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Andreev reflection is a smart tool to investigate the spin polarization P of the current through point contacts 
between a superconductor and a ferromagnet. We compare different models to extract P from experimental data 
and investigate the dependence of P on different contact parameters.  
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Following the pioneering work of Igor Yanson and his 

group at the Institute for Low Temperature Physics and 
Engineering of the Ukrainian Academy of Sciences 
(ILTPE NASU) on tiny metallic contacts between two 
metal electrodes [1], point-contact spectroscopy (PCS) has 
become a powerful method to study the interactions of 
ballistic electrons with other excitations in metals [2]. The 
interpretation of the observed characteristics in point-
contact (PC) spectra is usually difficult. These difficulties 
are frequently inherent in the fabrication of point contacts. 
In many cases contacts are made by the needle-anvil or 
shear technique in which two sharpened metal pieces are 
brought into a gentle touch until a conductive contact is 
formed. Those contacts are microscopically not well-de-
fined with respect to contact size, geometry, and structure 
of the metallic nanobridge, and with respect to the local 
electronic parameters such as the mean free path in the 
immediate contact region. The only control parameter is 
the contact resistance, and hence, it is challenging to iden-
tify the relevant transport regime free of doubt. Usually 
Sharvin's [3] or Wexler's [4] formulae for the ballistic and 

diffusive transport regime, respectively, are used to infer a 
PC size estimate from the measured PC resistance. Only 
recently [5], direct scanning electron microscopy (SEM) 
measurements of the nanocontact size of nanostructured 
point contacts allowed for the first time a direct compari-
son with theoretical models for contact-size estimates of 
heterocontacts. The semiclassical models yield reasonable 
values for the PC radius a  as long as the correct transport 
regime is determined by taking into account the local trans-
port parameters of the individual contact. Of course, this 
requires a careful characterization of the samples with res-
pect to the local resistivity and the local mean free path. 

Among the rich variety of solid-state problems investi-
gated by point-contact spectroscopy the study of super-
conductor–metal contacts contributes a significant portion. 
Nowadays point-contact spectroscopy is an important tool 
to explore the symmetry and nodal structure of the energy 
gap Δ  of conventional and unconventional superconduc-
tors [6]. When the temperature is lowered below the super-
conducting transition temperature cT  of the superconduct-
ing electrode of a superconductor (S) / normal metal (N) 
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point-contact Andreev reflection [7] of charge carriers at 
the S/N interface occurs. Andreev reflection leads to min-
ima at /V eΔ≈ ±  in the differential resistance /dV dI  as 
a function of applied bias V, i.e., maxima in the corre-
sponding conductance curves ( ) = ( / )( )G V dI dV V , and 
thus allows determination of the gap size, also while vary-
ing temperature and magnetic field, respectively [8,9]. 

A new pitch came into the field when Andreev reflec-
tion was used to extract the spin polarization P  of the 
current through superconductor/ferromagnet (F) point con-
tacts [10,11]. Knowledge of the spin polarization of possi-
ble materials for spin-electronic devices is a key issue for 
spintronics [12]. An efficient spin injection is of central 
importance for utilizing the spin degree of freedom as a 
new functionality in spin-electronic devices. The spin po-
larization P  of ferromagnets can be measured by various 
techniques including photoemission [13], spin-dependent 
tunnelling [14], and point-contact Andreev reflection 
(PCAR) [15]. For a quantitative analysis of the results, 
however, one has to be aware of the different nature of the 
quantities measured by each technique. The spin polariza-
tion, defined by the difference of spin-up and spin-down 
density-of-states, is typically measured with spin-polarized 
photoemission while the spin polarization of the transport 
current is obtained, e.g., in PCAR experiments [16], which 
in turn is distinctly different from the spin polarization of 
the density-of-states resulting from tunneling experiments 
[14]. An issue of considerable importance is how the spin 
polarization obtained by Andreev reflection is related to 
the ferromagnet's bulk spin polarization [17]. 

