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The quantum oscillation effect was discovered in Leiden, in 1930, by W.J. de Haas and P.M. van Alphen in 
magnetization measurement, and by L.W. Shubnikov and de Haas — in magnetoresistance. Studying single 
crystals of bismuth, they observed oscillatory variations of magnetization and magnetoresistance with magnetic 
field. Shoenberg, whose first research in Cambridge had been on bismuth, found that much stronger oscillations 
are observed when a bismuth sample is cooled to liquid helium rather than to liquid hydrogen, which had been 
used by de Haas. In 1938 Shoenberg came from Cambridge to Moscow to study these oscillations at Kapitza In-
stitute where liquid helium was available at that time. In 1947, J. Marcus observed similar oscillations in zinc, 
that persuaded Shoenderg to return to this research, and, since then, the dHvA effect had been one of his main 
research topic. In particular, he developed techniques for quantitative measurements of the effect in many met-
als. Theoretical explanation of quantum oscillations was given by L. Onsager in 1952, and the analytical quantit-
ative theory by I.M. Lifshitz and A.M. Kosevich in 1955. These theoretical advancements seemed to provide a 
comprehensive description of the effect. Since then, quantum oscillations were commonly considered as a tool 
for measuring Fermi surface extremal cross-sections and all-angle electron scattering times. However, in his pio-
neering experiments in 1960s, Shoenberg revealed the richness and deep essence of the quantum oscillation ef-
fect and showed how the beauty of the effect is disclosed under nonlinear conditions imposed by interactions in 
the system under study. It was quite unexpected, that under «magnetic interaction» conditions, the apparently 
weak effect of quantum oscillations may lead to such strong consequences as breaking the sample into magnetic 
(now called «Shoenberg») domains and the formation of an inhomogeneous magnetic state. Owing to his contri-
bution to the field of quantum oscillations and superconductivity, Shoenberg is no doubt one of the 20th cen-
tury's foremost experts. We describe the experiments on finding the quantitative parameters of electron–electron 
interaction, which are in line with the Shoenberg ideas that the quantum oscillations are modified by interactions 
and, hence, their analysis enables one to extract the quasiparticle interaction parameters. 

PACS: 71.30.+h Metal–insulator transitions and other electronic transitions; 
72.15.Rn Localization effects (Anderson or weak localization); 
73.40.Qv Metal–insulator-semiconductor structures (including semiconductor-to-insulator). 

Keywords: quantum oscillations, two-dimensional carrier system, electron–electron interaction. 
 

 

1. Introduction: correspondence with David Shoenberg 

It is a privilege to be invited to contribute to this vo-
lume in honour of Professor David Shoenberg with whom 
I had an opportunity to communicate and whose papers 
I studied thoroughly in the past. In the early 1970s, I was 
a graduate student at the famous Institute for Physical 
Problems in Moscow, which is now named after P.L. Ka-
pitza. Though I have never met David Shoenberg personal-
ly, of course, I knew much about his work with Kapitza in 
Cambridge and in Moscow and about his visits to Kapitza 
Institute in 1960s. A few years earlier, in 1966, my scien-

tific supervisor, the outstanding experimentalist and 
Teacher, M.S. Khaikin, suggested me to develop a super-
sensitive dilatometer, as a topic for gradate project. The 
dilatometer, i.e. a device for measuring small displace-
ments, was intended for measuring changes in the sample 
size in magnetic field. The microwave technique was the 
favorite subject in the Khaikin laboratory, and, not surpri-
singly, the dilatometer was a sort of a microwave cavity 
with a thin copper membrane and a needle-type coaxial 
conductor, which concentrated microwave energy near the 
region of the membrane deformation. 
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When my dilatometer started working reliably, it ap-
peared that I could easily observe the nice phenomenon of 
quantum oscillations of size of the metallic single crystals 
placed in varying magnetic field at low temperatures. The 
oscillatory magnetostriction had, of course, the same origin 
as the de Haas–van Alphen (dHvA) effect, and from its 
amplitude I anticipated to extract information on electron 
coupling to the lattice potential, that is the so-called de-
formation potential. I was encouraged with this observa-
tion and ignored a common wisdom that says «avoid quan-
titative amplitude measurements when possible». Quite 
soon I realized that the measurements of the magnetostric-
tion amplitude alone is insufficient to get quantitative in-
formation. In order to extract components of the deforma-
tion potential tenzor, one has also to measure the amplitude 
of the oscillatory magnetic moment, i.e., the dHvA effect. 

Experimentalists know perfectly that absolute ampli-
tude measurements for a single effect is a hard task, and 
amplitude measurements for two effects are still much 
harder. In those times, David Shoenberg carried out nice 
absolute measurements [1,2] of the dHvA effect amplitude, 
and each of his papers represented a piece of experimental 
art and deserved careful reading. However, the technique 
he used was incompatible with my microwave cavity dila-
tometer. Clearly, measurements of the two effects should 
be performed in situ during a single cooldown, because the 
oscillation amplitude is determined not only by controlla-
ble variables (temperature, magnetic field), but also by the 
sample «quality» (more exactly, the Dingle temperature 
[3]), which may vary from one cooldown to another. 

The solution to the problem was found heuristically: it 
unexpectedly came during the experiment and had a direct 
relation to David Shoenberg! The situation was as follows: 
in my measurements, for signal extraction from noise, I 
used not a conventional field modulation technique with a 
lock-in amplifier and a slow magnetic field sweep, but an 
alternative technique with a multichannel analyzer and fast 
multiple sweeps of magnetic field within several seconds 
[4]. The measuring system was based on the frequency 
modulation method, developed by M.S. Khaikin and re-
presented a heterodyne microwave receiver. Variations of 
the crystal size were measured as changes in frequency of 
the microwave oscillator that had the cavity — displace-
ment sensor — in the feedback loop. For convenience, in 
the Khaikin laboratory, the experimental data was not only 
recorded by electronics but was also available to experi-
mentalists in visual and audio form. Correspondingly, the 
intermediate frequency signal transposed to the audio 
range was fed, besides a frequency detector, to an ordinary 
loudspeaker. Taking measurements of the oscillatory mag-
netostriction late in the evening, in the silent laboratory, I 
heard that, upon cooling the sample down to 0.3 K, the 
tone of the audio frequency signal began to vary abruptly 
with magnetic field in a saw-tooth manner, rather than 
harmonically (see Fig. 1). 

