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We study microwave-driven cooling in a superconducting flux qubit subjected to environment noises. For the 
weak decoherence, our analytical results agree well with the experimental observations and show that the mi-
crowave amplitude for optimal cooling should depend linearly on the dc flux detuning. With the decoherence 
stronger, more vibrational degrees of freedom (analogous with atomic physics) couple in, making the ordinary 
cooling method less effective or even fail. We propose an improved cooling method, which can eliminate the 
perturbation of additional vibrational degrees of freedom hence keep high efficiency, even under the strong de-
coherence. Furthermore, we point out that the decoherence can tune the frequency where microwave-driven 
Landau–Zener transition reaches maximum, displaying the feature of incoherent dynamics which is important 
for the optimal cooling of qubits and other quantum systems. 

PACS: 37.10.De Atom cooling methods; 
03.65.Yz Decoherence; open systems; quantum statistical methods; 
85.25.–j Superconducting devices; 
03.67.Lx Quantum computation architectures and implementations. 
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1. Introduction 

Superconducting devises based on Josephson tunnel 
junctions, shown to act as artificial atoms, can be used to 
demonstrate quantum phenomena at macroscopic scales 
and hold promise for applications in quantum computation 
as qubits [1–6]. Qubits are very delicate and their manipu-
lation with electronics needs to be isolated from the distur-
bance of the environmental thermal noise [7–21]. There-
fore, cooling the qubits, considered as a straightforward 
means to preserve the coherence of qubits, paves the way 
for remarkable achievements in demonstrating various 
quantum coherent phenomena. In general, the dilution re-
frigeration is used for cooling with intrinsic drawbacks 
such as limited cooling efficiency and poor heat conduc-
tion. Therefore, developing novel cooling techniques is 
crucial to improve the performance of qubits. 

Recently an interesting technique, microwave-driven 
cooling, was developed from the extensive investigations on 
coupled systems of the qubits and quantum resonators. It was 
found that the qubit can cool down the resonator [22–25]. On 
the other hand, the inverse process, using a “resonator” to 

cool a qubit, was also demonstrated experimentally by Va-
lenzuela et al. [26] in a superconducting flux qubit [27,28]. 
Driving the system with microwave of the amplitude 

12=rfΦ Φ  [ 12Φ  is defined in Fig. 1(a)] and the frequency 
5 MHz, they reduced the effective temperature of the qubit to 
3 mK, which was two orders of magnitude lower than the 
surrounding environment temperature. This process is ana-
logous to the optical sideband cooling [29–32], where a two-
level system (TLS) in an ion (a qubit) is used to cool ion trap 
potential (an oscillator), subsequently providing direct cool-
ing to the degrees of freedom of interest. But in contrast to 
the optical method, here an ancillary oscillator-like state is 
coupled to a qubit by a side crossover, and cools the qubit 
through microwave-driven Landau–Zener (MDLZ) transi-
tions [or Landau–Zener–Stückelberg (LZS) interferometry] 
[18,33,34]. As the qubit is driven through a degeneracy point 
(or crossover), Landau–Zener (LZ) transition happens [35], 
which usually is used to enhance the quantum tunneling rate, 
[36,37], to prepare the quantum states [38], and to control the 
gate operations [39]. When a periodic strong driving is ap-
plied to the qubit, the qubit undergoes repeated LZ transitions 
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at the degeneracy point. If the driving frequency is larger 
than the decoherence rate, the repetition of LZ transitions can 
induce quantum interference, which leads to an oscillatory 
dependence of qubit population in the final state on the de-
tuning from the degeneracy point and the microwave ampli-
tude, known as LZS interferometry [18–20,26,40–50]. 

In this paper, we study the optimal cooling conditions 
based on a microscopic model of LZS interferometry in the 
multi-level system [49]. For the situation of Ref. 25, we 
found that the microwave amplitude for optimal cooling 
should depend linearly on the dc flux detuning. Then we 
demonstrate that strong decoherence might couple the qu-
bit to another oscillator-like state. The coupled system can 
interact with the original oscillator-like state, destroying 
the cooling efficiency in the ordinary method. In order to 
realize the cooling under the strong decoherence, we pro-
pose an exquisite microwave manipulation to exclude the 
excessive oscillator-like state. Furthermore, in the previous 
work, the effective cooling is realized by choosing a con-
stant extremely low microwave frequency (5 MHz). How-
ever, we found that the frequency for optimal cooling re-
lies on the decoherence. The decoherence will tune the 
frequency corresponding to the maximum rate of MDLZ 
transition, leading to the change of the frequency condition 
in both methods. In the strong decoherence environment, 
LZS interference displays the stationary population of in-
coherent evolution. While the trend of quantum informa-
tion is coherent manipulation, our analysis shows the im-
portance of the incoherent LZS dynamics in quantum 
cooling. In addition, active cooling of qubits provides an 
effective means for qubit state preparation and for sup-
pressing the decoherence in multi-qubit systems, even un-
der the strong decoherence. 

The organization of this paper is as follows. In Sec. 2, 
we give the basic model of LZS interferometry and the 
principle of microwave cooling. In Sec. 3, we present a 
detailed analysis of the amplitude conditions for optimal 
cooling under the weak decoherence with the ordinary 
cooling method. In Sec. 4, we study the cooling under the 
strong decoherence. An improved cooling method is pro-
posed. In Sec. 5, we study the frequency conditions for 
optimal cooling. 