Already a variety of materials have been investigated 
including the ferromagnetic elements Fe, Co, and Ni and 
several alloys mainly with Al, Nb, or Pb as a supercon-
ducting counter electrode [10,11,18–23]. However, differ-
ent models [10,11,24–26] describing the transport through 
S/F interfaces yielded varying values for P, also depend-
ing on the contact fabrication and the transport regime 
[27], an issue that is not yet understood in detail [28]. In 
the following, we want to review the main ideas of two 
most prominent models shortly and compare the results of 
both to the same set of experimental data obtained on nano-
structured Al/Fe contacts [23]. 

The theoretical analysis of most S/F point-contact ex-
periments has been carried out in the spirit of the Blonder–
Tinkham–Klapwijk (BTK) theory [9] for Andreev reflec-
tion at an interface between N and classical S with spin-
singlet pairing. This is the coherent process by which an 
electron from N enters S and a hole of opposite spin is ret-
ro-reflected, creating a spin-singlet Cooper pair in S. Pos-
sible ordinary reflection at the S/F interface barrier is 
parametrized by a phenomenological parameter, the barrier 
strength Z . The sensitivity of the Andreev process to the 
spin of the carriers originates from the conservation of the 
spin direction at the interface. Consequently, when there is 
an imbalance in the number of spin-up and spin-down elec-

trons at the Fermi level, as it is the case in the spin-
polarized situation of a ferromagnetic metal, this leads to a 
reduction of the Andreev reflection probability [15]. An-
dreev reflection is limited by the minority carriers of the 
metal. 

In the simpliest approach applied for the analysis of 
several experiments [10,18–21,24], the total current I  
through the constriction is decomposed into a fully 
unpolarized part (1 ) uP I− ′  for which Andreev reflection is 
allowed and into a fully polarized part pP I′  for which 
Andreev reflection is zero,  

 = (1 ) .u pI P I P I− +′ ′   

The weighting factor P′  determines the spin polarization 
of the ferromagnet. In the following we will refer to this 
model as the dispartment model. Consequentially, the con-
ductance SFG  is also decomposed into two parts:  

 = (1 ) ( ) ( )SF u pG P G V P G V− +′ ′   

with  

 , , ,
( , )( ) = [1 ( , ) ( , )]u p u p u p

df E V TG V A E Z B E Z dE
dV

∞

−∞

− + −∫ , 

where uG  denotes the conductance, uA  the Andreev re-
flection probability, and uB  the normal reflection proba-
bility of the fully unpolarized channel, and pG , pA , and 

pB  denote the corresponding quantities of the fully polar-
ized channel. Both contributions are derived in the BTK 
formalism and following expressions for the zero-
temperature conductances uG  and pG  are obtained [25]:  
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with 2 2= / | |E Eβ Δ − . 
 

Despite the attractive simplicity of the BTK formalism 
it has been shown [17,27] that application of the BTK for-
malism (even in its generalized form [25]) has certain 
drawbacks and enforces several assumptions for the analy-
sis. This has mainly to do with the problem to determine 
P′  and Z  independently. The physical reason is that both 
lead to a reduction of the Andreev current and diminish the 
conductance change in = /G dI dV . The model fails to 
distinguish whether it is high P  or high Z  that causes the 
depression of conductance at small bias. This problem is 
evaded by applying a different theoretical approach [26]. 
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Cuevas and coworkers [22,26] developed a model 
based on quasiclassical Green functions. The central quan-
tities of the model are two transmission coefficients 

2
, ,= | |tτ↑ ↓ ↑ ↓ . Therefore, we will refer to this model as 

the -τ τ↓↑ -model throughout this paper. The transmission 
coefficients contain all microscopic properties relevant for 
the transport through the constriction, i.e., they account for 
the majority- and minority-spin bands in the ferromagnet, 
the electronic structure of the superconductor, and the in-
terface. ,t↑ ↓  and 1/2