The first thought that in magnetic field the sample was 
cracking was rejected at once, because on subsequent 
warming of the sample up to 1.4 K, the oscillations became 
harmonic again, as expected. The observed unharmonicity 
was much greater, than one could expect from the Lif-
shitz–Kosevich (LK) theory [5]. Therefore, the more natu-
ral assumption was to associate the saw-tooth oscillations 
with the so-called Shoenberg effect and magnetic domains 
[2]. Indeed, despite the smallness of the magnetic moment 
oscillations ,Mδ  i.e., the amplitude of the dHvA effect, 
the oscillation period in good metals with a large Fermi 
surface (such as tin and indium under my investigation) is 
small and, therefore, the magnetic susceptibility | / |M B∂ ∂  
becomes comparable with 1/ 4π . As a result, the magnetic 
induction in the sample B  noticeably deviates from the 
external magnetic field H : 

 = 4 (1 ) .B H D M+ π −  (1) 

The deviation leads to the magnetic interaction or the 
Shoenberg effect [2] (here D  is the demagnetization fac-
tor), that is described by solution of the exact nonlinear 
equation [7] 
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As soon as the unharmonicity cause was identified, to 
make the next step was a matter of not too sophisticated 
though rather awkward calculations. Using sequential ap-
proximation technique I have calculated the discrete spec-
trum of oscillations. The obtained series converged rapidly 
and delivered a striking result: the desired amplitude of the 
magnetization oscillations could be found from the ratio of 
harmonics in the oscillatory magnetostriction spectrum. 
Therefore, the problem of simultaneous amplitude mea-
surements for two effects reduced to measurements of the 
amplitude for only one of them supplemented with subse-
quent analysis of its spectrum. 

Fig. 1. Typical shape of the quantum oscillations of magneto-
striction 11u  of tin single crystal versus magnetic field. Bracket 
next to the upper curve depicts the magnetostriction scale. Tem-
perature 0.37T = K, 4 | / | 0.18dM dHπ ≈ : a) for || [001]H  and 
b) for H  tilted at 5° in the (010) plane. The lower curve reveals 
two groups of oscillations with frequency ratio 1: 2≈ , due to two 
extremal cross-sections of the FS. Note a saw-tooth shape of os-
cillations. Reproduced from Ref. 6. 
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This situation can be explained in the following way. 
Suppose we have a pendulum (oscillator) and wish to mea-
sure the amplitude of its oscillations, but there is no cali-
brated ruler to measure linear displacements. Then, for har-
monic oscillator the problem has no solution. It appears, 
however, that for an unharmonic oscillator, when the phys-
ics of its unharmonicity is known, the oscillation amplitude 
may be found by registering the oscillation spectrum and 
analyzing the spectrum with a linear but uncalibrated ruler. 

When the calculations of the oscillations spectrum were 
finished and successfully compared with experimental da-
ta, I was proud and assured with the result. It seemed con-
vincing to me, and I was about to send the paper for publi-
cation. However, not all around me in the lab shared my 
assurance. The major expert in the field of quantum oscil-
lations was certainly David Shoenberg and I decided to 
consult with him: I wrote a letter (e-mail didn't exist at that 
time) where I described my idea how the oscillation ampli-
tude could be found from their spectrum under conditions 
of the magnetic interaction*. I was not sure that the famous 
scientist will answer to unknown graduate student. How-
ever, I was pleased to get a short note from Shoenberg 
quite quickly: he wrote that currently was busy but in a 
couple of weeks will be able to answer. I waited for about 
two weeks and indeed received a very kind letter: Shoen-
berg was positive about my idea, and also paid my atten-
tion to a potential «underwater stones», such as deviations 
from the conventional LK theory of oscillatory effects [5], 
which might be related, e.g., with mosaic structure of crys-
talline samples. These were the issues he studied at that 
time [8]. My paper was sent to the journal and published 
shortly [6]. I keep in memory the kind attention Shoenberg 
showed to an unknown graduate student, and try to educate 
my students in the same spirit of kindness and respect to 
others. 

2. Interacting two-dimensional electron system 

The experiments by Shoenberg demonstrated how the 
hidden beauty and rich essence of quantum oscillations are 
revealed in nonlinear conditions introduced by magnetic 
interaction. With another example of the beauty and rich-
ness of the quantum oscillations I faced much later, study-
ing the electron–electron interaction effects in two-dimen-
sional electronic system. This story is described below. 

For pedagogical purposes, the story is delivered in the 
sequence as follows: firstly, we consider how the inter-
particle interaction modifies parameters of the electronic 
system, as compared with those for noninteracting gas. The 
interaction effects will be initially described, to a first ap-
proximation, in terms of the Fermi-liquid interaction con-
stants. Further, we will consider the experimental method 
and the results of measurements of the Fermi-liquid inter-
action constants, where quantum oscillations are used as an 

experimental tool. We will presume first that the oscilla-
tion amplitude is small and is not strongly affected by inte-
raction. And finally, we will consider how the inter-
electron interaction influences the quantum oscillation am-
plitude and what consequences it leads. 