2. Basic model 

We focus on a multi-level superconducting quantum de-
vice, which consists of a superconducting loop interrupted 
by three Josephson junctions [18,26,42]. If the external flux 
bias 00.5Φ ≈ Φ , where 0 = / 2h eΦ  is the flux quantum, a 
double well landscape (Fig. 1) of the potential energy para-
meterized by the dc flux detuning 0= 0.5dcδΦ Φ − Φ  exists 
in the system. At the millikelvin temperature 10∼  mK, a 
series of diabatic states, denoted as | i〉  and | j〉 , respective-
ly, are localized in different wells with the crossovers ijΔ  
between states | i〉  and | j〉  (i = 0, 2, right well with nega-
tive slope; j = 1, 3, left well with positive slope). We assume 

the barrier is relatively high thus the tunneling strength 
( )ijΔ  is small. Two wells correspond to clockwise and anti-
clockwise flowing directions of the persistent currents, re-
spectively. ( )∗ ∗Φ −Φ  is the flux detuning at which the cros-
sover 12 03( )Δ Δ  is reached. As the system is driven with a 
microwave = sinac rf tΦ Φ ω , where rfΦ  is the micro-
wave amplitude in the unit of magnetic flux, the time depen-
dent flux detuning is 

 ( ) = .dc actδΦ δΦ +Φ   

Then the time dependent energy of eigenstate | i〉  can be 
described as 

 ( ) = ( sin ),i i i dc rft m t∗ε ε ± δΦ +Φ ω   

where i
∗ε  is the energy spacing between state | i〉  and the 

lowest state in the same well at ( ) = 0tδΦ  m 0Φ . 
=i i i dcm∗ε ε ± δΦ  is the dc energy of eigenstate | i〉 , (“ + ” 

corresponds the states in the left well, “–” corresponds the 
states in the right well), and = ( )/i im dE dΦ Φ  is the ener-
gy level slope of | .i〉  

When the state | i〉  is driven through the crossover ijΔ  
at the time 0= ,t t  the probability staying at state | i〉  after 
LZ transition is given by (we set = = 1Bk ) 
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Fig. 1. (Color online) (a) Schematic energy diagram of multi-
level superconducting quantum system. Red solid curve
represents the microwave acΦ  in the ordinary cooling method in
Sec. 3. Black dashed curve represents the microwave in the im-
proved cooling method in Sec. 4. The thick vertical black line
marks a particular static flux detuning dcδΦ . States |1〉  and | 3〉
are in the left well; | 0〉  and | 2〉  are in the right well. The red
solid path describes the cooling with the population in state | 1〉
transferred to | 0 .〉  The blue dot path represents the population
transferred from state | 0〉  to |1 .〉  (b) Schematic picture of
double-well potential of the system. The shaded region defines
the qubit. Conventionally, we employ a microwave to couple a
oscillator-like state | 2〉  to the qubit. However, the strong decohe-
rence would make another oscillator-like state | 3〉  destroys the
cooling completely, although state | 3〉  has little effect under the
weak decoherence. 
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where the relative-energy sweep rate 

= 0
= [| ( ) ( ) |] |i j t t

d t t
dt

ζ ε − ε . 

For the case of the sinusoidal driving, we have 

 | ( ) ( ) | = (| | | |) sini j i j rft t m m tε − ε + Φ ω   

and 

 0= (| | | |) | cos |i j rfm m tζ + ωΦ ω .  

Therefore ζ ∝ ω , which means that the larger frequency 
leads to the larger probability of LZ transition. 

To describe the long-time evolution of driven multi-
level quantum system interacting with the dissipative envi-
ronment, we employ the rate equation approach 51]. In this 
case, MDLZ transition between two states in opposite 
wells needs to be considered. We use the Gaussian white 
noise model and perturbation theory [47,49,52] to derive 
MDLZ transition rate from state | i〉  to | j〉  as 

 
2 2( ) ( / )2

2 2( ) ( )2
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Δ Γ γ ω
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where =ij i jε ε − ε  is the dc energy detuning of states | j〉  
and | ,i〉  = | | | |ij i rf j rfA m mΦ + Φ  is the energy ampli-
tude of the microwave, 2Γ  is the dephasing rate, =γ  

1 0( ) / 2,j i= Γ + Γ  1jΓ  and 0iΓ  are the intrawell relaxation 
rate from states | j〉  and | i〉  in the left and right well, re-
spectively. Of course, for = 0i  or = 1,j  the correspond-
ding 0iΓ  or 1jΓ  is zero. The term 2Γ + γ  describes the 
decoherence in this subsystem composed of states | j〉  and 
| i〉 . In this article, when considering different decohe-
rence, we will keep the intrawell relaxation rate 

31 20= = 2 0.1Γ Γ π×  GHz constant [49], changing only 
the dephasing rate. In order to analyze the optimal cooling, 
we consider four lowest states, and the qubit state occupa-
tions ( = 0, 1, 2, 3)ip i  follow [53,54]: 

 00 01 03 01 00 10 10 11= ( ) ( )p W W p W p′ ′− Γ + + + Γ + +   

 30 33 20 22W p p+ + Γ ,  

 11 10 12 10 11 01 01 00= ( ) ( )p W W p W p′ ′− Γ + + + Γ + +   

 31 33 21 22p W p+ Γ + ,  

 22 20 21 23 22 32 33 12 11= ( )p W W p W p W p− Γ + + + + ,  

 00 11 22 33 = 1,p p p p+ + +  (3) 

where 10′Γ , 01 10 10= exp( / )T′ ′Γ Γ −ε  is the down and up 
interwell relaxation rate between states | 1〉  and | 0 ,〉  re-
spectively, and T  is the environment temperature. 

