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Here we present a new approximation for calculation of density of states of multi-component metallic alloys
using Lloyd formula. We consider the average square of T-matrix as the pair replication of scattering system.
The analytical expressions are probed on TixMn1−x and AlxNi1−x binary alloys. The results are in good
agreement with the predicted behavior of density of states for such systems.
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1. Introduction

The Lloyd formula for the density of states (DoS) of a finite system on non-overlapping poten-
tials in free space was derived in [1] by local integration of the Green function of the system in the
r-space representation. Similarly, expressions which are valid within the muffin-tin single-site co-
herent potential approximation (CPA) were derived from the DoS per atom in a disordered binary
substitutional alloy. It was stated in [2] and we also agree to the fact that the Lloyd formula is an
elegant tool in multiple-scattering theory and it implicitly provides an analytical integration over
energy and over all space and directly gives the number of states as a function of energy. However,
the usual derivations of this formula are involved and the range of applicability of approximations
used therein is somewhat physically obscure.

The significance of the Lloyd formula approach to the DoS calculation of metallic systems is
proved by a series of works. So, in a general case it was studied in [3] and as the treatment of
binary metallic alloys it was done in [4].

Furthermore, we should introduce our work by presenting some basic definitions and equations
used in a multiple-scattering theory that were applied here. According to the Green function
method, the definition of the DoS should be expressed as follows:

DoS(E) =
∓
π

Tr =m G±(E). (1)

Here G±(E) is the Green function (advanced or retarded for “+” or “−”, correspondingly) of the
defined system and it satisfies the Dyson equation

G±(E) = G±
0 (E) + G±

0 (E)V̂ G±(E), (2)

where G±
0 (E) is the Green function of some known reference system (e.g. free electronic gas or

medium of coherent potentials) and V̂ is the perturbation operator determined as the difference
of the effective potential of electron-ion interaction in the defined system under consideration and
the corresponding characteristic of the reference one.

Moreover, if only this is possible for the system of interest, the T-matrix operator is introduced
by the following expression

G±(E) = G±
0 (E) + G±

0 (E)T̂ ±(E)G±
0 (E). (3)
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Hence, comparing equations (2) and (3), the following Dyson equation for T-matrix of the system
is also valid

T̂ ±(E) = V̂ + V̂ G±
0 (E)T̂ ±(E). (4)

It is worth noting that equation (4) leads to the optical theorem for T-matrices

T̂ ±(E) − T̂ ∓(E) = ∓2πiT̂ ∓(E)T̂ ±(E). (5)

The applicability and usefulness of (5) for the case of transition metals were discussed in [5].
Using equations (1), (3) and presenting DoS0(E) = ∓/π =m Tr G±

0 (E) – DoS of the reference
system, the DoS of the system of interest can be decomposed

DoS(E) = DoS0(E) + δDoS(E), (6)

where

δDoS(E) =
∓
π

Tr =m
[
G±

0 (E)T̂ ±(E)G±
0 (E)

]
=

∓
π
=m Tr

[
G±

0 (E)2T̂ ±(E)
]

=
±
π
=m Tr

[
d

dE
G±

0 (E)T̂ ±(E)

]
=

±
π
=m Tr

[
T̂ ±(E)−1 d

dE
T̂ ±(E)

]

=
±
π

d

dE
=m Tr ln T̂ ±(E) =

±
π

d

dE
=m ln det T̂ ±(E). (7)

The latter expression (7) is the well-known Lloyd formula. Obviously, using the general prop-
erties of the matrix determinant and logarithm, one can state

δDoS(E) =
±
pπ

d

dE
=m ln det

[
T̂ ±(E)p

]
. (8)

By defining the S-matrix operator Ŝ(E) = T̂ −(E)−1T̂ +(E), the Lloyd formula (7) also validates
the following expression

δDoS(E) =
±
2π

d

dE
=m ln det

[
T̂ ∓(E)−1T̂ ±(E)

]
=

1

2π

d

dE
=m ln det Ŝ(E) (9)

and, furthermore, for diagonal presentation of S -matrix (matrix elements are Sαβ(E) = δα,βe2iδα(E),
where δα(E) are generalized phase shifts of αth state) equation (9) transforms to the generalized
differential Friedel sum-rule

δDoS(E) =
1

π

∑

α

dδα(E)

dE
. (10)