2.1. Renormalization of the quasiparticle parameters 

As an Introduction, let us first recall that one of the ma-
jor concepts for interacting Fermi systems is the Fermi 
liquid. It is the generalization of the Fermi gas, i.e. the sys-
tem without interaction, to the case with interaction. The 
electrons in 3D metal or «metallic» 2D systems are charg-
ed and, at first sight, seem to experience a great Coulomb 
repulsion forces 2 / eee r∼ , where eer  is the interelectron 
distance; for 2D systems ~ 1/eer n , where n is the electron 
density. In fact, these classical forces are compensated by 
ion lattice, because the total system is neutral. At low 
energies which matter most to us, additional (or trial) 
charges introduced to the system do not interact via the 
Coulomb potential. This is so, since the charges polarize 
their environment. In 3D, the long-range interaction has 
effectively been reduced to a short range one with a po-
tential sc( ) exp ( / ) /r r r rφ ∝ −  where scr  is the screening 
length. The Fourier transform of the screening effect reads 

2 2 21/ 1 / ( )sq q q→ + , where sq  is the Thomas–Fermi 
wave vector which is inverse proportional to the screening 
length sc.r  

In contrast to the 3D case, in 2D system the screening 
effect is much weaker. For large distance 1srq � , the 
asymptotic form of the average potential seen by the elec-
trons [9] does not show an exponential decay 

 2 3( )
s

er
q r

φ ∝ . (3) 

The essential idea on which Fermi-liquid theory is 
based was introduced by Landau. Even if the bare particles 
interact strongly, the low energy elementary excitations 
experience only a weak or moderate interaction. These 
elementary excitations are called quasiparticles. The quasi-
particles can be labeled by the same quantum numbers as 
the excitations in the noninteracting system. In particular, 
in the vicinity of the Fermi surface they behave as if they 
were free fermions. In the absence of magnetic field the 
quasiparticles have the same charge and spin as free elec-
trons, and for short, we shall call them «electrons». The in-
teraction strength is characterized by the dimensionless ra-
tio of the potential interaction energy eeE  to the kinetic (Fer-
mi) energy, 2 2= /2 = / 1/s ee Fr E E me n nκ π ∝  (here 
the factor of 2 takes the valley degeneracy in (100)-Si 
MOSFETs, = 2gv , into account). 

Within the framework of the Fermi-liquid theory, the 
interactions lead to renormalization of the effective quasi-
particle parameters [10,11], such as the spin susceptibility 

* This was the lucky time, when physicists shared with each other unpublished results, thoughts, and samples. 
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*χ , effective mass *,m  Landé g-factor *g , and compres-
sibility *κ . Measurements of these renormalized parame-
ters are the main source of experimental information on 
interactions. The renormalization is commonly described 
by harmonics of the Fermi-liquid interaction in the singlet 
(symmetric, (s)) and triplet (antisymmetric, (a)) channels 
[10,12,13]: 
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Here bg , bm , bκ  and bχ  are the band (bare) values of 
the g-factor, mass, compressibility and spin susceptibility, 
respectively. In theory, the above Fermi-liquid interaction 
constants ,a s

iF  are universal functions of the sr  solely. 
Provided the Fermi-liquid constants are known, the charac-
teristics of the interacting 2D electron system to the first 
order can be expressed as interaction quantum corrections to 
the characteristics for the noninteracting 2D electron gas. 

Though the results of numerical calculations of the re-
normalized parameters [14–17] vary considerably, all of 
them agree qualitatively and suggest enhancement of *χ , 

*m  and *g  with sr . Earlier experiments [18–21] have 
shown growth of *m  and * *g m  at relatively small sr  values, 
pointing to a ferromagnetic type of interactions in the ex-
plored range 1 < 6.5.sr  

2.2. Quantum oscillations in the 2D electron gas as a tool 
for extracting interaction constants 

For 3D noninteracting electron gas placed in quantizing 
magnetic field = zH H , besides the quantized spectrum 

= ( 1/2)N c Nε ω +  in the ( , )x yk k  plane there is a conti-
nuous spectrum along the magnetic field direction ( )zkε . 
In contrast, for a 2D system of electrons placed in magnet-
ic field H⊥  perpendicular the ( , )x y  plane, the energy 
spectrum is fully quantized: 

 1= ,
2c ZN E⎛ ⎞ε ω + ±⎜ ⎟

⎝ ⎠
 (5) 

where the Zeeman energy 

 1=
2Z BE g Hμ  (6) 

and = 0,1, 2,...N  is the Landau level number. Each of the 
Landau levels is 0= /H⊥ν Φ  times degenerate, and the 
oscillation period in the inverse magnetic field has a fun-
damental meaning being determined by the ratio of the 
electron density to the magnetic flux density, 0/ ( / ),n H⊥ Φ  
where 0 = /hc eΦ . 

For noninteracting 2D electron gas, the theoretical ex-
pression for the Shubnikov–de Haas (SdH) effect, i.e. the 
oscillatory magnetoresistance, is as follows [5,22]: 

 
0

= cos 1 ,xx
s s

s

c nA s Z
eH⊥
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Here 0 = ( = 0)xx H⊥ρ ρ , = /( * )c eeH m m c⊥ω  is the cyc-
lotron frequency, *m  is the dimensionless effective mass, 

em  is the free electron mass. This is the famous Lifshitz–
Kosevich formula [5], modified for the 2D case [22]. An 
additional exponential factor describes Landau level broa-
dening due to temperature-independent scattering by short-
range impurity potential, / 2D DT ≡ πτ  is the so-called 
Dingle temperature [3], and Dτ  is the «all angle» scatter-
ing time (in contrast to the transport time τ  determined by 
large angle scattering). 

In the limit of weak oscillations 0/ 1xxδρ ρ �  when 
temperature is not too low, Eq. (8) can be simplified: 

 2 2
*

( )
4exp 2 4B D B

s
cc

k T T k T
A s s

⎛ ⎞+
≈ − π π⎜ ⎟⎜ ⎟ ωω⎝ ⎠

. (9) 

In Eqs. (7), (8) the valley splitting is assumed = 2gv  (that 
corresponds to the 2D layer of electrons at the (100)-Si 
surface). The Zeeman factor in Eq. (7) 

 2= cos [ ( ) / ( )]sZ s c n n eH⊥↑ ↓π −  (10) 

for = 0H&  reduces to a field-independent constant. Here 
( )n n↑ ↓−  is the difference in population of the two spin 
subbands. In case the spin magnetization is a linear func-
tion of the total field totH , the nonzero difference in sub-
bands populations, i.e. the spin polarization P , can be 
related to the renormalized spin susceptibility *χ  as fol-
lows: 

 
*

tot tot**= = ,
b B

n n H eH
P g m

n g n nhc
↑ ↓− χ

≡
μ

 (11) 

where 2bg �  is the bare g-factor for Si, and totH =

2 2H H⊥= + & . Bychkov and Gorkov [23] have shown that 

the period of oscillations is not affected by interactions, 
whereas oscillation amplitude (Eqs. (9), (8)) is determined 
by * *= /( )c eeH m m cω  with the renormalized mass *,m  ra-
ther than the band mass bm , and the Zeeman splitting (8) — 
by the renormalized g-factor. 