In the microwave-driven cooling, states | 0〉  and | 1〉  
are the two lowest states, which are far below other states 
and form a qubit. The state | 2〉  is treated as an ancillary 
oscillator-like state, which is localized in the same well 
with state | 0〉 , and 12Δ  is considered as the side crossov-
er. If the qubit is in equilibrium with the environment, the 
population in state | 1〉  is excited from state | 0〉  thermally 
following the Boltzmann relation: 

 11 00 10/ = exp ( / ) .p p T−ε  (4) 

This relation shows that the influence of temperature is 
large at the detunings 10| | < ,Tε  which thereby becomes 
main cooling interests. As shown in Fig. 1(a), by repeated 
LZ transitions, the microwave drives the unwanted thermal 
population in state | 1〉  to | 2 ,〉  whose population relaxes 
fast into state | 0 .〉  Then the population transferred to state 
| 0〉  faster than the thermal repopulation of state |1 ,〉  cools 
the qubit. As indicated from Eq. (4), less population in 
state | 1〉  corresponds to lower effective temperature. 
Hence the population in state | 1〉  can determine the effec-
tive temperature realized by microwave cooling. 

Microwave-driven sideband cooling depends on MDLZ 
transition from state | 1〉  to | 2 ,〉  which exhibits a rich struc-
ture as a function of the microwave frequency. Therefore we 
divide the cooling into two regimes by the frequency. The 
first one is the coherent regime, in which the microwave 
frequency is larger than the decoherence rate [Fig. 2(a)]. In a 
driving period, the qubit state is split into the coherent su-
perposition of states | 1〉  and | 2〉  by the crossover 12.Δ  
Then a phase difference is constructed to form the quantum 
interference [18]. Especially at high frequencies near several 
subgigahertzes, the well resolved n-photon resonances are 
observed. For the incoherent regime the frequency is lower 
than the decoherence rate. The decoherence will eliminate 
the coherence of states | 1〉  and | 2〉  quickly such that the 
interference vanishes, as illustrated in Fig. 2(b). 

Fig. 2. (Color online) Schematic energy diagam illustrating the
cooling regimes. (a) The solid line expresses the transition from
state |1〉  to | 0〉  at the coherent regime. The arrows mark well-
resolved resonances of n-photon transition observed under the
high-frequency driving. The shaded region corresponds to the
interference phase difference. (b) The coherence interference
vanishes and the transition from state |1〉  to | 0〉  is realized at the
incoherent transition regime. 
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3. Optimal cooling amplitude under the weak 
decoherence 

Now, we consider the weak decoherence where 
2 .TΓ + γ  In order to compare with the experimental 

results quantitatively, we choose 2 /2 = 0.06 GHz,Γ π  
/2 = 0.05 GHzγ π  and = 50T  mK. For these parameters it 

was proposed that the maximal cooling near the degenera-
cy point can be realized at the flux amplitude =rf

∗Φ Φ  
and the cooling efficiency increased monotonically with 
the lowering of frequency till 5 MHz [26]. 

In the stationary case, 33 22 11 00= = = = 0p p p p , we 
can calculate the population in state | 1〉  at different detu-
nings and frequencies using the rate equation (3). Shown in 
Fig. 3(a) is the population in state | 1〉  as functions of detu-
nings and frequencies for the amplitude 0= 8.4 m .rfΦ Φ  
For large microwave frequency [Fig. 3(b)], the population 
oscillates with the detuning. In order to achieve effective 
cooling, we have to carefully choose the frequency and de-
tuning. This is not convenient for systems with a variety of 

energy structures. Therefore, we pay more attention to the 
low-frequency region, where the incoherent transition domi-
nates. For /2 <ω π 100 MHz lower frequency generally 
leads to less population in state |1 ,〉  which means more effi-
cient cooling. These results agree with the experimental 
observations [26]. Then we extract the 1D plot, popula-
tion vs microwave frequency, at a constant detuning 

0= 0.05 mdcδΦ Φ  [marked with the white dashed line in 
Fig. 3(a)], shown in Fig. 3(c). Unexpectedly, as the fre-
quency reaches 10 MHz (point II) the population exhibits a 
minimum. At lower frequency 5 MHz (point I), the popula-
tion is larger than that at point II. 

To refine the cooling efficiency, we calculate the popula-
tion in state | 1〉  as functions of microwave amplitudes and 
frequencies at the detuning = 0.05dcδΦ  0m ,Φ  shown in 
Fig. 4(a). Then for different microwave frequencies we ob-
tain the local minimal population, shown in Fig. 4(b). For 

/ 2 <ω π  100 MHz, the minimal population in state | 1〉  de-
creases monotonically. The lowest population in the whole 
parameter space (at the detuning = 0.05dcδΦ  0m )Φ  is 
achieved at 5 MHz (point III) with the corresponding ampli-
tude 8.35  0mΦ  [Fig. 4(c)], instead of I, or II. This result 
suggests that the cooling efficiency in Ref. 25 could be im-
proved by choosing the parameters given in Fig. 4. 

