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Abstract. The nonlinear boundary axially symmetric problem of heat conduction for the 
thermosensitive piecewise homogeneous layer with reach-through cylindrical inclusion 
that generates heat has been considered. Using the introduced function, the partial 
linearization of the original problem has been carried out. With the proposed piecewise-
linear approximation of temperature at the boundary surface of the foreign inclusion and 
on the contact surface of the homogeneous elements of the layer, the problem has been 
completely linearized. The analytical solution of this problem of finding the introduced 
function using Hankel integral transform has been formed. The formulae for calculating 
the desired temperature have been derived.
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1. Introduction

For microelectronic devices, the light-emitting elements 
based on organic materials are commonly developed. 
The basis for such a device is an organic microparticle
with electroluminescent properties, i.e. when it is 
stimulated by current, it emits light. Due to it, the 
mentioned elements based on organic materials 
reflecting the random color will be very thin and will be 
implemented on flexible substrates. Using two vacuum 
units of thermovacuum spraying, from one of them a 
thin film structure of organic materials is formed, and 
from another – electrodes. In such a combination, ready 
LED is obtained. To improve the efficiency of organic 
LEDs, as better and stable operation parameters 
(brightness, time of operation, reliability, etc.), the effect 
of large temperature gradients and absolute values of 
temperature should be taken into account.

Some researches of the temperature conditions for 
nodes and separate elements of microelectronic devices 
have been made previously [ 81 ].

Hereinafter the boundary axially symmetric 
problem of heat conduction for a single element or node 
of microelectronic devices that is modulated with 
thermosensitive piecewise homogeneous layer with heat-
generating reach-through foreign cylindrical inclusion 
has been considered.

2. Formulation of the problem

Let us consider an isotropic, in the sense of 
thermophysical properties, thermosensitive piecewise-
homogeneous layer, which consists of n homogeneous 
elements that differ in geometric and thermophysical
parameters, and which is assigned to a cylindrical
coordinate system ( φ )Or z with the beginning on one of 

its edges, and it contains reach-through foreign inclusion
with the radius R . On the contact surfaces

 ,π2φ0:),φ,(  zRSR

 ( , φ, ) : , 0 φ 2π, 1, 1 ,i iS r z r R i n     
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where iz  is the thickness of the i-th element layer, the 

ideal thermal contact takes place.
In the region

 0 ( , φ, ) : ,0 φ 2π, 0 nr z r R z z       ,

of inclusion, the uniformly distributed internal heat 

sources with the capacity 0q have influence. On the

boundary surfaces of the layer 

 0 ( ,φ,0) : , 0 φ 2π ,K r r    

 ( ,φ, ) : , 0 φ 2πn nK r z r     , the boundary 

conditions of the second  kind are set (Figure).

3. Construction of partially linear mathematical 
model 

The distribution of steady state axially symmetric
temperature field ),( zrt in the system under 

consideration is obtained by solving the nonlinear heat 
equation [9, 10]
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is the thermal conductivity coefficient of piecewise-

homogeneous layer; )(λ),(λ 0 tti thermal conductivity

coefficients of materials of i-th layer and inclusion, 
respectively;

Thermosensitive isotropic piecewise homogeneous layer with
heat generating reach-through foreign cylindrical inclusion.
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[11].
Let us introduce the function
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by differentiation of which with respect to r  and z  we 
obtain
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Taking into account the expressions (4), the 
original equation (1) takes the following form:
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Using the equation (3) the boundary conditions can 
be written as:
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Thus, the introduced function  represented by the 
expression (3) has allowed to convert the non-linear heat 
conduction problem (1), (2) to partially linear equations
with discontinuous coefficients (5) and completely linear
boundary conditions (6).
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4. Absolutely linearized mathematical model

Let the approximate functions ),(),,( izrtzRt  look as
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k jt k m t j l     unknown

approximated temperature values; *r value of radial 

coordinate, where the temperature practically equals to
zero (is found from the corresponding linear model).

Substituting the expression (7) into the equation 
(5), we obtain the linear differential equation with partial
derivatives relative to the introduced function 
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5. Construction of the analytical solution for the
boundary value problem (8), (6)

Applying the Hankel integral transform by the 
coordinate r to the equation (8) and boundary conditions
(6), we obtain the ordinary differential equations with 
constant coefficients
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Let us rewrite the above general view of Eq. (9) in 

the following form
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Using the boundary conditions (10), we obtain a
partial solution to the problem (9), (10):
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Applying the inverse Hankel integral transform to

the equation (11), we find the expression for the 
function

0
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By substitution of the specific dependence of 
thermal conductivity coefficients of materials of each 
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element layer and inclusion in relations (3), (12) and by 
comparison of the obtained expressions for the function 

  on surfaces ( 1, 1),R i
S S i n  , we come to systems 

of nonlinear algebraic equations for determination of the 

unknown temperature values 
( ) ( 1, )iR
kt k m  and 

( ) ( 1, )i
jt j l .

The desired temperature field for the considered 
system is determined from the nonlinear algebraic 
equations obtained using the relations (3), (12) after 
substituting to them the specific expression of 
dependences of the thermal conductivity coefficients for 
material elements of the layer and inclusion.

6. Partial illustration and analysis of the results 
obtained

In many practical cases, there is such dependence of the 
thermal conductivity coefficient on temperature [11, 12]:

0λ λ (1 )k t  , (13)

where k,λ0 are pivotal and temperature coefficients of 
thermal conductivity.