, ,= (1 )r τ↑ ↓ ↑ ↓−  are the spin-dependent 
transmission and reflection amplitudes, respectively, enter-
ing the normal-state scattering matrix Ŝ  which supple-
ments the boundary conditions of the theory. Of course, the 
restriction to a single conduction channel per spin direction 
is a rough simplification of the point contact, but it is final-
ly justified by the agreement with the experiment [22,23]. 
Following the calculation by Cuevas and coworkers the 
spin-dependent current through the S/F point contact can 
be separated in two spin contributions,  

 =SFI I I↓↑ +   

and each contribution can be written in its BTK form [9]  

 = [ ( ) ( )][1 ( ) ( )] ,eI d f eV f A B
hσ σ σε ε ε ε ε

∞

−∞
− − + −∫  

where ( )f E  is the Fermi function, ( )Aσ ε  and ( )Bσ ε  are 
the spin-dependent Andreev reflection and normal reflec-
tion probabilities, respectively, and =σ ↑  or ↓ . ( )Aσ ε  
( ( ))Bσ ε  is calculated from the spin-dependent transmis-
sion (reflection) amplitudes, and finally, the zero-
temperature conductance of the S/F contact adopts the 
form  
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while the normal-state conductance is given by  

 
2

= ( ) .N
eG
h

τ τ↓↑ +   

It is obvious that the Andreev spectra are determined by a 
set of three free parameters τ↑ , τ↓ , and Δ . The current 
spin polarization P  in this model is defined by  

 
| |

=P
τ τ
τ τ
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−
+

  

and can be determined from the fit parameters of an exper-
imental Andreev spectrum. We note, that this expression is 
symmetric with respect to τ↑  and τ↓ , therefore, one can-
not assign a transmission coefficient to the majority or mi-

nority charge carriers in the ferromagnet. However, we 
expect the high transmissive coefficient τ↓  to correspond 
to the minority electrons. In the absence of spin polariza-
tion, i.e., = 0P  for a N/S contact with =τ τ↓↑ , above 
formulae reduce to the well-known BTK result [9]. 

Figure 1 displays a set of normalized conductance 
curves for = 0.02 cT T , = 0.99τ↓ , and = 0.99τ↑ , 0.53, 
0.42, 0.33, 0.25, and 0.17 which equals = 0P , 0.3, 0.4, 
0.5, 0.6, 0.7 from top to bottom. The shape of each spec-
trum is unambiguously determined by a set of τ↑ , τ↓ . For 

= 0P  (top curve) the curve reproduces the well-known 
BTK result where Andreev reflection causes a doubling of 
the normal-state conductance for energies <eV Δ . We 
note that the characteristic double-peak feature at | | =eV Δ  
caused by the reduction of the conductance at low bias 
originates from a small fraction of charge carriers ordinari-
ly reflected at an interface barrier. In the case of two spin-
dependent transport channels it is intuitive to consider the 
high-transmittive spin channel to get a measure for the 
fraction of charge carriers ordinarily reflected at the inter-
face barrier. From the transmission coefficients 

2= 1/ (1 )Zτ↓ ↓+  one derives 1/2= ((1 ) / )Z τ τ↓ ↓ ↓− . For 
the upper curve which corresponds to the unpolarized BTK 
case one gets = 0.1Z↓  as the parameter equivalent to the 
BTK interface parameter Z . 

While the shape of the spectra is unambiguously deter-
mined by a set of τ↑ , τ↓ , the spectra for same polarization 
can look quite different. Figure 2 shows four curves calcu-
lated for different sets of τ↑ , τ↓  which all result in 

= 0.4P . The calculations have been performed for a finite 
temperature = 0.22 cT T . The high-transmission spin-
channel seems to be decisive whether the curve shape ap-
pears more point-contact-like or more tunnelling-like. 

