we can 
replace Wh on *

hW  in (65). In the same time: 

 2
0

1

hl
f T=

τ
  (66) 

gives marginal Fermi-liquid behavior for diffusive motion 
of heavy electrons in the surrounding of light electrons. 

11. Resistivity for T > hW ∗  in a 3D case 

Hence for scattering times of heavy and light particles 
for T > *

hW  one has 

 2
01/ 1/ 1/ 1/ h

l ll lh lh h
l

m
f W

m
τ = τ + τ ≈ τ =  (67) 

(T2 /Wl < Whmh/ml for T < Wl). Note that  

*
2 2 2*

0 0 0~h h
h h l

l l

m m
f W f W f W

m m
=   

in (67). At the same time: 

 2
01/ 1/ 1/ 1/h hh hl hl f Tτ = τ + τ ≈ τ = . (68) 

So the heavy component is marginal while the light com-
ponent is not. 

For conductivity of the light band: 

 
2 2

min
2

0

l l l lh
l

l l

n e n e
m m f

τ τ σ
σ = ≈ = . (69) 

For heavy band the Drude formula should be modified 
since for T > *

hW : */ ~ /h hn T W T∂ ∂ . Then we immediately 
obtain:  

 
2*

min
2

0

h
h

W
Tf

⎛ ⎞σ
σ = ⎜ ⎟⎜ ⎟

⎝ ⎠
. (70) 

As a result, for the resistivity one arrives to  

2 * 2 2
0 0

* 2 * 2
min min

( / )1 1
1 ( / ) 1 ( / )

h

h l h h

f T W f
R

T W W T
= = =
σ +σ σ σ+ +

.  (71) 

For T > *
hW  the resistivity R ≈ f0

2/σmin goes to satura-
tion. So we obtain residual resistivity at high temperatures 
due to conductivity of a light band. It is a very nontrivial 
result.  

12. Discussion of the obtained results for resistivity at 
higher temperatures 

When *
hW  < 1/τh or equivalently f0

2T > *
hW  the cohe-

rent motion in the heavy band is totally destroyed. The 
heavy particles begin to move diffusively in the surround-
ing of light particles. In this regime, rigorously speaking, 
the diagrammatic technique can be used only for light par-
ticles and not for the heavy ones. 

However exact solution for density matrix equation ob-
tained in [1] shows that 1/τhl is qualitatively the same for 
f0

2T > *
hW  as in our estimates, the inverse scattering time, 

1/τlh is also qualitatively the same due to its physical 
meaning (scattering of light electrons on heavy ones as on 
immobile impurities). That is why σh, σl and hence R(T) 
behave smoothly for f0

2T ≥ *
hW . 

13. An idea of a hidden heavy band for HTSC 

The resistivity characteristics R(T) in 3D acquires a 
form (see Fig. 5) which is frequently obtained in uranium-
based HF (for example in UNi2Al3). Note that R(T) mimics 
linear behavior in a crossover region of intermediate tem-
peratures T ~ *

hW  between T2  and const (where it goes on 
saturation for T >> *

hW ). The same holds for magnetoresis-
tance in the well-known experiments of P.L. Kapitza: 

 
( )
( )

( )2 2

2
( ) (0) for  1,~ ~

( ) const for  1,1
c c c

cc

R H R
R H

⎧Ω τ− Ω τ Ω τ <⎪
⎨

Ω τ >+ Ω τ ⎪⎩
 (72) 

where Ωc is cyclotron frequency. 
In the crossover region Ωcτ ~ 1 magnetoresistance 

mimics linear in Ωc behavior. 
Thus we obtain that for T > Wh

* heavy electrons are 
marginal but light electrons are not. The natural question 

Fig. 5. The resistivity characteristics R(T) in a the two-band 
model in 3D. 
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arises: whether it is possible to make light electrons also 
marginal and as a result to get the resistivity characteristics 
of the type: R(T) ~ T being marginal for T > *

hW  while 
R(T) ~ T2  for T < *

hW . Such resistivity characteristics 
could serve as an alternative scenario for the explanation of 
the normal properties in HTSC materials if we assume an 
existence of a hidden heavy band with a bandwidth smaller 
than a superconductive critical temperature Tc: *

hW  < Tc 
(see Fig. 6). Then to get R(T) ~ T2  (FL behavior at low 
temperatures) we should suppress SC by a large magnetic 
field H till low critical temperatures Tc(H) < *

hW .  