Then for /2 = 5ω π  MHz, we plot the population versus 
dc flux detuning and amplitude, shown in Fig. 5(a). At each 
detuning, we extract the amplitude corresponding to the mi-
nimal population, as shown in Fig. 5(b). The maximal cool-
ing is realized with the optimal amplitude condition 

rf dc
∗Φ ≈ Φ − δΦ  (quantitative result of cooling can be 

seen in Fig. 7). With the detuning approaching to 0 0m ,Φ  

Fig. 3. (Color online) (a) The population in state | 1〉  vs flux
detuning and microwave frequency with the flux amplitude

=rfΦ  8.4 0m .Φ  The locations of the crossovers 01Δ and 12Δ
are 0 and 8.4 0m ,Φ  respectively. The diabatic energy-level
slope 0| |m 1(| |) 2 1.44m = π×  GHz/ 0mΦ  and 2| |m ( 3| |m ) =
= 2π×1.09 GHz/ 0m .Φ  01/2 =Δ π  0.013 GHz, 03/2 =Δ π

12 /2 == Δ π 0.09 GHz. The parameters above are from the ex-
periment [42]. Furthermore we estimate 23/2 = 0.5Δ π  GHz.
The dephasing rate we used in calculation 2 /2 = 0.06Γ π  GHz,
the intrawell relaxation rate 20 31/2 = /2 = 0.1Γ π Γ π  GHz [49],
and the interwell relaxation 10 /2 = 0.00005 GHz.′Γ π  The envi-
ronment temperature T  is 50 mK. (b) The population ex-
tracted from (a) in state |1〉  vs flux detuning at the frequency
1460 MHz. (c) The population extracted from (a) in state |1〉
vs the microwave frequency at the 0.05 0m .Φ  
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Fig. 4. (Color online) (a) The population in state |1〉  versus mi-
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= 0.05dcδΦ  0m .Φ  Other parameters used are the same as those
of Fig. 3. (b) The minimal population extracted from (a) at each
frequency versus microwave frequency. (c) At 5 MHz, the popu-
lation extracted from (a) versus flux amplitude. 
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the amplitude condition can be changed to = ,rf
∗Φ Φ  just 

as those demonstrated in Ref. 25. 
We can generalize the amplitude condition for optimal 

cooling at weak decoherence. In the stationary case, consi-
dering 12 03 31 20, , ,W W Γ Γ�  the population in state | 1〉  is 
given by 

 01 03
11

10 01 12 03
= .

W
p

W W

′Γ +

′ ′Γ +Γ + +
 (5) 

When the dc flux detuning is large, 12 01 03, .W W′Γ �  
Therefore 03W  can be neglected in Eq. (5) and the popula-
tion in state | 1〉  would depend on 12 .W  Since 12W  
represents the population transferred from state | 1〉  to | 2〉  
in unit time, it relies not only on the population transferred 
through LZ transition in the crossover 12Δ  every time, but 
also the microwave frequency which determines the fre-
quency of LZ transitions. When the system stays at the 
particular dc flux detuning, the tunneling transition be-
tween states | 1〉  and | 2〉  is given by [55,56] 

 
2
12 2

2 2
12 2

( )
= ,

2 ( )
Δ Γ + γ

Γ
ε + Γ + γ

 (6) 

where 20= / 2γ Γ . Equation (6) indicates that there is 
nearly no tunneling transition between states | 1〉  and | 2〉  
for the detuning far away from 12Δ . The tunneling can be 
considered in a transition region 12 2| | ,ε Γ + γ  where 

2
12 2/[2( )].Γ Δ Γ + γ∼  Therefore the longer time staying in 

the transition region in one period, the larger population 
transferred from state | 1〉  to | 2 ,〉  and hence the better 
cooling efficiency. However, the long time staying in the 
transition region requires a slow sweeping velocity. Since 
the velocity of a sinusoidal movement approaches to zero 
at its full amplitude, the amplitude which can exactly bring 
the system to the transition region will result the largest 
transition rate from state | 1〉  to | 2 .〉  When the decohe-
rence is weak, the transition region is always near the cros-
sover. As a result, we have the optimal amplitude condition 

rf dc
∗Φ ≈ Φ − δΦ  as obtained above. 