2.3. The idea of measurements *χ , *m , and *g  

Experimental studies of magnetooscillations go back to 
the end of 60s when the high mobility 2D structures be-
came available [20,24]. Information on the renormaliz-
ed effective mass *m  is provided by the amplitude of 
the Shubnikov–de Haas (SdH) effect [23]. The effective 
mass is usually found from the so-called Dingle-plot, 
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0ln (| | / )xxδρ ρ  as a function of temperature. According to 
the LK theory, the damping factor can be expressed as 

 
*

**
1ln ( ) .LK c

c DA T T m
T

⎛ ⎞ω
− ω ≈ +⎜ ⎟⎜ ⎟

⎝ ⎠
 (12) 

As follows from Eq. (12), in the limit of weak oscilla-
tions, 0| | / 1xxδρ ρ � , the slope, 0ln(| | / ) /xxd dTδρ ρ , is 
nearly proportional to the effective mass *m , whereas extra-
polation of the 1ln [ ( / )]cA Tω  to = 0T  enables to deter-
mine DT . Here, both, the effective mass and the g-factor 
are thermodynamic quantities and includes all many-body 
interaction effects. 

The Zeeman factor Eq. (10) carries information on the 
renormalized spin susceptibility * * *m gχ ∝ . Conventional 
technique to measure the effective *χ  [20,21] is based on 
the SdH measurements in magnetic fields tilted with re-
spect to the 2D plane. In these measurements, the cyclotron 
energy related to H⊥  is compared with the Zeeman split-
ting, which depends on the total field, totH . To have a 
good control of both fields, the angle is to be measured 
with a very high accuracy, a difficult task at mK tempera-
tures. 

To probe separately orbital and spin degrees of free-
dom, it is convenient to apply two independently varied 
magnetic field components: (i) H⊥ , normal to the 2D 
electron plane, which causes quantization of the orbital 
motion, and (ii) the in-plane field H& , which couples only 
to spins. Application of H&  should facilitate the analysis 
of SdH oscillations, especially near the 2D metal–insulator 
transition, when the number of observable oscillations is 
small. 

The idea of measurements with two field components is 
explained by Fig. 2. The parallel field H&  shifts the spin-

up and spin-down subbands relative to each other in accord 
with Eqs. (5), (6), and produces an unequal population of 
the two subbands (see Eq. (11)). The role of the perpendi-
cular field component is to provide measurements of the 
difference in subband population, and thus to extract the 
spin susceptibility according to Eq. (11). The perpendicular 
field causes quantization of the energy levels in both sub-
bands and enables to count the difference in their individu-
al population, because all spin-split Landau levels are ex-
actly /( / )H hc e⊥  times degenerate. 

2.4. Crossed field technique 

In order to facilitate measurements, we developed a 
«crossed-field technique» [25] by adding the second sole-
noid and taking data in crossed magnetic fields, which can 
be varied independently of each other (see Fig. 3). The 
conventional technique of measuring * *g m  in tilted mag-
netic fields [20,21] is not applicable when the Zeeman 
energy is greater than half the cyclotron energy [26]. The 
crossed field technique removes this restriction and allows 
us to extend measurements over the wider range of elec-
tron densities. Development of this novel experimental 
technique enabled us to explore the effect of H&  on the 
electron spectrum, as well as to measure directly *m  and 

*g  in strongly correlated selectron systems [27]. 
Typical traces of the longitudinal resistivity xxρ  as a 

function of H⊥  are shown in Fig. 4. Due to the high elec-

Fig. 2. Schematic diagram of the Landau levels in the presence of

the Zeeman splitting * totBg Hμ . The left and right ladders of
Landau levels are for spin-up and spin-down subbands.

2 2
tot =H H H⊥ + & . 

�

�F

� �c H�

g* H�B tot

Si-MOSFET

Mixing chamber of dilution fridge

Solenoid H||
Split coils, H�

Fig. 3. The crossed magnetic field set-up. The main supercon-
ducting solenoid produces the in-plane magnetic field H&  up to 
8 T. The superconducting split coils, positioned inside the main 
solenoid, produce the normal field H⊥ , which can be as large as 
1.5 T at 4H ≤& T, and decreases gradually down to 0.6 T at 

= 7.5H& T. The sample (Si-MOSFET) is attached to the cold 
finger of the mixing chamber, with its plane perpendicular to the 
axis of the coils. Represented from Ref. 25. 
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tron mobility, oscillations were detectable down to 0.2 T 
and at temperatures up to 1.6 K; a large number of oscilla-
tions and wide range of temperatures enabled us to extract 

*m  and DT  with a high accuracy. 

As Fig. 4 shows, application of H&  induces beating of 
SdH oscillations. This is because the uppermost levels in 
the two spin ubbands move with field at different rates and 
cross the Fermi energy either in phase or out of phase. The 
beatings are observed as a function of H⊥  and the beat 
frequency is proportional to the spin polarization of the 
interacting 2D electron system .P  In experiment, we ob-
served a well pronounced beating pattern at a nonzero H&  
(see Figs. 4 and 5), in agreement with Eq. (7). The phase of 
SdH oscillations remains the same between the adjacent 
beating nodes, and changes by π  through the node. The 
interference pattern (including positions of the nodes) is 
controlled by sZ  in Eq. (7) and is defined solely by * *.g m  
Systematic study of this pattern enabled us to determine 

* *g m  with high accuracy ( 2%∼ ). The * *g m  values are 
independent of T  (at < 1 K)T  within our accuracy [28]. 
We have observed a weak dependence of * *g m  on H&  in 
strong H& . To determine * *g m  in the linear regime, we 
systematically measured, for each n , the beating pattern at 
decreasing values of H&  until * *g m  becomes independent 
of H& . Evolution of the beating pattern with H&  is illu-
strated in Figs. 5,a and b. 