14. Weak-localization corrections in a 2D case 

The tendency towards marginalization of light compo-
nent manifests itself in 2D case. We know that in 2D there 
are logarithmic corrections [7] due to weak localization 
effects to the classical Drude formula for conductivity. But 
according to our ideology heavy particles play the role of 
impurities for scattering of light particles on them. That is 
why the correct expression of conductivity of the light 
band σl in the absence of spin-orbital coupling reads: 

 loc 2min
02

0
1 ln ,l f

f
ϕτ⎡ ⎤σ

σ = −⎢ ⎥τ⎣ ⎦
  (73) 

where, according to weak-localization theory in 2D, τ is 
elastic time, while τϕ is inelastic (decoherence) time. In 
our case:  

 τ = τei = τlh, while τϕ = τee = τll, and τll >> τlh ,  (74) 

where τei and τee are the times connected with the scatter-
ing of electrons on impurities and other electrons, respec-
tively. Thus between two scatterings of a light particle on a 
light one it scatters, for a long time, on heavy particles (see 
Fig. 7). 

As a result a motion of the light particle becomes much 
more slow (also of the diffusive type) and two characteris-
tic lengths appear in the theory:  

 elast Fl lhl v= τ  (75) 

is elastic length and 
 lL Dϕ ϕ= τ  (76) 

is diffusive length, where Dl is a diffusion coefficient for 
light electrons and vFl is Fermi-velocity for light electrons. 

That is why according to Altshuler–Aronov [7] in a 
more rigorous theory we should replace the inverse scatter-
ing time  

 
( )

2 2
2

02 2
0 0 0

1 ~    
( )

ll

ll ll Fl

a q dq Td d f
Wm v q

ε ω ∞
′ω ε =

τ ε ∫ ∫ ∫   (77) 

by 

 
( )

2

2 220 0 0

1 ~
( )

ll

ll l l

a q dqd d
m i D q

ε ω ∞
′ω ε

τ ε ′ε +
∫ ∫ ∫%

, (78) 

where the scattering length all ~ d. In fact we substitute 
vFlq by the «cooperon» pole 2( )lie D q′ +  in Altshuler–
Aronov terminology. Thus in the evaluation of llτ%  charac-
teristic wave-vectors ~ / lq Dε , where ε is an energy 
variable. Altshuler–Aronov effect in 2D yields:  

 2
0

1
( ) (0)ll l l

f
N D

ε
=

τ ε%
, (79) 

where Nl(0) = ml/2π is a 2D density of states for light elec-
trons. For diffusion coefficient we can use an estimate: 

 2
l Fl lhD v= τ  (80) 

and hence having in mind that according to (68) the in-
verse scattering time 2 2

0 01/ ( ) ( / )lh h h l lf W m m f Wτ ε = ≈  we 
get:  

 
2 2

40 0
02

1 ~ ~
( ) ( / )

l

ll l Fl

f f W f
m v

ε ε
τ ε π%

. (81) 

Thus 1 / llτ%  also becomes marginal for ε ~ T. For logarith-
mic corrections to conductivity we have:  

Fig. 6. Resistivity R(T) in superconducting material with a hidden
heavy band for *

h сW T<  *( hW  is an effective width of a heavy
band). 
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Fig. 7. Multiple scattering of light particle on the heavy ones in 
between of the scattering of light particle on another light parti-
cle. Lϕ is a diffusive length, lelast is elastic length, Dl and vFl are 
diffusion coefficient and Fermi-velocity for light electrons, τlh
and τϕ are elastic time for scattering of light electrons on heavy 
ones and inelastic (decoherent) time. 
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 2
0

1ll l

lh

W
f T

ϕτ τ
= =

τ τ
%

 (82) 

and hence:  

 loc 2min
02 2

0 0
1 ln l

l
Wf

f f T

⎡ ⎤σ
σ = −⎢ ⎥

⎢ ⎥⎣ ⎦
. (83) 

For 2
0 ~ hf T W : 2

0
ln ~ lnl l

h

W W
Wf T

 and  

 
loc

2
01 lnl l

h
l h

W
Z f

W
σ

= = −
σ

. (84) 

So for 2
0 ~ hf T W  an enhancement of a heavy particle Z-

factor due to EPE and localization of light particles due to 
Altshuler–Aronov corrections are governed by the same 
parameter 2 

0 ln ( / )h lf m m  in 2D. 