4. Improved cooling method under the strong 
decoherence 

Then, we discuss the boundary for the flux detuning to 
realize effective microwave cooling. As shown in Eq. (4), 
the upper limit for this boundary is defined by the environ-
ment temperature T . The interests needed to be cooled 
down span in the detunings 01| | ,Tε  above which the 
population on the excited state is already very small. The 
lower limit is set by the decoherence. For weak decoherence, 
LZ transition happens almost right at each crossover [57]. If 
we initially bias the system at ,dcδΦ  the optimal amplitude 
condition can be achieved when .rf dc

∗Φ ≈ Φ − δΦ  Further 
increasing the microwave amplitude will degrade the cool-
ing efficiency. Due to the symmetric energy diagram, higher 
state | 3 ,〉  acting as another oscillator-like state, will involve 
into the dynamics, transferring the population from state | 0〉  
to | 3〉  when the amplitude reaches the crossover 03 ,Δ  i.e., 

> .rf dc
∗Φ δΦ +Φ  With the driving on, the system will 

relax to | 1〉  from | 3〉  continuously and the cooling effect is 
very weak. Fortunately one can control microwave ampli-
tude to avoid reaching the crossover 03Δ  in the cooling 
cycle since the optimal amplitude rfΦ  is always smaller 
than .dc

∗δΦ +Φ  However, for strong decoherence we have 
different situation. According to Eq. (6), the decoherence 
widens the transition region to 2 .Γ + γ  Now when 

2 0 3= (| | | |)( ),dc rfm m ∗Γ + γ + δΦ +Φ − Φ  LZ transition to 
| 3〉  will occur. When 2 0 32 (| | | |),dc m mΓ + > δΦ +γ  the 
optimal cooling cannot be fulfilled anymore. Therefore, 
lower limit of the dc detuning is 2( )/2Γ + γ  (we have taken 
approximation 3 1m m≈ ). 

With the decoherence rate increasing, the lower limit 
moves toward the upper limit T. Hence, we define weak 
decoherence as 2 TΓ + γ�  ( 03Δ  will have little influence 
in the ordinary cooling method) and strong decoherence as 

2 TΓ + γ ∼  ( 03Δ  will destroy the cooling). 

Fig. 5. (Color online) (a) The population in state |1〉  versus
flux detuning and microwave flux amplitude with the frequen-
cy  5 MHz. Other parameters are identical with those of Fig. 3.
(b) The amplitude corresponding to the minimal population
extracted from (a) at each detuning. 
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Shown in Fig. 6(a) is the contour plot of the population 
in state | 1〉  at the detuning 0= 0.05 mdcδΦ Φ  with differ-
ent amplitudes and frequencies for strong decoherence. 
Following the same procedure used in Fig. 4, we extract 
the minimal population for each frequency [Fig. 6(b)]. It is 
found that the decoherence makes the population near 0.5, 
indicating a very inefficient cooling. In Fig. 6(c) we show 
that at the detuning 0.05  0mΦ  and 5 MHz, the lowest 
population is obtained at 8.1 0m ,Φ  different from the am-
plitude condition we obtained in Sec. 3. Strong decohe-
rence will extend transition region near 12Δ  and larger 
amplitude is needed to realize better cooling. However the 
transition region of 03Δ  is also widened. Larger amplitude 
will drive the state closer to 03 ,Δ  generating the popula-
tion transferred from state | 0〉  to | 1〉  with the relaxation 
thus damaging the cooling efficiency. Therefore, a slightly 
lower amplitude comparing with the optimal amplitude in 
weak decoherence will minimize the effect of state | 3 .〉  

Then changing the detuning and repeating the procedure 
that generates Fig. 6(b), we obtain the minimal population in 
state | 1〉  as functions of detunings and frequencies, shown 
in Fig. 7(a). The cooling efficiency increased monotonically 
with the lowering of frequency till 5 MHz. From Fig. 7(a) we 
extract the 1D plot of the population vs detuning at 5 MHz, 
shown as the dotted line in Fig. 7(b). For strong decoherence, 
the population after microwave cooling is close to or even 
worse than the population in the equilibrium, indicating al-
most no cooling effect. We also plot the minimal population 
at 5 MHz under the weak decoherence, i.e., 2 /2 = 0.06Γ π  
GHz, shown as the dashed line. The effective temperature 

obtained from the best fit is about 5 mK. Figure 7(b) shows 
that for strong decoherence another oscillator-like state | 3〉  
involved greatly cancels the effect of original oscillator-like 
state | 2 .〉  Therefore, better technique is needed for the effi-
cient cooling. 

We found that the cooling efficiency can be dramatically 
increased by changing microwave wave form. In the first 
half period of the ordinary cooling cycle, the sinusoidal mi-
crowave drives the state in the direction to the side crossover 

12 ,Δ  and after going back to the initial detuning, the state is 
driven in the direction to another side crossover 03.Δ  Only 
the latter half period brings the coupling to state | 3〉  thus 
degrading cooling effect. Therefore if we cancel the second 
half period of the waveform, the cooling efficiency will in-
crease. This means that when the state goes back to the ini-
tial position, the microwave drives it in the direction to 12Δ  
instead of 03.Δ  This minor change remarkably increases the 
efficiency to the cooling. It is worth to point out that the 
technique is readily available [45], making our method prac-
tical. Of course, one can also use periodic triangular wave-
form to drive the system. But for the convenience of calcula-
tion, we still use the sinusoidal waveform shown in Fig. 1(a). 
Now MDLZ transition rate can be changed to 

Fig. 6. (Color online) (a) The population in state |1〉  versus mi-
crowave frequency and flux amplitude with the detuning

= 0.05dcδΦ  0mΦ  and the dephasing rate 2 /2 = 1Γ π  GHz. Oth-
er parameters used are the same as those of Fig. 3. (b) For each
frequency from (a), we find the minimal population on micro-
wave flux amplitude axis. (c) We keep frequency fixed at 5 MHz,
plot the population as a function of flux amplitude. 
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Fig. 7. (Color online) (a) The minimal population in state |1〉
among different flux amplitudes versus the frequency and detun-
ing under the dephasing rate 2 /2 = 1Γ π  GHz. Other parameters
used are the same as those of Fig. 3. (b) The comparison between
the minimal population in state |1〉  at 5 MHz for each detuning
under different dephasing rates (dashed line corresponds to

2 /2 = 0.06Γ π  GHz while dotted line corresponds to 2 /2 = 1Γ π
GHz). The solid line represents the population in the equilibrium
with the temperature 50 mK. 