2.5. Data analysis 

Comparison between the measured and calculated de-
pendences 0/xxδρ ρ  versus H⊥ , both normalized by the 
amplitude of the first harmonic 1A  is shown in Fig. 5 for 
three carrier densities; for the sake of clarity, the oscilla-
tions are plotted as a function of the filling factor 

1/ H⊥ν ∝ . The normalization assigns equal weights to all 
oscillations. We analyzed SdH oscillations over the low-
field range 1 TH⊥ ≤ ; this limitation arises from the as-
sumption in Eq. (7) that c Fω ε�  and 0| | / 1xxδρ ρ � . 
The latter condition also allows us to neglect the inter-level 
interaction which is known to enhance *g  in stronger 
fields [29]. 

The amplitude of SdH oscillations at small H⊥  can be 
significantly enhanced by applying H&  (see Fig. 6) [27], 
which is another advantage of the cross-field technique. 
Indeed, for low H⊥  and n , the electron energy spectrum 
is complicated by crossing of levels corresponding to dif-
ferent spins/valleys. By applying H& , one can control the 
energy separation between the levels, and enhance the am-
plitude of low-field oscillations. We have verified that ap-
plication of H&  (up to the spin polarization 20%∼ ) does 
not affect the extracted *m  values (within 10%  accuracy), 
(the insets to Fig. 6 show that the values of *m  measured 
at = 0H&  and 3.36 T do coincide). 

Fitting of the data provides us with two combinations of 
parameters: * *g m  and *( )DT T m+ . The first combination, 

* * / 2 bg m m  normalized by the band values, represents the 
sought-for renormalized spin susceptibility. The measured 
values of * *g m , as well as *m  which are discussed below, 
were similar for different samples. Figure 7,a shows that 
for small sr  (high densities), our * *g m  values agree with 

Fig. 4. Shubnikov–de Haas oscillations for 11= 10.6 ·10n cm–2

(Si-MOSFET sample) at = 0.35 KT  [27]. 
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data are shown as the solid lines, the fits (with parameters shown)
as dashed lines. All are normalized by 1( )A H⊥ . 
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the earlier data by Fang and Stiles [20] and Okamoto et al. 
[21]. For 6sr ≥ , * *g m  increases with sr  faster than it 
might be expected from extrapolation of the earlier results 
[21]. 

The second combination, *( )DT T m+ , controls the am-
plitude of oscillations. In order to disentangle DT  and *,m  
we analyzed the temperature dependence of oscillations over 
the range = 0.3–1.6 KT  (for some samples 0.4–0.8 K) . 
The conventional procedure of calculating the effective 
mass for low sr  values ( 5 ), based on the assumption 
that DT  is T-independent, is illustrated by the insets in Fig. 
6. In this small-rs range, our results are in a good agree-
ment with the earlier data by Smith and Stiles [19], and by 
Pan et al. [18]. The assumption of temperature independent 

DT , however, becomes dubious at low densities (high sr ), 
where the resistance varies significantly over the studied 
temperature range; in this case, the two parameters DT  and 

*m  become progressively more correlated. The open dots 
in Fig. 7,b were obtained by assuming that DT  is T-in-
dependent over the whole explored range of n : *m  in-
creases with sr , and the ratio * / bm m  becomes 2.5∼  at 

= 8sr  ( = 0.19bm  is the band mass). As another limiting 
case, one can attribute the change in ( )Tρ  solely to the 
temperature dependence of the short-range scattering and 
request ( 1/ )D DT ∝ τ  to be proportional to ( )( 1/ )Tρ ∝ τ . 

In the latter case, the extracted dependence *( )sm r  is 
weaker (the solid dots in Fig. 7,b). 

Our data shows that the combination *( )DT T m+  is al-
most the same for electrons in both spin-up and spin-down 
subbands (e.g., for 11= 3.76 ·10n  cm–2 and = 2.15H&  T 
( = 20%P ), the DT  values for spin-up and spin-down le-
vels differ by 3%≤ ). This is demonstrated by the observed 
almost 100% modulation of SdH oscillations (see, e.g., 
Figs. 5,a and 5,b). Thus, the carriers in the spin-up and 
spin-down subbands have nearly the same scattering time. 

2.6. Comparison with other data 

2.6.1. High density/weak interaction regime. As seen 
from Fig. 8, the data on n-channel Si-MOS samples are 
in a reasonable agreement with the data obtained by Zhu 
et al. [30] for n-type GaAs/AlGaAs samples from mea-
surements of SdH effect in tilted magnetic field. Because 
of a smaller (by a factor of 3) electron effective mass in 

Fig. 6. Shubnikov–de Haas oscillations versus H⊥  for n =
112.2·10= cm–2 (i.e. = 5.6sr ) and = 0.4T ; 0.5 ; 0.6 ; 0.7 ; 0.8 K:

= 0H&  (a) and 3.36  T (b). The insets show the temperature de-
pendences of fitting parameters *( )DT T m+ . 

a

b

H = 0||

H = 3.36 T||

H , T�

R
, 

k
�

�
R

, 
k

�
�

0 0.5 1.0

T, K

T, K
0.4

0.4

0.6

0.6

0.8

0.8

0.35

0.25

1.8

1.6

1.4

2.2

2.0

1.8

0.4 K

0.4 K

0.8 K

0.8 K

0.3

0.2

m* = 0.27

m* = 0.27

T = 0.42 KD

T = 0.42 KD

(T
+

T
)m

*
D

(T
+

T
)m

*
D

Fig. 7. Parameters * *g m , *m , and *g  for different samples as 
a function of sr  (dots). The solid line in Fig. 7,a shows the data 
from Ref. 21. The solid and open dots in Figs. 7,b and 7,c corres-
pond to two different methods of finding *m  (see the text). The 
solid and dashed lines in Fig. 7,b are polynomial fits for the two 
dependences *( )sm r . The values of *g  shown in Fig. 7,c were 
obtained by dividing the * *g m  data by the smooth approxima-
tions of the experimental dependences *( )sm r  shown in Fig. 7,b.