In case of disordered systems, DoS in (1) depends on 〈G±(E)〉 – i.e., the average Green function
taken in terms of the average over all possible spatial configurations of the system under consider-
ation. If one applies the configuration averaging to the Dyson equation (2), then the corresponding
equation for the average Green function of the system transforms to the following

〈
G±(E)

〉
= G±

0 (E) + G±
0 (E)

〈
V̂ G±(E)

〉

and, introducing the so-called self-energy operator Σ̂ used to extract 〈G±(E)〉 in the second item of
equation, this expression for the Green function average over configuration can be transformed to

〈
G±(E)

〉
= G±

0 (E) + G±
0 (E)Σ̂

〈
G±(E)

〉
. (11)

Taking the average of the equation (3), one can get

〈
G±(E)

〉
= G±

0 (E) + G±
0 (E)

〈
T̂ ±(E)

〉
G±

0 (E). (12)

Hence one can see the fact that the average Green function is determined by the average T-matrix.
Consequently, the Lloyd formula (7) for the case of a disordered system reformulates into

δDoS(E) =
±
π

d

dE
=m

〈
ln det T̂ ±(E)

〉
=

±
π

d

dE
=m ln det

〈
T̂ ±(E)

〉
. (13)
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2. The replica-trick and Lloyd representation of DoS

There is a very useful mathematical technique to take the average over a configuration of
systems with a high degree of topological disorder, such as metallic glasses and liquid alloys. It is
called the replica-trick and is based on the application of the formula

〈
ln Â

〉
= lim

p→0

〈
Âp − 1

p

〉
= lim

p→0

〈
Âp

〉
− 1

p
, (14)

where the angle-brackets represent an average over all realizations of the disorder, and it also
involves extending Âp, averaged for integer power p, to the case where p is no longer constrained
to be an integer value, by positing that if Âp can be calculated for all positive integers p then this
may be sufficient to allow the limiting behavior as p → +0 to be calculated.

Before applying (14) to the Lloyd formula (13) it might be necessary to show that the average
T-matrix of the system under consideration with regard to optical theorem (5) can be represented
by the following sequence

〈
T̂ ±(E)

〉
=

〈
T̂ ∓(E)

〉
∓ 2πi

〈
T̂ ∓(E)T̂ ±(E)

〉
=

∞∑

p=1

(∓2πi)p−1
〈
T̂ ∓(E)p

〉
. (15)

So, the logical deduction regarding the power series in the last expression is the fact that the
existence of an average T-matrix of the system of interest provides for the existence of an average
T̂ p – operator for any positive integer power p and vice versa. Furthermore, this substantiates the
implementation of (12) to be a sufficient condition of replica technique application.

Having regard to the validity of averaging procedure used in (12) it becomes possible to apply
replica-trick to the first (upper) equality in (13)

δDoS(E) =
±
π

d

dE
=m Tr

〈
ln T̂ ±(E)

〉
=

±
π

d

dE
Tr lim

p→0

1

p
=m

〈
T̂ ±(E)p

〉
. (16)

To satisfy the second (lower) equality in (13) we should apply the well-known approximation of

the separation of mean values to the average T̂ p – operator in equation (16). Then it makes it

possible to write 〈T̂ p〉 = 〈T̂ 〉p and the Lloyd formula for the average T-matrix approximation can
be got using the replica-trick backward.

Forestalling the current argumentation in this work, we state the fact that the average T-
matrix of the system of interest depends on the density operator averaged over all the possible
configuration and there is no way to express 〈T 〉 for the systems of high disorder in terms of
analytical equations or it cannot even exist, but at the same time DoS for such systems exists
(DoS exists for any system while one-electron approximation is valid). The self-average structure
functions of such systems turn out to be the pair correlation functions (PCF) and the structure
factors related to them [6]. To solve the problem we bring equation (15) into the following form

〈
T̂ ∓(E)T̂ ±(E)

〉
=

∞∑

p=2

(±2πi)p−2
〈
T̂ ±(E)p

〉
. (17)

Item T̂ ∓T̂ ± keeps the self-average property while the Fermi golden rule is carried into effect. The
existence of 〈T̂ ∓T̂ ±〉 ensures the existence of 〈T̂ p〉 for any integer p > 1. This condition is not

sufficient for replica-trick application to 〈ln T̂ 〉, but at the same time it can be applied to 〈ln T̂ 2〉.
Now the following suggestion becomes obvious which consists in applying another approximation
〈T̂ p〉 = 〈T̂ 2〉p′ | p′=p/2 to (16) (here p′ is any positive integer power) instead of separation of mean
values. Such an approximation enables us to get the following sequel for (16)

δDoS(E) =
±
2π

d

dE
Tr lim

p→0

1

p
=m

〈
T̂ ±(E)2

〉p

=
±
2π

d

dE
=m ln det

〈
T̂ ±(E)2

〉
. (18)
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We should note that the last expression could be got by taking the average of equation (8) if
we set the power to square and then apply the replica-trick to a square T-matrix. This way of
deriving (18) is direct but is not sufficiently substantiated in contrast to the one we used.