15. Justification of the expression for localization-
corrections in 2D 

In principle impurities are mobile and have some recoil 
energy. That is why the formula loc 2 2

0 0/ 1 ln ( / )l l lf W f Tσ σ = −  
should be justified (at least temperature dependent factor 
under logarithm should be T or T α). For the justification 
we need to estimate the loss of energy by one light particle 
before it collides with another light particle. Number of 
collisions with heavy particles in between the scattering of 
light particle on a light one is Lϕ/lelast. Maximal loss of 
energy in one collision is Wh

*. Total loss is  

* *

elast

l
h h

L WW W
l T

ϕ = .  

The energy of light particle itself is T. It means that for 
* /h lW W T T<  or equivalently for 

 
1/3

*
2 *

0

l
h

h

W
T W

f W

⎛ ⎞
> ⎜ ⎟⎜ ⎟

⎝ ⎠
. (85) 

the loss of energy is small and heavy particles can be re-
garded as immobile impurities. Thus exponent α under 
logarithm is 1. 

16. The resistivity in a 2D case 

Qualitatively resistivity behaves in 2D in the following 
manner:  

 
2

0
2*min 2

0 2
0

1

1 lnh l

f
R

W W
f

T f T

=
σ ⎛ ⎞ ⎛ ⎞

+ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (86) 

It has a maximum for Tmax ~ Wh
*/f0 and localization tail at 

higher temperatures (see Fig. 8). It will be very interesting 
to find magnetoresistance in the 2D or layered case in a 
two-band model with one narrow band for a strong quan-
tizing magnetic field H oriented perpendicular to the lay-

ers. We can expect here a strong manifestation of famous 
Aharonov–Bohm effect [32]. 

17. Superconductivity in the two-band model with 
one narrow band 

For the sake of completeness let us consider briefly su-
perconductivity problem in the same type of models name-
ly in the two-band Hubbard model with one narrow band. 
Let us concentrate on a 2D case where critical tempera-
tures are higher already at low densities [11,12] and con-
sider the most typical case (see Fig. 1) mh > ml and 
pFh > pFl but we assume that still the mismatch between 
the densities is not large enough to produce phase-
separation. Note that in 2D case where only EPE is present 
the restrictions on a homogeneous state could be more mild 
than in a 3D case. At low densities 2 2 1l hn d n d<  the 
maximal Tc corresponds to p-wave pairing [11,12] and is 
governed by the enhanced Kohn–Luttinger mechanism of 
SC [13]. The general expression for the effective interac-
tion Veff of the heavy particles (to the irreducible bare ver-
tex for the Cooper channel) in the first two orders in the 
gas-parameter reads (see [11,12]): 

 

2
eff

2

( , ) (0, )

2 (0, ) ,
h h hh hh hh h h h

hl ll h h h

V T T

T

′ ′= + Π = + −

′− Π = −

p p q p p

q p p

%

 (87) 

where p  and ′p  are incoming and outgoing momenta for 
the heavy particles in the Cooper channel, h h Fhp′= =p p : 

 
2 2 2 22 (1 cos ); 2 (1 cos )h Fh h Fhq p q p= − ϕ = + ϕ%   (88) 

are a transferred momentum squared (for 2
hq ) and trans-

ferred momentum with an account of crossing squared (for 
2
hq% ). Note that in (88) both qh ≤ 2pFh and 2h Fhq p≤%  for 

superconductivity problem. The second term in (87) is 
connected with an exchange diagram [11–13] for heavy 
electrons while the third term — with the static polariza-
tion operator for light electrons [11,12]. 