5

4

3

2

1

2.5

2.0

1.5

1.0

4

3

2

g
*
m

*
/2

m
b

m
*
/m

b
g
*

a

b

c

rs



David Shoenberg and the beauty of quantum oscillations 

Fizika Nizkikh Temperatur, 2011, v. 37, No. 1 19 

GaAs, similar sr  values have been realized for the electron 
density 10 times lower than in Si-MOS samples. The width 
of the confining potential well in such GaAs/AlGaAs 
heterojunctions is greater by a factor of 6 than in (100) 
Si-MOS, due to a smaller mass zm , lower electron densi-
ty, and higher dielectric constant. This significant differ-
ence in the thickness of 2D layers may be one of the rea-
sons for the 20% difference between the χ*-data in n-GaAs 
and n-Si-MOS samples seen in Fig. 8; at the same time, the 
minor difference indicates that the effect of the width of the 
potential well on renormalization of *χ  is not dramatic. 

The SdH experiments provide direct measurement of 
*χ  in weak perpendicular and in-plane magnetic fields 

c FEω � , * totB Fg H Eμ �  [27]. Under such condi-
tions, the quantum oscillations of the Fermi energy may be 
neglected, and, in the clean system, the magnetization 
should remain a linear function of H , **

tot 0( )Hχ ≈ χ . 
Also, under such experimental conditions, the filling factor 
is large, = / ( ) 1nh eB⊥ν �  and the amplitude of oscilla-
tions is small | | / 1xx xxδρ ρ � . Figure 9 shows, on the 

H⊥ρ−  plane, the domain of the weak magnetic fields, 
> 6ν , where the SdH oscillations have been measured in 

Refs. 27, 31. As the perpendicular magnetic field increases 
further (and ν  decreases), the SdH oscillations at high 
density cn n�  transform into the quantum Hall effect; for 
low densities, cn n≈ , the SdH oscillations transform into 
the so-called «reentrant QHE–insulator» (QHE–I) transi-
tions [32]. The uppermost curve (open circles) presents the 

( )Hρ  variations in the regime of the QHE–I transitions 
[32], measured for a density slightly larger (by 4%) than 
the critical density value cn  for the metal–insulator transi-

tion. This diagram is only qualitative, because the cn  value 
is sample (disorder)-dependent. 

2.6.2. Low density/strong interaction regime. In the vi-
cinity of the critical density cn n≈ , the number of ob-
served oscillations decreases, their period increases, and 
the interpretation of the interference pattern becomes more 
difficult, thus limiting the range of direct measurements of 

*( )srχ . 
The horizontal bars in Fig. 8 are obtained from considera-

tion of the sign and period of SdH oscillations [31] as ex-
plained below. They show the upper limit for *χ , calculated 
from the data reported in Refs. 27, 31, 32. Figure 9,b demon-
strates that in the density range –2 11 –20.7 cm < <1·10 cmn , 
the oscillatory xxρ  (beyond the magnetic field enhanced 

= 1ν  valley gap) has minima at filling factors 

 = (4 2), = 1,2,3...,i iν −  (13) 

rather than at = 4iν  (in (100) Si-MOSFETs, the valley 
degeneracy = 2gν ). The latter situation is typical for high 
densities and points to the inequality ** < / 2B cg Bμ ω . 

In other words, the sign of oscillations at low densities 
is reversed. This fact is fully consistent with other observa-
tions (see, e.g., Fig. 2 of Ref. 31, Fig. 1 of Ref. 33, and 

Fig. 8. Renormalized spin susceptibility measured by SdH effect
in tilted or crossed fields on n-Si-MOS by Okamoto et al. [21],
Pudalov et al. [27], and on n-GaAs/AlGaAs by Zhu et al. [30].
Horizontal bars depict the upper and lower limits on the *χ
values, determined from the sign of SdH oscillations, measured
at = 0.027 mKT  in Ref. 31. Dashed and dotted lines show two
examples of extrapolation of the data [27]. 
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Figs. 1–3 of Ref. 34). As Fig. 8 shows, the ratio * / bχ χ  
exceeds 1/ 2 = 2.6bm  at 6sr ≈ ; the first harmonic of os-
cillations disappears at this density (so-called «spin-zero»), 
and the oscillations change sign for lower densities. The 
sign of the SdH oscillations is determined by the ratio of 
the Zeeman to cyclotron splitting [5,23] 

 
* *

*
cos cos ,B

b
bc

g H
m

⎛ ⎞ ⎛ ⎞μ χ
π ≡ π⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ χω ⎝ ⎠⎝ ⎠

 (14) 

therefore, we concluded in Ref. 31 that, in order to have 
negative sign in the range 10 > > 6sr , the spin susceptibil-
ity *χ  must obey the following inequality: 

 
*1 32.6 = < < = 7.9.

2 2b b bm m
χ
χ

 (15) 

Thus, Eqs. (13) and (15) enable us to set the upper and 
lower limits for *,χ  which are shown by horizontal bars in 
Fig. 8 at = 7.9–9.5.sr  As density decreases (and sr  in-
creases), due to finite perpendicular fields, in which the 
SdH oscillations were measured, the condition of Eq. (15) 
becomes a bit more restrictive, which leads to narrowing the 
interval between the upper and lower bars [31]. 

3. Magnetooscillations in strongly interacting 
2D electron system 

In Sec. 2.2 above we used the semiclassical LK formu-
la for noninteracting 3D case [5] and have made only 
transparent changes for the 2D electron spectrum [22]. We 
assumed that for the interacting system, the LK-formula 
remains applicable, when bare (band) quasiparticle para-
meters are replaced with their values renormalized by inte-
raction. This assumption is examined in this section. We 
shall consider only the case of weak oscillations when they 
are exponentially damped by either disorder broadening of 
the Landau levels or temperature smearing of the Fermi 
energy. For simplicity, we call this the «low-magnetic field 
regime». In higher quantizing fields, deviations from the 
LK formula were found earlier [9,35,36] and attributed to 
the magnetic field dependent oscillatory renormalization of 
the effective g-factor and mass, due to the inter-Landau 
level interaction [37]. 