1500

1000

500

5
0 0.5 1.0 1.5 2.0M

ic
ro

w
av

e
fr

eq
u

en
cy

,
M

H
z

0.4

0.3

0.2

0.1

(a)

0.5

0.4

0.3

0.2

0.1

0
0.5 1.0 1.5 2.0

(b)

P
o

p
u

la
ti

o
n

�� �dc, m 0

P
o

p
u

la
ti

o
n

�� �dc, m 0



Lingjie Du, Yang Yu, and Dong Lan 

156 Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 2 

 
2 2( ) ( / )2

2 2( ) ( )2
= = ,

2
ij n ij

ji ij
ij ijn

J A
W W

A n

+

+ − + +

Δ Γ γ ω
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where state | i〉  and | j〉  are in the left and right well, re-
spectively, and ijε  has the same definition as Eq. (2). Fur-
thermore, 01 10 10 10= exp { ( )/ }.A T′ ′Γ Γ − ε +  

We compare the cooling effect of two methods in 
Fig. 8. With the frequency 5 MHz and 2 /2 = 1Γ π  GHz, we 
employ the ordinary cooling method to obtain the popula-
tion in state | 1〉  at different amplitudes and detunings, as 
shown in Fig. 8(a). Figure 8(b) is the contour plot of the 
population in state | 1〉  with the improved method at the 
same condition as that in Fig. 8(a). For each detuning, we 
extract the minimal population in Fig. 8(b) and its corres-
ponding amplitude, shown in Figs. 8(c) and (d), respectively. 

One can see that the cooling efficiency in the improved 
method is much better than that in the ordinary method 
shown in Fig. 7(b), especially at the detuning near 0 0m .Φ  
Moreover, without the influence of 03 ,Δ  the change of 
waveform makes the optimal amplitude now needs to satis-
fy the condition 2 .rf dc

∗Φ + δΦ ≈ Φ  
In order to compare the optimal amplitude conditions of 

two methods, we mark them in Fig. 8(a) and (b). The white 
dashed line in Fig. 8(a) represents the optimal amplitude in 
the ordinary method, while the green solid line in Fig. 8(b) 
represents that in the improved method. We also redraw 
the green solid line in Fig. 8(a), keeping the same ampli-
tude scale and cooling efficiency (or population). Actually, 
the green line almost overlaps the optimal cooling region 
in the ordinary method. However, for the same amplitude, 
the detunings (which represents cooling interests) are dif-
ferent. In the ordinary method, the optimal cooling region 
with particular amplitude is realized at large detuning 
(about 4–6 0m )Φ  [Fig. 8(a)] which is not sensitive to the 
disturbance of the strong thermal noise. The population is 
already very low and the cooling is not necessary. Howev-
er, in the improved method, the region transforms to low 
detuning (about 0–4 0m )Φ  which is bothered by the tem-
perature, with almost doubled effective cooling region 
[Fig. 8(b)]. Under the strong decoherence, the advantage of 
the improved method is remarkable. It enables us to cool 
efficiently the interests at low detuning which need be 
cooled down mostly, through redistributing of cooling re-
source. 

This robustness of the cooling method can effectively 
cool down the qubit and reduce the decoherence which in-
itially might be strong. Usually, the strong decoherence ac-
companies the large geometrical size of the qubit [43,58]. 
Based on the improved method, large size devices, such as 
rf superconducting quantum interference device, plays the 
role of cooling center and provides the potential application 
in refrigerating more environmental degrees of freedom [59] 
and more neighboring quantum systems [60]. 

5. Optimal cooling frequency 

Following the procedure used in Fig. 4, at the detuning 
= 0.05dcδΦ  0m ,Φ  we change the amplitude and frequen-

cy to obtain the population in state | 1〉  for the improved 
method [Fig. 9(a)]. Then we extract the minimal population 
at each frequency in Fig. 9(a), shown in Fig. 9(b). Contrary 
to the behavior in Fig. 4(b), we find larger frequency yields 
better cooling. To explain this interesting phenomenon, we 
will mainly investigate the frequency for optimal cooling. At 
first we discuss the improved method. 