In (87) for Πhh and Πll we get: 

Fig. 8. Resistivity R(T) in a 2D case for two-band model with one 
narrow band. It has a maximum and localization tail at high tem-
peratures T > *

hW . 
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2

2

4(0, ) 1 Re 1 ,
2

4(0, ) 1 Re 1 ,
2

h Fh
hh h h

h

l Fl
ll h l

h

m pZ
q

m pZ
q

⎡ ⎤
⎢ ⎥Π = − −

π ⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥Π = − −

π ⎢ ⎥⎣ ⎦

q

q

%
%

 (89) 

where Zh and *
hm  are Z-factor and effective mass of heavy 

particle, Zl and *
lm  are Z-factor and effective mass of light 

particle, pFh and pFl are Fermi-momenta for heavy and 
light electrons. Having in mind that 2*

0~ / ~ (1– )l l lZ m m f . 
We can put Zl ~ 1 and *

lm  ~ ml in all the forthcoming esti-
mates. Finally in (87) for pFh > pFl the T-matrices read: 

 
2 2*

2 2*

4 1 0 ,
ln [1/( )]

4 1 0 .
ln [1/( )]

hh
h Fh

hl
l Fh

T
m p d

T
m p d

π
= >

π
= >

 (90) 

Having in mind that 2h Fhq p≤%  we get: (0, )hh hΠ =q%  2 * /2h hZ m= π  does not contain any dependence upon trans-
ferred momentum with crossing hq% . 

At the same time (0, )ll hΠ q  contains nontrivial depen-
dence upon qh for   Fh Flp p> . We can say [11,12] that 
large 2D Kohn’s anomaly (connected with the square-root 
in the expression for Πll in (89)) becomes effective for SC 
problem and we have the pairing of heavy electrons via 
polarization of light electrons (see Fig. 9). Note that a 
standard s-wave pairing is suppressed in a two-band Hub-
bard model by short-range Hubbard repulsion which yields 
Thh > 0 in the first-order contribution to Veff in (87). 

According to Landau–Thouless criterion the maximal 
critical temperature in our model corresponds to p-wave 
pairing (to pairing with magnetic quantum number m = 1 
in 2D) and reads: 

 
*1 2*

eff
1

(0) ln 1m Fh
h h

c
V N Z

T
= ε

− =  (91) 

where ( )* *0 / 2h hN m= π  is an effective 2D density of states 
for heavy electrons; 2* */2Fh Fh hp mε =  is renormalized Fer-
mi-energy for heavy electrons; 1

eff
mV =  is a p-wave harmonic 

of the effective interaction. It reads: 

 
2

1
eff eff

0

( cos )cos
2

m dV V q
π

= ϕ
= ϕ ϕ

π∫ . (92) 

It is shown in [11,12] that 1
eff
mV =  depends upon relative 

occupation of the two bands /Fh Flp p and is given by: 

 1 * 2
eff 2 2

/ 1
(0) ( 2) 0

/
m Fh Fl

l hl
Fh Fl

p p
V N T

p p
= −
= − < . (93) 

Moreover it corresponds to attraction. * *(0) /2l lN m= π is 
a 2D density of states for light electrons in (93). We can 
see that 1

eff
mV =  → 0 for / 1Fh Flp p →  and /Fh Flp p →∞ . It is 

easy to show that 1
eff
mV =  has rather large and broad maxi-

mum [12] for 2Fh Flp p= or equivalently nh = 4nl. In max-
imum an effective interaction reads: 

 
2

1 *
eff * 2 2

1 4(0) .
2 ln (1/ )

m
l

l Fh
V N

m p d
= ⎛ ⎞π
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
 (94) 

Correspondingly Landau–Thouless criterion for super-
conducting temperature yields: 

 
* *

2 2
0

1
2 ln 1h Fh

h
l c

m Z f
m T

ε
=  (95) 

where 2 2
0 1/ ln (1/ )Fhf p d=  is a 2D gas parameter. For 

2
0 ln ( / ) 1h lf m m ≤ : EPE is weak and *

h hm m≈ . Thus 
*1,  h Fh FhZ ≈ ε ≈ ε  and Landau–Thouless criterion reads 

2
0 1( / )2 ln ( / ) 1h l Fh cm m f Tε = . An effective gas-parameter  

which enters the formula for 1cT for weak EPE is 
1/2

0 ( / )h lf m m . It is interesting that in the unitary limit 
f0 → 1/2 the EPE yields for the enhancement of *

hm : 