Magnetooscillations in the interacting 2D system were 
studied theoretically over the last 50 years. The main issue 
under investigation is whether the oscillations frequency, 
phase, and damping factor for the strong interaction case 
remain the same as in the noninteracting system Eq. (7) 
and whether the FL parameters in the LK formula can be 
taken at zero magnetic field. Bychkov and Gorkov [23] 
have found that the amplitude of oscillations Eq. (9), rather 
than their frequency, is renormalized by interaction. Fow-
ler and Prange [38] and Engelsberg [39] showed that the 
electron–phonon scattering rate does not appear in the os-
cillations amplitude; Martin et al. [40] have shown that the 

inelastic electron–electron scattering does not contribute to 
the damping of magnetooscillations. 

Recently, an important advancement has been made in 
theory [40,41] of magnetooscillations. It was shown that 
the LK formula, in general, is still applicable when the os-
cillations are exponentially small. However, due to the in-
terference between electron–electron and electron–impur-
ity interactions, damping factor in oscillations acquires an 
additional term in both the diffusive and ballistic regimes 
as follows [41]: 

 [ ]1 2 *
ln ( , ) = ( ) ( ),

2
D

e B

eH
A T H T T T

m m ck
⊥

⊥− + −α
π

 (16) 

where 

 
** *

* * *( ) = ,D
D

D

m mT T T
m m

⎛ ⎞δτδ δ
α − − −⎜ ⎟⎜ ⎟τ⎝ ⎠

  

 
*

*
( ) = ln FEm T

Tm
δ ⎛ ⎞− ⎜ ⎟

⎝ ⎠
A ,  

 
*

*
= 2 ln ,D F

D

E
T

T
δτ ⎡ ⎤⎛ ⎞π τ −⎢ ⎥⎜ ⎟

⎝ ⎠τ ⎣ ⎦
A   

 0
2

0

15 1= 1 ,
1 4

a

a
D

F
F

⎛ ⎞
+⎜ ⎟⎜ ⎟+ π σ⎝ ⎠

A  (17) 

and the factor 15 in the last line is the number of triplet 
terms for a system with two degenerate valleys. 

Our numerical simulations show that within the relevant 
interval = 0.03–0.8T  K and 6sr ≤ , the ln T  terms in 
Eq. (17) can be replaced with a T-independent constant. By 
combining the LK result Eq. (7) with the interaction-induc-
ed corrections and replacing all lnT  terms by a constant 
within our limited T  range, we obtain the following linea-
rized equation [42] in the ballistic regime for the short-
range scattering (i.e. trDτ ≈ τ ): 

 [ ]1 2 *
ln ( , ) = (1 2 )

2
D

e B

eH
A T H T T T

m m ck
⊥

⊥− + + π τ =
π

A  

 1 ( )= 1
2D

D

TT T
⎛ ⎞δσ

+ −⎜ ⎟σ⎝ ⎠
. (18) 

This remarkable result means that the T-dependent cor-
rection to the Dingle temperature, ( ) /D DT T Tδ  is just one-
half of the interaction correction to the conductivity [43] 

( ) / DTδσ σ . The factor 1/2 originates from the difference 
between the interaction corrections to the momentum re-
laxation time ( tr ( )Tδτ ) and quantum scattering time [44] 
( ( )D Tδτ ). We note that the empirical procedure used for 
finding *m  in our earlier paper (Ref. 27) was based on the 
assumption that [ ]* = 1 ( ) / ,D D DT T T−δσ σ  which differs 
from Eq. (18) by a factor of 1/2 . 

For the interacting case, Eq. (18), the linear T-de-
pendence of 1ln ( , )A T H⊥  holds to the first approximation. 
This is in agreement with our experiments [27] which 
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show that 1ln ( , )A T H⊥  for high sr  varies linearly with 
temperature within the experimental range = 0.2–1 KT  
(see the inserts to Fig. 6). 

3.1. Refinement of the extracted 0
aF  values 

At relatively high densities (which correspond to 
< 4)sr , the corrections to the LK result are insignificant 

within the studied T  range. As sr  increases, the tempera-
ture dependences of the oscillation magnitude predicted by 
the LK theory Eq. (7) and the interaction theory Eq. (17) 
start deviating from each other. The values of 0| |aF  ex-
tracted from SdH data using Eq. (18) are smaller than 
those obtained with the LK theory but larger than 0| |aF  
obtained with the empirical procedure used in Ref. 27. 
E.g., at = 6.2sr , the 0

aF  values obtained according to 
Eq. (18) and the empirical procedure of Ref. 27 are –0.40 
and –0.45, respectively. In Ref. 42 we have reanalyzed the 
data of Ref. 27 using Eq. (18) and compared them with 
available results from other transport measurements. 

The 0
aF  values obtained in Ref. 42 from the analysis of 

SdH oscillations using the theories [5,41] (see Sec. 3) are 

plotted in Fig. 10. For comparison, we have also plotted 
the 0

aF  values calculated in Ref. 42 from fitting the mono-
tonic temperature and magnetic field dependences of the 
conductivity ( )TΔσ  and ( )HΔσ &  [42,45,46] with the 
theory [43]. There is a good agreement between all data. 

The spin susceptibility * * *g mχ ∝  obtained from SdH 
measurements appears to be almost T-independent [47], in 
apparent disagreement with the interaction correction the-
ory [48] and renormalization group (RG) theory [49]. This 
contradiction could be resolved, provided the T-depen-
dence of *g  is exactly compensated by the opposite T-de-
pendence of *m , so that * * *g mχ ∝  remains almost con-
stant. The compensation, however, seems rather unlikely. 
We believe that the absence of temperature dependence in 

* *g m  values from SdH is simply a consequence of the cut-
off that is imposed by finite magnetic fields *

tot > / BH kT g μ  
which are applied in SdH measurements. 

