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1. Introduction

In the recent few years, nonlinear optical properties in 
the low-dimensional semiconductor quantum systems, 
such as quantum wells [1-5], quantum wires [6, 7] and 
quantum dots [8, 9], have attracted much attention both 
in practical applications and in theoretical research. By
one reason, the nonlinear effects in these low-
dimensional quantum systems can be enhanced more 
dramatically over those in bulk materials due to 
existence of a strong quantum-confinement effect. By
another one, these nonlinear properties have the potential 
for device application in far-infrared laser amplifiers, 
photodetectors, electro-optical modulators and all-
optical switches. In addition, the fast development of 
graving technologies such as molecular beam epitaxy 
and metal-organic chemical vapor deposition has also 
accelerated researches in this area.

Recently, there has been a considerable interest in
interband transitions (IBTs) in nitride semiconductor 
quantum well (QW) structures [10-15] the possibility of 
achieving both linear and nonlinear optical properties.
Also, IBTs in nitride semiconductor QWs have been the 
subject of extensive researches for their extremely large 
oscillator strengths and relatively narrow line widths, 
and are used in a variety of optoelectronic devices like 
QW infrared lasers [16, 17], switches and MQW 
electrooptical modulators [18]. Above all, nitride-

semiconductor heterostructures have several advantages, 
namely: (1) the absorption recovery time is considerably 
lower than 1 ps, (2) a wide range of wavelengths is 
available with a less-complicated quantum structure, 
(3) the homogeneous line width is sufficiently broad due 
to the short dephasing time, (4) two-photon absorption 
does not interfere with the saturable absorption due to 
the wide band-gap [19, 20].

In this paper, we show that the electric field breaks 
the symmetry of the confinement potential profile and 
leads to large second-order susceptibilities in a wurtzite 
GaN/AlxGa1-xN QW. 

The organization of this paper is as follows. In 
Section 2, theory and model are presented. The model of 
calculation used in this paper is based on using the 
effective mass Schrödinger with the Numerov numerical 
technique that we provide. Simulation results of our 
models and discussions are illustrated in Section 3. In 
this section, our results have been explained and show 
that the proposed structure is a better model for applica-
tions in microwave and optical switches. Finally, the 
paper contains a short conclusion.

2. Theory and model

Using the density-matrix formalism, the second-
harmonic generation (SHG) susceptibility of the double 
frequency 2 in a bulk material or quantum confined 



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010. V. 13, N 3. P. 321-325.

© 2010, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

322

systems by an incident optical beam with the frequency 
. Assuming a monochromatic incident electromagnetic 
field E(t) = E exp(−iωt) + E*exp(iωt) is applied to a 
system, the polarization response is written as [20, 21].
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In the two-level structure, only two terms remain in the 
summation, namely: those for which k = 1, i = 2 and 
l = 1 or 2. This yields for the quadratic suscepti-
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    is the average 

electron displacement resulting from the transition from 
the level |1 to |2. N1 and N2 are the electron density in 
the respective levels |1 and |2. Γ1 and Γ2 are,
respectively, the population relaxation rate (inelastic 
mechanism) and dephasing constant corresponding to 
elastic scattering. Far from resonance (ω12 >> ω), it can 
be written:
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Eq. (2) requires the energies and wave functions of the 
QW structure, which can be obtained solving the
Schrödinger equation. 

The schematic diagram for the electron confined 
potential profile in QW is shown in Fig. 1. The effective 
mass Hamiltonian for the electron in this coupled 
quantum system is given as
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Fig. 1. Schematic diagram for electron confined potential 
profile for GaN/AlxGa1-xN strained single quantum well, 
(a) without any electric field, (b) under the electric field F.

When the Schrödinger equation is solved using a 
simple but highly accurate numerical technique [23], the 
envelope wave function of Eq. (4) can be written in the 
following form:
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where mb
 is the effective mass of the particle at the 

barrier, and the overall potential can be presented as
follows (Eq. (7)):

( ) ( )c zV z E z eF z  , (7)

where Ec(z) represents the conduction-band profile given 
by the material compositions, and Fz is the electric field 
applied to the structure along the axis z. We integrate the 
Schrödinger equation by a two-step numerical method. 
First, one is to find the iterative formula. We add the 
fourth- and sixth-order derivatives to raise precision of 
the traditional Numerov method [23-26] from the fourth 
order to the twelfth order, and to expand the interval of 
periodicity. The second step is to find the mated first-
order derivative formula, and the latter is to give the 
algorithm.