 
* * 2 2

2
* 2 2 *~ ~ ~ 1

( )
h h h h l

h
l l h l h

m m m m m
Z

m m m m m
. (96) 

Thus for the critical temperature in the unitary limit 
f0 → 1/2 we can get: 

 
21/(2 ) 2* *01 ~ e ~ ef

c F FT − −ε ε . (97) 

It means that for * ~ Fhε 50 K: Tc1 ~ 5 K already at low 
densities which is quite reasonable.  

Note that in a phase-separated state we have the drop-
lets (clusters) with the density ratio nh/nl higher or lower 
than the density ratio in a homogeneous state. For example 
in a fully phase-separated state we have two large clusters 
(1,2) with nh1 > nh > nh2. Thus the expression (93) for ef-
fective interaction is valid for both clusters but with local 
values of /Fh Flp p . Correspondingly the critical tempera-
ture will be different for these two clusters at least in zero 

Fig. 9. The leading contribution to the effective interaction Veff
for the p-wave pairing of heavy particles via polarization of light
particles. The open circles stand for the vacuum T-matrix hhT . 
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approximation when we neglect Josephson coupling or 
proximity effect between the neighboring clusters or drop-
lets. 

Analogously an effective interaction (irreducible bare 
vertex) for light electrons in the Cooper channel reads: 

 

2
eff

2

( , ) (0, )

2 (0, ) ,
L l ll ll ll l l l

hl hh l l l

V T T

T

′ ′= + Π = + −

′− Π = −

p p q p p

q p p

%

 (98) 

where l l Flp′= =p p  and 2 ; 2l Fl l Flq p q p≤ ≤%  for SC 
problem.  

* 2 2
4 1 0

ln (1/ )
ll

h Fh
T

m p d
π

= >   

is a T-matrix for light electrons. Using the expression for 
Πll and Πhh: 
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and taking in mind that pFl > pFh we get: 

 
*

2 2
eff ( , ) 2 ,

2 2
l h

l l ll ll h
m m

V T T Z′ ≈ + −
π π

p p  (100) 

where we put Zl ~ ml
*/ml ~ 1. 

Thus an effective interaction for light electrons does not 
contain any nontrivial dependence from lq  and lq%  and 
hence superconductivity with m ≠ 0 is absent for light elec-
trons in this approximation. Note that s-wave pairing for 
light electrons is also suppressed by first order term Tll > 0 
in Veff (98). 

However an inclusion of the Suhl term [33,34], which is 
connected with the rescattering of a Cooper pair between 
the bands, 

 ' '( h.c.)p p p pK a a b b+ +
− − +  (101) 

in the Hamiltonian of the two-band model (2) already in 
the case of infinitely small K makes the light band super-
conductive at the same temperature as the heavy one. Thus 
Tc1 in (91) is a mutual SC temperature in the two-band 
model with one narrow band [12]. 

18. Discussion and Conclusions 

We analyzed characteristic features of the two-band 
Hubbard model with one narrow band taking into account 
electron – electron scattering in a clean case (no impuri-
ties) and low electron densities. We considered electron 
polaron effect and other mechanisms of a heavy mass en-
hancement related to momentum dependence of the self-
energies. 

In the 3D-case the dominant mechanism of a heavy 
mass enhancement is related to momentum-dependence of 
a real part of a «heavy–light» self-energy and leads to li-
near in the mass-ratio renormalization of a heavy mass. In 
the 2D-case the dominant mechanism of a heavy mass en-
hancement is EPE which leads to logarithmic renormaliza-
tion of the heavy particle Z-factor. In the unitary limit if we 
start with mh/ml ~ 10 for the bare-mass ratio in the LDA-
scheme we can finish with *

hm /ml ~ 100 due to many-body 
effects which is quite natural for uranium-based HF sys-
tems.  

The important role of the interband («heavy–light») 
Hubbard repulsion Uhl for the formation of a heavy mass 
m* ~ 100me in a two-band Hubbard model was also em-
phasized in [35] for LiV2O4 HF compound.  