3.2. Other quasiparticle parameters extracted from 
SdH data 

3.2.1. Valley splitting. The analysis of SdH oscillations 
using Eq. (7) also allowed us to estimate the value of the 
energy splitting [9] VΔ  between two valleys in the (100)-
Si-MOSFET samples. A nonzero valley splitting causes 
beating of SdH oscillations. Figures 11,a and b show the 
SdH oscillations for two different samples. The electron 
densities are 116.1·10  and 121·10 cm–2, respectively. The 
amplitude of weak SdH oscillations normalized by the first 
harmonic 1A  is expected to be field independent if = 0.VΔ  
A noticeable reduction in the SdH amplitude observed for 
both samples at small fields can be attributed to a finite 
valley splitting. Although the node of SdH oscillations 
expected at 0.15 TH⊥ ≈  cannot be resolved for samples 
with mobilities 2∼ m2/(V·s), VΔ  can still be estimated 
from fitting of the H⊥ -dependence of the SdH amplitude 
with Eq. (7) modified for the case of a finite VΔ : 

= 0.4VΔ  K for sample Si6-14 and 0.7 K for Si1-46. This 
estimate provides the upper limit for VΔ  at = 0H⊥ : in 
nonzero H⊥  fields, VΔ  may be enhanced by the interlevel 
interaction effects [9,35,37]. 

3.2.2. Drude scattering time. The momentum relaxa-
tion time τ  needed for calculating the interaction correc-
tions was determined from the Drude conductivity =Dσ

2= e / ;b en m mτ  the latter was found by extrapolating the 
quasi-linear ( )Tσ  dependence observed in the ballistic 
regime to = 0T  [43,50]. Note that in order to extract τ  
from the Drude conductivity, one should use the bare bm  
rather than the renormalized effective mass: according to 
the Kohn theorem, the response of a translationally-in-
variant system to the electromagnetic field is described by 

bm  in the presence of electron–electron interactions; this 
result also holds for weak disorder ( 1FE τ� ). It is worth 
mentioning that several prior publications [45,46,50] incor-
rectly used *m  instead of bm  to estimate τ  from Dσ ; as 
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Fig. 10. (a) The dashed curve corresponds to 0 ( )a
sF r  extracted

from the SdH data [27] using the LK theory, the dash-dotted
curve — to the empirical approach used in Ref. 27. The symbols
depict 0

aF  values obtained from fitting the transport data with
the theory [43]. The shaded regions in panels (a) and (b) show the

0 ( )a
sF r  dependence (with the experimental uncertainty) ob-

tained from fitting our SdH data [27] with the theory [41].
(b) Comparison of 0

aF  values recalculated from available
( , = 0)T Hδσ  data: dots — Ref. 42, triangles and diamonds —

Refs. 45 and 46, respectively. 
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shown in Ref. 42, this affects the value of the fitting para-
meters extracted from comparison with the theory [43]. 

The textbook value [9] for the light electron mass in 
bulk Si is (3 ) 0.19D

bm ≈ . For inversion layers on (001) Si-
surface [51], (2 ) = (0.19–0.22) 0.02D

bm ±  was found from 
tunneling measurements. The *( )m n  data obtained from 
the analysis of SdH oscillations over a wide range of densi-
ties = 1.4–8.5sr  [27], can be fitted with a polynomial 

4*( ) = 0.205(1 0.035 0.00025 )s s sm r r r+ + . These *m  data ag-
ree well with earlier values of *m  extracted from SdH oscil-

lations [19,20,24,52] in narrower ranges of densities. By 
extrapolating the polynomial *( )sm r  to = 0sr  we obtain 

(2 ) = 0.205 0.005D
bm ± ; following Ref. 42 we adopted this 

value throughout the paper. 

4. Conclusion 

David Shoenberg was a great Master in experimental 
low-temperature physics. Besides the de Haas–van Alphen 
effect, he has made substantial contribution to understand-
ing of the magnetic properties of superconductors. His 
book «Superconductivity» written in Moscow in 1938 is 
one of the reference books on my bookshelf and is used as 
a textbook by Russian students. Shoenberg's experiments 
on studying quantum oscillations in metals and the fine 
experimental techniques developed by him for this re-
search represent a piece of experimental art. David Shoen-
berg has shown how the properties of interacting systems 
can be revealed by measuring quantum oscillations under 
nonlinear conditions imposed by interactions. 

In line with this approach, we performed studies of the 
Shubnikov–de Haas effect for strongly interacting two-di-
mensional system of electrons. From the amplitude of 
quantum oscillations, we determined the interaction-induc-
ed renormalization of the quasiparticle parameters, such as 
the effective mass, spin susceptibility, and g-factor. The 
Fermi-liquid interaction parameter 0 ( )aF n  obtained from 
the analysis of SdH oscillations agrees well with the 

0 ( )aF n  values obtained by fitting the monotonic transport 
data with the interaction correction theory [43]. However, 
it remains so far unclear how to reconcile the 0

aF  values 
obtained at low electron densities from fitting the ( )Tσ  
and SdH data (by using the interaction correction theory) 
with the corresponding values [53–55] obtained by fitting 
the ( , )T Hσ &  data with the RG theory. Possibly, for a 
quantitative description of the interaction effects in low 
temperature transport, the RG theory should be extended to 
a more realistic case of a finite intervalley scattering rate 
and to higher orders. 
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Fig. 11. SdH oscillations normalized by 1A : (a) sample Si6-14,
11=6.1·10n cm–2, = 36T  mK; (b) sample Si1-46, 12=1·10n cm–2,

= 200T  mK. Dots show the data, solid curves — the theoretical
dependences Eq. (7) modified for a finite = 0.4VΔ  and 0.7 K
for samples Si6-14 and Si1-46, respectively. Panels (c) and (d)
show the T-dependences of the SdH oscillations amplitude for
Si6-14 ( 11= 5.5·10n cm–2) and Si1-46 ( 12= 1·10n cm–2), solid
curves — the noninteracting LK-model Eq. (7), dashed curves —
the fit based on the interaction theory Eqs. (17). 
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