To accomplish the construction of calculation method we should define 〈T̂ 2〉. Formally, the
structure of these matrix elements in k-space representation is the same as the formal structure
of 〈T̂ ∓T̂ ±〉. Hence, applying the derivation procedure which is similar to the Fermi golden rule,

the following expression for 〈T̂ 2〉 matrix element, built on wave-vectors of initial and final states
ki, kf , correspondingly, can be derived

〈
ki|T ∓T̂ ±|kf

〉
= δki,kf

∑
α,β

√
XαXβ

∑
k

Sαβ(| ki − k|)
〈
ki|t̂∓α |k

〉 〈
k|t̂±β |ki

〉

⇓〈
ki|T̂ ±2|kf

〉
= δki,kf

∑
α,β

√
XαXβ

∑
k

Sαβ(| ki − k|)
〈
ki|t̂±α |k

〉 〈
k|t̂±β |ki

〉
, (19)

where Xα is the fraction of α-component in the system of interest, Sαβ(q) are the partial structure

factors of scatterer subsystem in accordance with Ashcroft and Langreth [7] and
〈
k
′|t̂±α |k

〉
are the

matrix elements of single-site T-matrix defined for the site that is occupied by α-type scatterer
interacting with the electron by means of self-consistent single-site potential v̂α. The following
Dyson equation for such an average t̂±α is implemented

t̂±α (E) = v̂α + v̂αG±
0 (E)t̂±α (E). (20)

The resolvent t̂±α of the latter equation can be numerically found in case of the known potential v̂α

and the Green function of reference system G±
0 .

We have called the technique suggested and developed in this work the average replicated

T-matrix approximation (ARTA) for Lloyd formula of disordered metallic systems because the
〈T p〉-operators, or their particular case 〈T 2〉, are the p-order multiple replications of T-matrix of
the system considered within the replica technique. The square exponent corresponds to the pair
correlation approximation and it is the most informative in case of highly disordered systems.

Finally, the conclusion of this section is that we have got a new method of calculating DoS of
a disordered multi-component system founded on equations (18) and (19). The data required by
this method are the partial structure factors and quantitative composition of the system under
consideration, the single-site potentials in self-consistent field approximation of every component
and finally the Green function of reference system. That is not an approximation of the method
if we are positing the reference system to be a free electron gas, but at the same time it greatly
simplifies the formalism for future development of computation method because the form of G±

0 is
precisely known.

3. Approximations for numerical evaluation of DoS for binary metallic alloys

Now everything is ready on order to apply the computation technique that we used in evaluating
the DoS of some binary metallic alloys within ARTA in this work.

The first objects to be define are the partial structure factors. This can be done using hard
spheres solution of Ornstein-Zernike equation in Percus-Yevick approximation for multi-component
system [8]. The matrix combined the partial structure factors S(q) = {Sαβ(q)}

S(q) = [I− nX1/2
c(q)X1/2]−1. (21)

Here we present such values as: n is the atomic concentration of metallic alloy, X = {δα,βXα}
is the fraction matrix of components and c(q) = {cαβ(q)} is the matrix of Fourier transforms of
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direct correlation functions. The application of the Baxter “factorization technique” [9] leads to

cαβ(q) = − 4π

[
Aαβ

SαSβ − CαCβ

q2
+ Bαβ

CαSβ + CβSα

q3
+ Dαβ

SαSβ

q4

+
4πα̃0

q4

(
CαCβdαdβ

4
+

SαSβ

q2
− CαSβdα + CβSαdβ

2q

)]
, (22)

where dα is hard sphere diameter of α component, Sα = sin(qdα/2), Cα = cos(qdα/2) and abbre-
viating the p-order moments ηp = π/6 · n

∑
α xαd p

α , the other coefficients are defined as follows:

α̃0 = n
∑

γ

Xγ

[
1 − η3 + 3dγη2

(1 − η3)2

]2

,

β̃0 =
9η2

2 + 3η1(1 − η3)

(1 − η3)3
,

Aαβ =
(dα + dβ)(1 − η3) + 3dαdβη2

2(1 − η3)2
,

Bαβ =
1

1 − η3
− β̃0dαdβ ,

Dαβ = 6
η2 + (dα + dβ)(η1 + 3η2

2/(1 − η3))

(1 − η3)2
. (23)

The corresponding partial PCF is defined through the following Fourier-like transformation of
the related structure factor

Gαβ(R) = 1 − (XαXβ)−1/2 1

2πn

∫ ∞

0

[Sαβ(q) − δα,β ]
sin qR

qR
q2dq. (24)

Solving equations (21-24) we can find all partial structure factors and PCFs for the system
of interest and then start the next step of calculation, i. e., the construction of single-site self-
consistent potential.

In this work, we treat the single-site potential of α-type scatterer as the atomic sphere approx-
imation of the Kohn-Sham potential [10]

vα(r) =

{
−zα/r + vH [ρα(r)] + vxc[ρα(r)] , r 6 R�

α ,
0 , r > R�

α .
(25)

Here R�
α is the radius of atomic sphere that is defined through electro-neutrality of the atomic cell,

−zα/r is the attractive Coloumb potential of α-type nucleus with atomic number zα, vH [ρα(r)]
is Hartree potential of the repulsive electron-electron Coloumb interaction , vxc[ρα(r)] is the local
approximation of exchange-correlation potential. Both Hartree and exchange-correlation potentials
are some functional of ρα(r) i. e., the single-site density of electron gas.

For the case of a disordered system, we find ρα(r) within Mattheis method [11] used in a series
of works [13,12,14] applying the partial PCF and according to its definition

ρα(r) = ρ(at)
α (r) − 2πn

r

∑

β

Xβ

∫ ∞

0

dR Gαβ(R)R

∫ R+r

|R−r|

dr′ρ
(at)
β (r′)r′. (26)

Hence, the electron distribution around ion is spherically symmetric. Then Hartree potential can
be presented as follows:

vH [ρα(r)] =
4π

r

∫ r

0

ρα(r′)r′2dr′ + 4π

∫ R�
α

r

ρα(r′)r′dr′ (27)

and Slater approximation of vxc[ρα(r)] [15,16] leads to

vxc[ρα(r)] =
xc
α

3

π

[
3π2ρα(r)

]1/3
,

xc
α ∈ [2/3; 1]. (28)
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Of course, we could use any of the more recent exchange-correlation corrections [17] but this causes
some difficulties, so we simplify the calculation scheme.

In (26), we treat the atomic electron densities ρ
(at)
α (r) within the atomic shell approximation

[18] via Gaussian-type decomposition

ρ(at)
α (r) =

N(α)∑

i=0

q
(α)
i e−ξ

(α)
i

r2

. (29)

Here, {q(α)
i } and {ξ(α)

i } are the parameter sets of predefined positive coefficients of N (α)-order
electronic density decomposition for α-type atom. This presentation of electronic density reduces
the (26) to

ρα(r) =

N(α)∑

i=0

q
(α)
i e−ξ

(α)
i

r2

+
πn

r

∑

β

Xβ

∫ ∞

0

dR Gαβ(R)R

×
N(β)∑

i=0

q
(β)
i

ξ
(β)
i

(
e−ξ

(β)
i

(r−R)2 − e−ξ
(β)
i

(r+R)2
)
. (30)

The last equation takes the form that is optimized for a numerical solution and can be computed
faster (e.g. we can apply Gauss-Hermite and Gauss-Laguerre quadrature rule to integration) and
turns out to be more accurate than the equation (26).