For large density mismatch nh >> nl we can see the ten-
dency towards negative compressibility in a heavy band in 

a strong coupling limit 2
0 1h Fh

l Fl

m p
f

m p
≥  already at low den-

sities, which can lead to the redistribution of charge be-
tween the bands and possibly to nanoscale phase-
separation in qualitative similarity with the results of [10]. 
The tendency towards phase-separation at low electron 
fillings also manifests itself for the asymmetric Hub-
bard model (which possesses Hubbard repulsion between 
heavy and light electrons) in the limit of strong asymmetry: 
th << tl [36] between heavy and light bandwidths.  

For equal densities of heavy and light bands the resis-
tivity in a homogeneous state behaves in a Fermi-liquid 
fashion: R(T) ~ T 2  at low temperatures T < *

hW  both in 3D 
and in 2D cases (where *

hW  is an effective bandwidth of 
heavy particles).  

For higher temperatures T > *
hW  when a coherent mo-

tion of particles in a heavy band is totally destroyed, the 
heavy particles move diffusively in the surrounding of 
light particles while the light particles scatter on the heavy 
ones as if on immobile (static) impurities. The resistivity 
goes on saturation in 3D-case which is typical for some 
uranium-based HF-compounds including UNi2Al3.  

In 2D due to weak-localization corrections of Altshu-
ler–Aronov type the resistivity at higher temperatures has a 
maximum and then a localization tail. Such behavior could 
be also relevant for some other mixed-valence systems 
possibly including layered manganites. The similar beha-
vior with metal-like low temperature dependence of resis-
tivity for T < 130 K and insulator-like high-temperature 
dependence was also observed in layered intermetallic al-
loys Gd5Ge4 where the authors [38] assume an existence 
of strongly-correlated narrow band at low temperatures. 

We discuss briefly the SC-instabilities which arise in 
this model at low electron densities. The leading instability 
of the enhanced Kohn–Luttinger type corresponds to p-
wave pairing of heavy electrons via polarization of light 
electrons. In quasi-2D case Tc can reach experimental-
ly realistic values already at low densities for layered di-
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chalcogenides CuS2, CuSe2 and semimetallic superlattices 
InAs–GaSb, PbTe–SnTe with geometrically separated 
bands belonging to neighboring layers [39]. Note that p-
wave SC is widely discussed in 3D heavy-fermion systems 
like U1–xThxBe13 [40] and in layered ruthenates Sr2RuO4 
with several pockets (bands) for conducting electrons [41]. 
Note also that when we increase the density of a heavy-
band and go closer to half-filling (nh →1) the d-wave su-
perconductive pairing (as in UPt3) becomes more benefi-
cial in the framework of the spin-fluctuation theory in the 
heavy band [42,43]. Different mechanisms of SC in HF-
compounds including odd-frequency pairing are discussed 
in [48] by P. Coleman et al. 

Note also that if we study the orbitally degenerate two-
band Hubbard model then Hubbard parameters read 
U = Uhh = Ull – Uhl + 2JH (where JH is Hund’s coupling) 
[44]. Close to half-filling this model becomes equivalent to 
the t–J orbital model [45] and contains for J < t and at op-
timal doping the SC d-wave pairing [46] governed by su-
perexchange interaction between the different orbitals of 
AFM-type J > 0. Note that for not very different values of 
th and tl the typical value of J ~ t2 /U ~ 300 K. The orbital 
t–J model also reveals a tendency towards nanoscale 
phase-separation at low doping [47] with the creation of 
orbital ferrons inside insulating AFM orbital matrix. An 
orbital type of phase-separation was possibly observed in 
URu2Si2 [37]. 

Finally it is interesting to note that electronic specific 
heat in a homogeneous state of a the two-band model with 
one narrow band for Tc < T < *

hW  behaves linearly in T: 
*~ ( / )v h hC n T W  while for *

hW  < T < Wl specific heat is 
decreasing according to * 2~ ( / )v h hC n W T (see [1]). Thus it 
has a maximum for T ~ *

hW  in a mixed-valence regime of 
the two-band model. 
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