Then, using Exps (3) and (12) yields a formula for 
determining the temperature t for the case of 2-D layer
(n = 2) in the areas
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temperature ( , 0)t r is such that is equal to the 

environment temperature, 1( , ), ( , )t R z t R z are calculated 

using the formula (14).

7. Conclusions

The introduced function  described by the expression
(3) allowed to partially linearize the original nonlinear
heat equation (1) and completely linearize the boundary 
conditions (2). The proposed piecewise-linear 
approximation of the temperature expressions (7) on the 

boundary surface RS  of the foreign inclusion and of 

contact surfaces ( 1, 1)iS i n   for homogeneous

elements of the layer gave the opportunity to completely
linearize the equation (5). And therefore, it was possible
to apply the Hankel integral transform to the obtained
boundary linear problem to the introduced function 
and to construct an analytical solution for finding it. The 
2-D layer with the dependence of the thermal 
conductivity coefficient of the layers and inclusion
described by the expressions (13) has been considered.
On this basis, the formulae (14)-(17) for the calculation 
of the temperature ),( zrt at any point of the considered

system have been shown.
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1. Introduction 

For microelectronic devices, the light-emitting elements based on organic materials are commonly developed. The basis for such a device is an organic microparticle with electroluminescent properties, i.e. when it is stimulated by current, it emits light. Due to it, the mentioned elements based on organic materials reflecting the random color will be very thin and will be implemented on flexible substrates. Using two vacuum units of thermovacuum spraying, from one of them a thin film structure of organic materials is formed, and from another – electrodes. In such a combination, ready LED is obtained. To improve the efficiency of organic LEDs, as better and stable operation parameters (brightness, time of operation, reliability, etc.), the effect of large temperature gradients and absolute values of temperature should be taken into account.


Some researches of the temperature conditions for nodes and separate elements of microelectronic devices have been made previously [
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Hereinafter the boundary axially symmetric problem of heat conduction for a single element or node of microelectronic devices that is modulated with thermosensitive piecewise homogeneous layer with heat-generating reach-through foreign cylindrical inclusion has been considered.


2. Formulation of the problem


Let us consider an isotropic, in the sense of thermophysical properties, thermosensitive piecewise-homogeneous layer, which consists of n homogeneous elements that differ in geometric and thermophysical parameters, and which is assigned to a cylindrical coordinate system 
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where 
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 is the thickness of the i-th element layer, the ideal thermal contact takes place.


In the region
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of inclusion, the uniformly distributed internal heat sources with the capacity 
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 have influence. On the boundary surfaces of the layer 
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, the boundary conditions of the second  kind are set (Figure).


3. Construction of partially linear mathematical model 


The distribution of steady state axially symmetric temperature field 
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 in the system under consideration is obtained by solving the nonlinear heat equation [9, 10]
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with the following boundary conditions
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where 
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 is the thermal conductivity coefficient of piecewise-homogeneous layer; 
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Thermosensitive isotropic piecewise homogeneous layer with heat generating reach-through foreign cylindrical inclusion.
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asymmetric unit function [11].

Let us introduce the function
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by differentiation of which with respect to 
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where 
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Taking into account the expressions (4), the original equation (1) takes the following form:
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(5)

Using the equation (3) the boundary conditions can be written as:
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(6)

Thus, the introduced function 
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 represented by the expression (3) has allowed to convert the non-linear heat conduction problem (1), (2) to partially linear equations with discontinuous coefficients (5) and completely linear boundary conditions (6).


4. Absolutely linearized mathematical model


Let the approximate functions 
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where 
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Substituting the expression (7) into the equation (5), we obtain the linear differential equation with partial derivatives relative to the introduced function 
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Here
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Laplace operator in the cylindrical coordinate system;
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5. Construction of the analytical solution for the boundary value problem (8), (6)


Applying the Hankel integral transform by the coordinate
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 to the equation (8) and boundary conditions (6), we obtain the ordinary differential equations with constant coefficients 
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and boundary conditions
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where 
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Let us rewrite the above general view of Eq. (9) in the following form
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Using the boundary conditions (10), we obtain a partial solution to the problem (9), (10):
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(11)

Applying the inverse Hankel integral transform to the equation (11), we find the expression for the function
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By substitution of the specific dependence of thermal conductivity coefficients of materials of each element layer and inclusion in relations (3), (12) and by comparison of the obtained expressions for the function 
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, we come to systems of nonlinear algebraic equations for determination of the unknown temperature values 
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The desired temperature field for the considered system is determined from the nonlinear algebraic equations obtained using the relations (3), (12) after substituting to them the specific expression of dependences of the thermal conductivity coefficients for material elements of the layer and inclusion.

6. Partial illustration and analysis of the results obtained


In many practical cases, there is such dependence of the thermal conductivity coefficient on temperature [11, 12]:
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where 
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Then, using Exps (3) and (12) yields a formula for determining the temperature 
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 for the case of 2-D layer (n = 2) in the areas
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Here,
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7. Conclusions


The introduced function 
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 described by the expression (3) allowed to partially linearize the original nonlinear heat equation (1) and completely linearize the boundary conditions (2). The proposed piecewise-linear approximation of the temperature expressions (7) on the boundary surface 
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 for homogeneous elements of the layer gave the opportunity to completely linearize the equation (5). And therefore, it was possible to apply the Hankel integral transform to the obtained boundary linear problem to the introduced function
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 and to construct an analytical solution for finding it. The 2-D layer with the dependence of the thermal conductivity coefficient of the layers and inclusion described by the expressions (13) has been considered. On this basis, the formulae (14)-(17) for the calculation of the temperature 
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 at any point of the considered system have been shown. 
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