The resolvent of (20) can be easily found for the case of central symmetric potential with the
finite interaction range within partial wave decomposition. In this case the single-site t-matrix
elements take the following form

〈
k
′|t̂±α |k

〉
=

2π

Ω
√

2E

∞∑

l=0

(2l + 1)(1 − e2iδ
(α)
l

(E))Pl (cos ∠(k′,k)) , (31)

where δ
(α)
l (E) are the partial phase-shifts which satisfy the following boundary conditions

δ
(α)
l (E, 0) = 0, δ

(α)
l (E,R�

α ) = δ
(α)
l (E) (32)

of the well-known partial phase equation

d

dr
tgδ

(α)
l (E, r) = −

√
2Evα(r)r2

[
jl(

√
2Er) − tgδ

(α)
l (E, r)nl(

√
2Er)

]2

. (33)

Turning back to ARTA equations(18,19) and reminding that we assume the reference system
to be the free electron gas, the next equation for DoS can be got in a way similar to the one we
used before in [19,20]

DoS(E) =
(2E)1/2

π2n
+

1

6π3n

d

dE

[
(2E)3/2

×arctg

∑
α,β

√
XαXβ

∫ 1

−1
dxSαβ (q) [=mtα(x)<etβ(x) + =mtβ(x)<etα(x)]

∑
α,β

√
XαXβ

∫ 1

−1
dxSαβ (q) [=mtα(x)=mtβ(x) −<etα(x)<etβ(x)]

]
, (34)

where q =
√

4E(1 − x), the imaginary and real parts of a single-site T-matrix according to (31)

=mtα(x) =
2π

Ω
√

2E

∑

l

(2l + 1)[1 + cos 2δ
(α)
l (E)]Pl(x),

<etα(x) =
2π

Ω
√

2E

∑

l

(2l + 1) sin 2δ
(α)
l (E)Pl(x). (35)
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Deriving these expressions we consider the trace to be the integral over the isoenergy surface that
corresponds to free electron energy E.

So, the computation of DoS of a binary metallic alloy within the approximations suggested for
ARTA, consists of the following steps:

1. Using the information about fractions of components, their hard sphere diameters and the
packing parameter of alloy we should calculate the partial structure factors of the system
according to Baxter’s solution (21)–(23);

2. Using Fast Fourier Transformation we should get partial PCFs (24);

3. We should calculate the radial electronic density distribution (30) using the atomic shell
approximation for all components of the alloy;

4. Constructing a singe-site potential (25,27,28) we should solve the corresponding phase equa-
tion (33) and find partial phase shifts for each component;

5. Using all these data in expressions (35) we calculate the ARTA DoS of binary metallic alloy
within (34).

4. Ultimate calculation for TixMn1−x and AlxNi1−x liquid alloys

Probing the ARTA calculation scheme we choose two systems: TixMn1−x and AlxNi1−x. The
first one is of interest because there are two close but distinguishable d-states that should perform
hybridization effects in case of alloying. The second system consists of III-valent metal and magnetic
transition metal. The main aspect of this system is the fact that systems of this type conserve its
d-transition behavior for a small concentration of the transition metal.

We evaluate the hard sphere diameters of components using pure metal densities at the melting
point (Al–2.37 g/cm3, Ni–7.72 g/cm3, Mn–5.97 g/cm3, Ti–4.15 g/cm3) and the fact that the
packing parameter of the liquid metal fitted according to [21] is η3 = 0.48. Conserving η3 for
the alloy we get the average concentration of the system n. From [22] we can get atomic shell

approximation parameters in spatial convolution (30) {q(α)
i } and {ξ(α)

i }. No other parameters are
needed to perform the calculations.

In figure 1 we present our calculation results for the both systems studied. To perform the DoS
dependencies on electron energy and fraction x of the first component (Al, Ti) we have reduced
the DoS in (34) to 1/π2n.

Evidently, the behavior of DoS for the both systems is in qualitative agreement with our
hypothesis. DoS of TixMn1−x symmetrically transforms from pure Ti to pure Mn and and there
is a distinguishable pseudo-gap caused by strong hybridization of two different d-bands in the
intermediate concentration.

The other system AlxNi1−x is characterized by the d-resonance caused by a single d-band of
Ni. It is conserved up to 10% fraction of Ni in the alloy and then it should vanish fast so that the
DoS corresponds to a pure liquid Al. Such a behavior of the DoS provides the increase of the effect
of the presence of the transition metal in the metallic alloy on its transport properties. Indeed,
this is known to be associated with the broadening of the impurity d-states due to the interaction
with the conduction band of the host metal [23,24]. The theoretical background to these works is
based on Friedel concept of virtual bound d-states and Anderson theory of s-d mixing. According
to their theory, the transition metal d-states are represented by simple Lorentzian bands of width
2Γ, located at an energy Ed, so that the partial DoS of spin-degenerated d-electrons is

DoSd(E) ≈ 10

π

Γ

(E − Ed)2 + Γ2
. (36)

The electronic transport properties of such alloys, where the host is aluminium and the add-on
is a small fraction of any 3d-transition metal, are assumed to be due to resonance scattering from
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Figure 1. The dependence on energy of DoS of liquid alloys reduced by free electron density for
the case of different fractions of components. The left figure presents TixMn1−x system and the
right one corresponds to AlxNi1−x.

the virtual bound states dominated primarily by the d-wave phase shift δd(E). So, in work [24],
this hypothesis was proved experimentally for diluted Ni–Al alloys (the host metal was Al).