As indicated in Eq. (5), the transition rate 12W  is the 
main factor influencing the cooling. The maximal transi-
tion rate 12W  contributes to the minimal population in 
state |1 .〉  Hence we start from MDLZ transition under the 

Fig. 8. (Color online) (a) The population in state |1〉  versus flux
amplitude and detuning with the frequency 5 MHz and the de-
phasing rate 2 /2 = 1Γ π  GHz in the original cooling method. Oth-
er parameters are identical with those of Fig. 3. The white dashed
line indicates the optimal cooling region in the original method.
(b) The population in state |1〉  versus the flux amplitude and
detuning under the same condition with (a) in the improved me-
thod. The green solid line expresses the optimal cooling region in
the improved method. (c) and (d) The minimal population and the
corresponding amplitude extracted from (b) at each flux detuning.
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improved method and change the transition rate Eq. (7) to 
the form 

 
2/3 2 1/32 ( / ) [( / ) ( )]
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where we use the Airy function Ai(x) to express the Bessel 
function 1/3 1/3( ) = (2/ ) Ai[(2/ ) ( )].nJ x x x n x−  The sum is 
determined by the terms with n , the nearest integer to 
( )/ .ij ijAε + ω  Therefore, we have 
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From the above expression we can qualitative under-
stand the physics picture. Resulting from the contribution 
of the factor 4/3 2/3

2 2[ /( )] [( )/ ],ω Γ + γ + Γ + γ ω  the second 
and third term of Eq. (9) will increase with microwave 
frequency until the frequency reaches about 2( )/2 .Γ + γ π  
In this process the total transition rate will also increase. 
This explains why under the strong decoherence the in-
crease of frequency from 5 to 500 MHz reduces the popu-
lation in Fig. 9(b). When the frequency is further increased 
above 2( )/2 ,Γ + γ π  this term will lead to the decrease of 

.ijW  Therefore the frequency corresponding to the maxi-
mum of ijW  relies on the decoherence rate. Since the con-
tribution from other terms in Eq. (8) is neglected here, it is 
only a qualitative analysis and further conclusions could 

not be obtained from Eq. (9). In addition, as shown in 
Eq. (9), the maximum of ijW  also requires 2 0,ij ijA−ε − ≈  
which is exactly the result of optimal amplitude relation in 
the improved method in Sec. 4. 

For quantitative description, we need to return to the 
expression in Eq. (7). For the weak decoherence, e.g., 

2 = 2 0.1Γ + γ π×  GHz, the frequency corresponding to the 
maximum of ijW  will be nearly 10 MHz [Fig. 10(a)]. If the 
decoherence is strong, e.g., 2 = 2 1.05Γ + γ π×  GHz, the 
maximum of ijW  will be obtained at a large frequency 
nearly 470 MHz, as shown in Fig. 10(b). Figure 10(c) 
shows the decoherence rate vs the frequency corresponding 
to the maximum of .ijW  These frequencies are at the inco-
herent regime defined in Sec. 2. And they increase linearly 
with the decoherence rate, agreeing with the prediction of 

Fig. 9. (Color online) (a) The population in state | 1〉  versus the
frequency and flux amplitude with the detuning =dcδΦ

00.05 m= Φ and the dephasing rate 2 /2 = 1Γ π  GHz in the im-
proved method. Other parameters used are the same as those of
Fig. 3. (b) The minimal population in state | 1〉  extracted from (a)
at each microwave frequency. 
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Fig. 10. (a) and (b) The maximum of 12W  among different am-
plitudes at each frequency at the detuning 0= 0.05 mdcδΦ Φ
under the dephasing rate 2 / 2 =Γ π  0.05 and 1, respectively.
(c) The decoherence rate versus the frequency of the maximum of

12W  at the detuning 0= 0.05 m .dcδΦ Φ  All figures are calcu-
lated in the improved method. Other parameters are the same as
those of Fig. 3. 
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qualitative analysis. In addition, as illustrated in the discus-
sion of Eq. (9), the optimal frequency tuned by decohe-
rence is almost independent of the dc detuning. To clarify 
this point, we change the dc detuning for the unchanged 
decoherence. Our calculation shows that the frequency 
corresponding to the maximum of ijW  is nearly constant at 
different detunings. It means one can use a constant mi-
crowave frequency to realize the maximal MDLZ transi-
tion rate. 

MDLZ transition rate ijW  depends on the driving fre-
quency as well as the population transferred through LZ 
transition during one period. Both factors are related with 
the microwave frequency. Larger frequency generates 
more cycles of LZ transitions in unit time. On the other 
hand, it also results into larger velocity thus shorter time in 
the transition region, leading to less LZ transition popula-

tion as given in Eqs. (1) and (6). The above qualitative and 
quantitative discussions indicate that at an appropriate fre-
quency the maximum of MDLZ transition rate can be ob-
tained. Moreover, the decoherence has an important con-
tribution to the tuning of this frequency. 

For the improved method, besides maximal MDLZ 
transition rate, two additional factors may affect the popu-
lation of the system. One of them is the effect of other 
crossovers. In Fig. 11(a), we plot the minimal population 
in state | 1〉  versus the frequency for 2 /2 =Γ π  0.05 GHz 
and =dcδΦ  0.05 0m .Φ  At low frequency, the population 
does not decrease to a minimum at about 10 MHz as that 

12W  displays in Fig. 10(a). A monotonic increase to 
100 MHz is observed instead. For small detuning, the low 
driving frequency will results in the low velocity near 01Δ  
and 23.Δ  Therefore both 01W  and 23W  have contribution 
on the population in state | 1 .〉  If we choose the detuning 
far away from the degeneracy point, this difference be-
tween the population in state | 1〉  and 12W  would disappear 
as shown in Figs. 11(b) and (c). 