3. Numerical results and discussion

In this section, simulation results are presented and 
discussed, which characterize the electrical and optical 
properties of GaN/AlxGa1-xN single quantum well 
structure for the aluminium concentration x = 0.15, when
the quantum well width is Lw = 80 Å. The dephasing 
constant corresponding to elastic scattering is 
Γ2 = 0.14 ps. The optimal doping concentration is 
Nd = 1024 cm-3. Material parameters and values of 
polarization and elastic constants used in the calculation 
are given in Table 1 [27].

Table 1. Material parameters and values of polarization 
and elastic constants used in the calculation.

Parameter                 Unit GaN AlxGa1-xN

a                                    Å 3.189 3.122x + 3.189(1 − x)

εr                                          F/m 10 0.58x + 10(1 – x)

Conduction band 
effective masses m*/m0                     

– 0.19 0.19(1 – x) + 0.33x

Band gap (Eg(x))                         eV 3.475 6.13x + (1 – x) 3.42 –
– x(1 – x)

Band offset (ΔEc(x))          eV – 0.7[Eg(x)–Eg(0)]
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Fig. 2. Schematic diagrams of wave functions for an electron 
confined in GaN/Al0.15Ga0.85N QW.

Using the Numerov method to numerically solve
the Schrödinger equation (Eq. (4)) in one dimension, we 
find both the eigenvalues and the wave functions. The 
efficiency of Numerov’s method lies in the fact that one 
obtains a local error of O(h6) with just one evaluation of 
V and E per one step. This should be compared to the 
Runge–Kutt algorithm that needs six function evalua-
tions per step to achieve a local error of O(h6). In Fig. 2, 
not only the confined potential profile of the conduction 
band electron, but also the electron wave functions of the 
ground-state 1 for the first excited state and 2 for the 
second excited one in z-direction are plotted without the 
electric field F. Here we see the symmetry of wave
functions relatively to the center of this QW structure.
       The Fig. 3 illustrates the electric field effect on 
wave functions for electron confined in the quantum 
well. Three special values of F were used. 

We can see from Fig. 3 that the strong F in 
GaN/Al0.15Ga0.85N QW can induce a remarkable change 
of the electron wave function spatial distribution. So, the 
applications of an electric field perpendicular to the 
plane of the QW influence its electron properties. It 
increases the quantum confined effect. It should be noted 
that the situation is quite different when considering the 
quantum confined electron and hole wave functions in 
QW. At flat band condition (zero-field), a QW is simply 
treated as a quantum mechanical “particle-in-a-box”, 
wherein the electron have symmetric trigonometrical 
sinusoidal wave functions from which the energy of 
intraband transitions can be easily obtained. With 
electric field, band bending occurs, forming a tilted 
quantum well which results in lowering the energy of 
band transitions, i.e., the electron subband energy level 
drops. This band bending is a result of self-consistency 
of this problem. Thus, the symmetry is broken.

In the second part, the effect of electric field on the 
second-order susceptibility has been presented. This
susceptibility has been calculated for two state transi-
tions. In Fig. 4, we plot the second-order susceptibility 
χ(2) as a function of the photon energy ħω for different 
values of electric field.

  a

  b

  c

Fig. 3. Schematic diagrams of wave functions for an electron 
confined in GaN/Al0.15Ga0.85N QW for different values of the 
electric field: F = 10 (a), 20 (b) and 60 kV/cm (c).

From Fig. 4, we observe that (2)  increases with 

increasing the electric field. The peak of the 
susceptibility increases (the whole range of variations 
are: from 10-10 to 10-4), which can be attributed to the 
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Fig. 4. χ(2)(2ω) as a function of the pumping photo-energy hω.
F values are equal to: 0 (a), 10 (b), 20 (c) and 60 kV/cm (d).

strong confinement of the electron due to electric field.
This coversion of peak proportions can cause band 
bending with increasing the electric field. It is therefore 
possible to manage the resonant frequency and the 
amplitude of sensitivity of the second order with a 
suitable choice of the quantum well width (Lw = 80 Å),
which plays an important role in the confinement of 
electrons in the quantum well structure.