In regard to (36), the height of the resonance maximum is in direct proportion to reciprocal
value of the half-width of the d-band ∼ 1/Γ. Decreasing the fraction of Ni in an alloy we decrease the
Ni–Ni correlation (i. e., enlarge the Ni–Ni interatomic distance) and then the d-shell overlapping
becomes smaller. It is known that Γ is in direct proportion to these overlapping integrals. So,
the resonance should increase the height of the maximum and at the same time should become
narrower when the fraction of transition metal decreases. Comparing the 10% contribution of Ni
to DoS of Al–Ni in figure 1 and 5–4% contribution of Ni to DoS – figure 2, we can see the proof of
the correct behavior of a resonant d-band.

We should also mention that the DoS presented in this work keeps its sense so far as it is smaller
than Fermi energy, the outer levels are not occupied by electrons. In case of Al–Ni where Fermi
level located within the 0.2–0.25 a.u. range of energy (this is correct for small fraction of Ni) the
effect of resonance should be definitely smaller than its maximum value because the corresponding
Fermi energy is located near the beginning of d-band (left hill of the resonance). At the same time,
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the dependence of DoS on the fraction of transition metal in an alloy with non-transition metal
for both large and small fraction of the transition metal cannot be in direct proportion to these
fractions (experimentally shown in [24]).

Figure 2. The dependence on energy
of DoS of Al1−xNix reduced by free
electron density for the case of small
Ni fractions.

The dependence of DoS on the fraction of Mn–Ti al-
loy is similar to the case of Al–Ni alloy though it is not
obvious from figure 1. For intermediate concentration (20–
80% of Ti) a significant density gap takes place and it is
located between the d-band level of different components
of the binary alloy. Anyway, it is obvious that this gap can-
not be a superposition of those two different d-bands of Ti
and Mn because it is even smaller than the free electron
distribution.

5. Conclusion

The ARTA method based on the Lloyd formula devel-
oped in this work appears to be a useful technique for cal-
culation of DoS of metallic alloys because it provides ana-
lytical expressions for direct evaluation of DoS through the
series of simple mathematical equations. This method can
be easily spread to the systems consisting of more than 2
components. It should be noted that it is also computa-
tionally fast and accurate. In comparison with the classi-
cal CPA and other applications of Lloyd, there is no need
to use scattering perturbation and r-space average cluster
representations. The results obtained in this study can be
applied to the construction of reference system character-
istics which can in turn be used in more precise techni-
ques, e.g. the cluster approximation for CPA. And finally
we claim that some mismatches of DoS behavior can be
caused by approximations that we used in describing the
atomic structure (e.g. density of alloy and hard sphere di-
ameters). In our opinion the use of corresponding experi-
mental data would improve the results of calculations.
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Наближення середньої реплiкованої Т-матрицi: валентна

зона некристалiчних металiчних сплавiв

П. Якiбчук, О. Волков, С. Вакарчук
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Received April 23, 2007, in final form May 31, 2007

В цiй роботi ми пропонуємо нове наближення для розрахунку густини станiв багато компонентних

металiчних систем за допомогою формули Ллойда. В цьому наближеннi ми розглядаємо середнє

значення квадрату Т-матрицi, як парну реплiку (вiдображення) системи розсiювачiв. Аналiтичний ви-
раз, отриманий в рамках такої теорiї, було апробовано на бiнарних системах TixMn1−x та AlxNi1−x.
Результати достатньо добре узгоджуються з прогнозованою поведiнкою подiбних систем.

Ключовi слова: густина станiв, T-матриця, формула Ллойда, наближення атомних оболонок,
структурний фактор, подвiйний сплав.

PACS: 71.22.+i, 71.20.Be, 71.15.La, 71.15.Mb, 71.15.Cr, 71.15.Hx, 71.10.-w
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