Another factor that will affect the population is the in-
terwell relaxation. We find that when the decoherence rate 
is large, e.g., 2 /2 = 1 GHz,Γ π  the population exhibits a 
monotonic decrease [Fig. 9(b)] with the frequency. How-
ever, 12W  shows an increase at the low frequency and de-
crease at high frequency [Fig. 10(b)]. This is because of 
the interwell relaxation. At the detuning far away from 
0 mΦ0, the population in state | 1〉  is 

 01
11

10 01 12
= ,p

W

′Γ

′ ′Γ + Γ +
 (10) 

where 01 10 10 10= exp { ( )/ },A T′ ′Γ Γ − ε +  and ijW  is defined 
by Eq. (7). In order to obtain the optimal cooling, larger 

Fig. 11. (a) The minimal population in state | 1〉  among different
amplitudes at each frequency with the detuning 0= 0.05 mdcδΦ Φ
and the dephasing rate 2 /2 = 0.05Γ π  GHz. (b) The maximum of

12W  among different amplitudes at each frequency with the detun-
ing 0= 0.05 mdcδΦ Φ  and the dephasing rate 2 /2 = 0.05Γ π  GHz. 
(c) The minimal population in state |1〉  among different ampli-
tudes at each frequency with the detuning 0= 3 mdcδΦ Φ  and the 
dephasing rate 2/2 = 0.05Γ π  GHz. All figures are calculated in the
improved method. Other parameters are the same as those of Fig. 3.
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Fig. 12. (Color online) The amplitude corresponding to the max-
imum of 12W  at each frequency in the improved method with the
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frequency requires larger amplitude (Fig. 12) [61]. Howev-
er, according to the expression of 01′Γ  in Eq. (10), larger 
amplitude will lead to a smaller 01,′Γ  and the population in 
state | 1〉  decreases with 01.′Γ  Therefore, the final popula-
tion exhibits different characters from 12 .W  

For the ordinary cooling method, 03 ,Δ  instead of in-
terwell relaxation and the crossovers at the degeneracy 
point ( 01Δ  and 23Δ ) will affect cooling. However, the 
decoherence induced maximal MDLZ transition still exists. 
Quantitatively, now the Eq. (8) is invalid and we have to 
use Eq. (2). With ij ijAε +  replaced by ,ijε  following the 
same procedure we can obtain a similar result of Eq. (9), in 
the amplitude and frequency conditions for maximal 
MDLZ transition. Under the weak decoherence, if we 
choose the large detuning far away from 01Δ [62], only 

12W  dominates cooling and the maximum of 12W  results 
the optimal cooling. As shown in Fig. 13(a), at 

0= 0.5 m ,dcδΦ Φ  we change microwave amplitude at 
each frequency to obtain the minimal population. A non-
monotonic behavior of population vs microwave frequency 
can be found, with the maximal cooling achieved at the 
frequency about 10 MHz. However, if the detuning is too 
small, as shown in Fig. 4(b), we cannot observe the mini-
mum due to the presence of 03Δ . When we only consider 

12 ,W  a maximum of transition rate [Fig. 13(b)] will appear 
again. 

In addition, we would like to emphasize that microwave 
cooling is ultimately limited by the environment tempera-
ture and microwave frequency. At sufficient high tempera-
ture and low frequency, i.e., 10 10exp ( / ) > ,T′Γ −ε ω  it is 
obviously that the population transfer due to the micro-
wave cooling pulse, which competes with the thermal 
transfer, will not be fast enough to compensate the latter 
contribution, resulting in a less efficient cooling at low 
frequencies. 

6. Conclusion 

Starting from a recent experiment, we investigate the 
microwave-driven cooling in an artificial atom subjected to 
the environment noise. Under the weak decoherence, we 
show the optimal cooling requires that the amplitude satis-
fies the relation .rf dc

∗Φ ≈ Φ − δΦ  
We further discussed the cooling under the strong de-

coherence, when more vibrational degrees of freedom are 
coupled to the two lowest states, making the ordinary cool-
ing method ineffective. To recover the effective cooling, 
we proposed an improved cooling method, which employs 
a revised driving waveform to avoid “harming” side cros-
sover. This method can be used to improve the cooling 
efficiency, prepare the quantum state and suppress decohe-
rence in multi-qubit system under not only the weak deco-
herence but also the strong decoherence. Especially, for 
systems consisting of the interaction between the qubit and 
the real resonator, such as micromechanical beam (resona-
tor), this method can also be used to cool down the qubit, 
or even resonators. In addition, only small microwave fre-
quency is needed in the improved method, thus providing 
the possibility to use our method on adiabatic quantum 
computation. 

In addition, we investigated the optimal frequency for 
efficient cooling. We demonstrated that lower frequency 
will not result in better cooling effect and the frequency 
condition for optimal cooling is complicated. An essential 
element that determines the optimal cooling frequency is 
MDLZ transition rate. Our study demonstrates qualitative-
ly and quantitatively the frequency where MDLZ transition 
rate reaches maximum is tuned by the decoherence and 
monotonically increases with the decoherence rate, dee-
pening the understanding to the physical mechanism of 
MDLZ transition as well as the optimal cooling. Currently, 
MDLZ transition in the coherent regime has attracted lots 
of attentions due to coherent phenomena. We point out the 
incoherent regime has the particular advantage in quantum 
cooling. Furthermore, the results based on MDLZ transi-
tion can be applied to other systems with similar energy 
states structure. 
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