Before we compare curves calculated by both models, 
let us first check the validity of the fitting procedure. For 
this purpose we measured point-contact spectra of S/N 
point contacts in a 4He cryostat down to = 1.4T  K and 

Fig. 1. Normalized differential conductance / NG G  vs. /eV Δ . 
The curves are calculated with the -τ τ↓↑ -model (see text) for 
different polarizations at = 0.02 cT T . For clarity, the curves are 
shifted successively upwards by 0.2 units. 
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fitted them with both models. The PCs have been estab-
lished in the edge-to-edge configuration with a sharpened 
Pb electrode and a normal-metal electrode made from Cu 
or Pt. Therefore, for both fits we expect 0P P= =′ . Fig-

ures 3(a) and (b) show the experimental data together with 
the fits according to the -τ τ↓↑ -model [26] (dashed line) 
and the dispartment model [25] (solid line). In both cases 
we got almost perfect agreement with the data. For the 
Pb/Cu contact with = 2.7R Ω  measured at = 1.4T  K 
(upper panel) we obtained 0 = ( = 0)TΔ Δ =  1.38 meV, 

= = 0.814τ τ↓↑  as parameters for the -τ τ↓↑ -model, and 
0 = 1.38Δ  meV, = 0.475Z , = 0.011P′  for the dispart-

ment model. For the Pb/Pt contact with = 7.5R Ω  measu-
red at = 2.1T  K (lower panel) the parameters are 

0 = 1.48Δ  meV, 0/ = 0.10Γ Δ , = 0.811τ↑ , = 0.819τ↓  
for the -τ τ↓↑ -model, and 0 = 1.42Δ  meV, 0/ = 0.10Γ Δ , 

= 0.488Z , = 0.015P′  for the dispartment model. In both 
cases we found within the experimental error a good 
agreement of 0P P≈ ≈′  as expected for these non-
magnetic metals. The energy gap of Pb determined from 
the fits coincides fairly good to the gap value reported in 
literature [29]. We note that a small broadening of the 
Pb/Pt spectra caused by inelastic scattering in the contact 
region is accounted for by introducing the Dynes [30] pa-
rameter Γ  which is of the order of 5–10% of 0Δ . 

In the next step we compare curves calculated with 
the simple dispartment model to those calculated with the 

-τ τ↓↑ -model for nominal same polarization =P P′. Fig-
ure 4 displays a set of normalized conductance curves cal-
culated for = 0.1T  K, = = 0P P′ , 0.2, 0.4, 0.6, 0.8, and 1, 
and = 0.3Z  for the dispartment model, and = 0.917τ↓  
for the -τ τ↓↑ -model, respectively, which corresponds to 

1/2= [(1 ) / ] = 0.3Z τ τ↓ ↓ ↓− . In the extreme case = = 0P P′  
which describes a S/N contact the calculations perfectly 
agree with each other, as well as for the other extreme case 

= = 1P P′  which describes a halfmetallic S/F contact. For 
the latter, there is only a small difference in the vicinity of 
the coherence peaks at | / | = 1eV Δ . However, at interme-
diate values with increasing polarization the Andreev sig-
nal is much faster suppressed for the dispartment model 

Fig. 3. (Color online) Point-contact spectra of S/N contacts to-
gether with fits according to Martin–Rodero et al. [26] (dashed
line) and Mazin et al. [25] (solid line). (a) Pb/Cu contact at 1.4 K
with = 2.7R Ω. (b) Pb/Pt contact at 2.1 K with = 7.5R Ω. For
the fit parameters see text. 
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than for the -τ τ↓↑ -model. Our comparison discloses a 
notable difference of both quantities which makes ques-
tionable a contrasting juxtaposition of P and P′ values de-
rived from the analysis of experimental data by one of the-
se models. 