4. Conclusion 

In conclusion, taking the strong effect of built-in electric 
field into account, the second-harmonic generation 
(SHG) susceptibility in a GaN/Al0.15Ga0.85N QW system 
has been theoretically analyzed, and the Numerov 
numerical technique to solve Schrödinger equation has 
been used. A large value of χ(2) (several orders than that 
of bulk GaN) has been obtained, which can be used for 
the wavelength convertion in optical switches.
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1. Introduction 

In the recent few years, nonlinear optical properties in the low-dimensional semiconductor quantum systems, such as quantum wells [1-5], quantum wires [6, 7] and quantum dots [8, 9], have attracted much attention both in practical applications and in theoretical research. By one reason, the nonlinear effects in these low-dimensional quantum systems can be enhanced more dramatically over those in bulk materials due to existence of a strong quantum-confinement effect. By another one, these nonlinear properties have the potential for device application in far-infrared laser amplifiers, photodetectors, electro-optical modulators and all-optical switches. In addition, the fast development of graving technologies such as molecular beam epitaxy and metal-organic chemical vapor deposition has also accelerated researches in this area.


Recently, there has been a considerable interest in interband transitions (IBTs) in nitride semiconductor quantum well (QW) structures [10-15] the possibility of achieving both linear and nonlinear optical properties. Also, IBTs in nitride semiconductor QWs have been the subject of extensive researches for their extremely large oscillator strengths and relatively narrow line widths, and are used in a variety of optoelectronic devices like QW infrared lasers [16, 17], switches and MQW electrooptical modulators [18]. Above all, nitride-semiconductor heterostructures have several advantages, namely: (1) the absorption recovery time is considerably lower than 1 ps, (2) a wide range of wavelengths is available with a less-complicated quantum structure, (3) the homogeneous line width is sufficiently broad due to the short dephasing time, (4) two-photon absorption does not interfere with the saturable absorption due to the wide band-gap [19, 20].


In this paper, we show that the electric field breaks the symmetry of the confinement potential profile and leads to large second-order susceptibilities in a wurtzite GaN/AlxGa1-xN QW. 


The organization of this paper is as follows. In Section 2, theory and model are presented. The model of calculation used in this paper is based on using the effective mass Schrödinger with the Numerov numerical technique that we provide. Simulation results of our models and discussions are illustrated in Section 3. In this section, our results have been explained and show that the proposed structure is a better model for applications in microwave and optical switches. Finally, the paper contains a short conclusion.

2. Theory and model

Using the density-matrix formalism, the second-harmonic generation (SHG) susceptibility of the double frequency 2( in a bulk material or quantum confined systems by an incident optical beam with the frequency (. Assuming a monochromatic incident electromagnetic field E(t) = E exp(−iωt) + E*exp(iωt) is applied to a system, the polarization response is written as [20, 21].
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In the two-level structure, only two terms remain in the summation, namely: those for which k = 1, i = 2 and l = 1 or 2. This yields for the quadratic susceptibility
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where 

[image: image4.wmf]122211


2211


zzzz


d


ÙÙ


=-=-


 is the average electron displacement resulting from the transition from the level |1( to |2(. N1 and N2 are the electron density in the respective levels |1( and |2(. Γ1 and Γ2 are, respectively, the population relaxation rate (inelastic mechanism) and dephasing constant corresponding to elastic scattering. Far from resonance (ω12 >> ω), it can be written:
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Eq. (2) requires the energies and wave functions of the QW structure, which can be obtained solving the Schrödinger equation. 


The schematic diagram for the electron confined potential profile in QW is shown in Fig. 1. The effective mass Hamiltonian for the electron in this coupled quantum system is given as
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Fig. 1. Schematic diagram for electron confined potential profile for GaN/AlxGa1-xN strained single quantum well, (a) without any electric field, (b) under the electric field F.

When the Schrödinger equation is solved using a simple but highly accurate numerical technique [23], the envelope wave function of Eq. (4) can be written in the following form:
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Here 
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where mb( is the effective mass of the particle at the barrier, and the overall potential can be presented as follows (Eq. (7)):
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where Ec(z) represents the conduction-band profile given by the material compositions, and Fz is the electric field applied to the structure along the axis z. We integrate the Schrödinger equation by a two-step numerical method. First, one is to find the iterative formula. We add the fourth- and sixth-order derivatives to raise precision of the traditional Numerov method [23-26] from the fourth order to the twelfth order, and to expand the interval of periodicity. The second step is to find the mated first-order derivative formula, and the latter is to give the algorithm.