In order to illustrate this difference on experimental da-
ta we used both models to fit the same set of data measured 
on Al/Fe nanostructured point contacts [23]. The PCs were 
fabricated by structuring a hole of 5–10 nm diameter with 
electron-beam lithography and subsequent reactive ion 
etching into a 50-nm thick Si3N4 membrane, evaporating 
on one side a 200 nm Al layer, and on the other side a 
12 nm thick Fe layer and a Cu layer of thickness 

Cu = 188d  nm as a low-ohmic electrode [31]. Figure 5 
displays the normalized conductance spectra of six differ-
ent nanostructured PCs with contact resistances between 
2.7 and 24.2 Ω  measured in a dilution refrigerator at 

= 0.1T  K together with fitting curves calculated with the 
-τ τ↓↑ -model (a) and the dispartment model (b). Both 

models perfectly describe the data, minor deviations are 
observed only at | / | 1eV Δ ≈  where the experimental 
curves are more rounded probably caused by a leveling-off 
of the electron temperature due to heating by electromag-
netic stray fields or a small pair-breaking effect by Fe. The 
corresponding fit parameters are listed in Table 1. Within 
an uncertainty of 1% the same gap value 0Δ  is found for 
both models, however, there is a notable difference in the 
Z  parameter, which is a factor 2–3 higher in the 
dispartment model, and the spin polarization P′  which is 
lower. Although the origin of Z  is not clear at all, in both 
models it subsumes all ordinary reflection of charge carri-
ers that occurs at the interface for = = 0P P′ , e.g., reflec-
tion caused by an insulating interface layer, lattice imper-
fections, Fermi velocity mismatch, etc. For P  and > 0P′  

Fig. 5. (Color online) Point-contact spectra of Al/Fe contacts at 0.1 K together with fits according to the -τ τ↓↑ -model (a) and according
to the dispartment model (b). 

Table 1. Fit parameters 0Δ , τ↑ , and τ↓  of the -τ τ↓↑ -model and 0Δ , Z , and P′  of the dispartment model for conductance spec-
tra of nanostructured Al/Fe point contacts. From the transmission coefficients τ↑  and τ↓  the interface barrier Z↓  and the current spin 
polarization P  have been calculated. 

Sample No. ,NR Ω  0Δ , meV τ↑  τ↓  Z↓  P  0Δ , meV Z  P′  
1 2.68 0.174 0.371 0.983 0.132 0.452 0.176 0.337 0.396 
2 6.98 0.175 0.362 0.984 0.128 0.460 0.176 0.338 0.407 
3 7.29 0.157 0.349 0.993 0.083 0.480 0.158 0.272 0.444 
4 9.59 0.190 0.361 0.984 0.128 0.463 0.191 0.342 0.407 
5 18.4 0.166 0.348 0.997 0.054 0.482 0.168 0.218 0.497 
6 24.2 0.174 0.343 0.994 0.078 0.487 0.174 0.262 0.494 
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the situation is less apparent. The physical reason is that Z  
and P′  both lead to a reduction of the Andreev current. 
The dispartment model obviously fails to distinguish 
whether a high-spin polarization or a high barrier causes 
the depression whereas for the -τ τ↓↑ -model as per defini-
tion only the conductance channel not affected by the sup-
pression of Andreev reflection due to polarization is con-
sidered to determine ordinary reflection. 

Another important aspect is that the previously reported 
dependence of the spin polarization on the contact size [23] 
is robust against the model used to extract P. Independent-
ly of the model there is a clear reduction of the spin polari-
zation with decreasing contact resistance NR , i.e., increas-
ing contact radius a. The reduction of P  has been allo-
cated as being due to spin-orbit scattering in the contact 
region with a constant scattering length so  modelled by a 
simple exponential decay [23], 0( ) = exp ( / )soP a P a− . 
A spin-orbit scattering length = 255so  nm has been ob-
tained for the analysis with the -τ τ↓↑ -model. The same 
systematic trend of ( )P a′  is found for the dispartment 
model albeit with a lower value for so . For small contacts 
both models result in almost the same spin polarization. 

In summary, we have discussed possible reasons for the 
scatter of polarization values found for the spin polariza-
tion measured by Andreev reflection in point-contact ex-
periments. We showed that the scatter is partially caused 
by the models used to extract the spin polarization from the 
data, and partially caused by intrinsic mechanisms like the 
spin-orbit scattering in the contact region. 
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and outstanding scientist. We acknowledge the financial 
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