3. Numerical results and discussion

In this section, simulation results are presented and discussed, which characterize the electrical and optical properties of GaN/AlxGa1-xN single quantum well structure for the aluminium concentration x = 0.15, when the quantum well width is Lw = 80 Å. The dephasing constant corresponding to elastic scattering is Γ2 = 0.14 ps. The optimal doping concentration is Nd = 1024 cm-3. Material parameters and values of polarization and elastic constants used in the calculation are given in Table 1 [27].


Table 1. Material parameters and values of polarization and elastic constants used in the calculation.

		Parameter                 

		Unit

		GaN

		AlxGa1-xN



		a                                    

		Å

		3.189

		3.122x + 3.189(1 − x)



		εr                                                            

		F/m

		10

		0.58x + 10(1 – x)



		Conduction band effective masses m*/m0                            

		–

		0.19

		0.19(1 – x) + 0.33x



		Band gap (Eg(x))                         

		eV

		3.475

		6.13x + (1 – x) 3.42 –

– x(1 – x)



		Band offset (ΔEc(x))                                                             

		eV

		–

		0.7[Eg(x)–Eg(0)]
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Fig. 2. Schematic diagrams of wave functions for an electron confined in GaN/Al0.15Ga0.85N QW.


Using the Numerov method to numerically solve the Schrödinger equation (Eq. (4)) in one dimension, we find both the eigenvalues and the wave functions. The efficiency of Numerov’s method lies in the fact that one obtains a local error of O(h6) with just one evaluation of V and E per one step. This should be compared to the Runge–Kutt algorithm that needs six function evaluations per step to achieve a local error of O(h6). In Fig. 2, not only the confined potential profile of the conduction band electron, but also the electron wave functions of the ground-state (1 for the first excited state and (2 for the second excited one in z-direction are plotted without the electric field F. Here we see the symmetry of wave functions relatively to the center of this QW structure.

       The Fig. 3 illustrates the electric field effect on wave functions for electron confined in the quantum well. Three special values of F were used. 

We can see from Fig. 3 that the strong F in GaN/Al0.15Ga0.85N QW can induce a remarkable change of the electron wave function spatial distribution. So, the applications of an electric field perpendicular to the plane of the QW influence its electron properties. It increases the quantum confined effect. It should be noted that the situation is quite different when considering the quantum confined electron and hole wave functions in QW. At flat band condition (zero-field), a QW is simply treated as a quantum mechanical “particle-in-a-box”, wherein the electron have symmetric trigonometrical sinusoidal wave functions from which the energy of intraband transitions can be easily obtained. With electric field, band bending occurs, forming a tilted quantum well which results in lowering the energy of band transitions, i.e., the electron subband energy level drops. This band bending is a result of self-consistency of this problem. Thus, the symmetry is broken.

In the second part, the effect of electric field on the second-order susceptibility has been presented. This susceptibility has been calculated for two state transitions. In Fig. 4, we plot the second-order susceptibility χ(2) as a function of the photon energy ħω for different values of electric field.
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Fig. 3. Schematic diagrams of wave functions for an electron confined in GaN/Al0.15Ga0.85N QW for different values of the electric field: F = 10 (a), 20 (b) and 60 kV/cm (c).


From Fig. 4, we observe that 
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 increases with increasing the electric field. The peak of the susceptibility increases (the whole range of variations are: from 10-10 to 10-4), which can be attributed to the 
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Fig. 4. χ(2)(2ω) as a function of the pumping photo-energy hω. F values are equal to: 0 (a), 10 (b), 20 (c) and 60 kV/cm (d).

strong confinement of the electron due to electric field. This coversion of peak proportions can cause band bending with increasing the electric field. It is therefore possible to manage the resonant frequency and the amplitude of sensitivity of the second order with a suitable choice of the quantum well width (Lw = 80 Å), which plays an important role in the confinement of electrons in the quantum well structure.

4. Conclusion 

In conclusion, taking the strong effect of built-in electric field into account, the second-harmonic generation (SHG) susceptibility in a GaN/Al0.15Ga0.85N QW system has been theoretically analyzed, and the Numerov numerical technique to solve Schrödinger equation has been used. A large value of χ(2) (several orders than that of bulk GaN) has been obtained, which can be used for the wavelength convertion in optical switches.
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