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Point-contact Andreev-reflection spectroscopy (PCARS) has demonstrated to be one of the most effective ex-
perimental tools for the investigation of fundamental properties of superconductors such as the superconducting 
gap and the electron–phonon (or, more generally, electron–boson) coupling. By reviewing relevant examples re-
ported in literature and presenting new results, in this paper we show that when the direction of the interface with 
respect to the crystallographic axes can be controlled (as in single crystals and epitaxial films) PCARS can pro-
vide invaluable information about the anisotropy of the pairing wavefunction or — in the case of multiband su-
perconductors — on the number, amplitude and symmetry of the energy gaps. Moreover, the analysis of PCARS 
results within a suitable 3D generalization of the BTK model allows obtaining qualitative information about the 
topology of the Fermi surface.  

PACS: 74.45.+c Proximity effects; Andreev effect; SN and SNS junctions; 
74.70.–b Superconducting materials other than cuprates; 
74.20.Rp Pairing symmetries. 
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1. Introduction 

Point-contact spectroscopy (PCS) was developed al-
most 40 years ago as an experimental tool to investigate 
the interaction between electrons and phonons in metals. 
Yanson [1] was the first to realize that some nonlinearities 
in the I–V characteristics of microscopic constrictions be-
tween two metals were the hallmark of inelastic scattering 
of electrons by phonons. The point-contact technique was 
later used to study all kinds of scattering of electrons by 

elementary excitation in metals, like magnons and so on 
[2,3]. When one of the two banks of the point contact is a 
superconductor, the conduction is dominated by quantum 
phenomena such as electron tunneling or Andreev reflec-
tion depending on the height of the potential barrier at the 
interface. By solving the Bogoliubov–de Gennes equations 
near the N/S interface [4] Blonder, Tinkham and Klapwijk 
(BTK) were able to predict the shape of the point-contact 
Andreev-reflection spectroscopy (PCARS) curves as a 
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function of a dimensionless barrier parameter Z  such that 
Z = 0 corresponds to a perfectly transparent N/S junction, 
while large values of Z  (of the order of 10) correspond to 
a tunnel junction [5]. The original model was based on a 
number of simplifying assumptions; in particular, the cur-
rent injection was assumed to occur along a well-defined 
direction (normal to the flat N/S interface), and the Fermi 
velocities in the two banks were assumed to be identical. 
The first simplifying assumption means that the model was 
actually 1D and could only describe systems where the 
Fermi surface in both the banks is spherical and the super-
conductor is perfectly isotropic (i.e., the order parameter 
has an s-wave symmetry). A generalization of the BTK 
model to the 2D case was necessary with the advent of 
cuprates, that are two-dimensional to a good approxima-
tion and show a marked in-plane anisotropy of the pairing 
wavefunction. In the 2D version of the BTK model [6] 
electrons are injected in the whole half-plane, with an an-
gle-dependent probability that also depends on the barrier 
parameter Z. This model was able to explain the observed 
PCARS spectra in cuprates (and other materials) as being 
due to an unconventional (in plane) symmetry of the order 
parameter, e.g., d-wave. In particular, it was able to predict 
the occurrence of zero-bias peaks in the conductance as 
arising from interference effects between electron-like and 
hole-like quasiparticles (ELQ and HLQ) that result from 
the sign change of the order parameter in the k  space. The 
model also removed other simplifying assumptions of the 
first BTK model (such as, for example, the equality of the 
Fermi velocities in the two banks) but was still based on 
the assumption of spherical (circular) Fermi surfaces. The 
necessity to overcome these limitations became clear with 
the discovery of MgB2, the first superconductor that un-
ambiguously showed multiple gaps residing on distinct 
sheets of the Fermi surface with different character: while 
one is almost cylindrical, the other is a tubular network that 
is intrinsically 3D (but not spherical). A simple generaliza-
tion of the BTK model to this case, which however holds 
only as long as the gaps are isotropic (i.e., have a s-wave 
symmetry), was proposed in Ref. 7. Within this model, the 
normalized conductance of the point contact is simply a 
weighted sum of the partial contributions of the two bands, 
the weight of the ith band being proportional to its contri-
bution to the plasma frequency. In the specific case of 
MgB2, the weight of the σ-band gap (residing on the quasi-
2D Fermi surface sheets) was predicted to be as high as 
33% for current injection along the ab plane, and only 1% 
for injection along the c axis [7]. The success of the multi-
band models in describing the physics of MgB2 soon led to 
the re-analysis of puzzling results obtained in other mate-
rials (for example, boron carbides) that, sometimes, were 
shown to have a multiband character as well (see [8] and 
references therein). It is worth noting that, in all the multi-
band materials where different band systems have different 
dimensionality, directional PCARS measurements become 

mandatory to attain a good determination of the gap ampli-
tudes. For example, in MgB2 a careful determination of the 
σ-band gap necessarily requires injecting the current along 
the ab planes. The situation became even more complex 
with the discovery and the investigation of Fe-based super-
conductors. Although an effective two-band 2D BTK 
model (analogous to that used in MgB2) has been often 
used (and still is) in the analysis of the PCARS spectra on 
these materials, it may not always provide accurate infor-
mation on the symmetry and the amplitudes of the gaps. 
The compounds of the so-called 1111 family show almost 
2D hole-like and electron-like Fermi surface sheets and, in 
most cases, isotropic order parameters; therefore the 
aforementioned model can catch the physics of the system, 
but the relative weight of the two gaps should in principle 
depend on the direction of current injection. The insuffi-
ciency of the effective two-band 2D model becomes clear 
whenever some anisotropy of the order parameter takes 
place. This has been predicted to happen in some 1111 
compounds [9] and in various 122 compounds [10–12]. 
The simultaneous presence of Fermi surface sheets with a 
3D (but not spherical) character and of (at least one) aniso-
tropic order parameter clearly limits the reliability of a 
“simple” fit of the PCARS spectra with the model used for 
MgB2 because it is no longer possible to express the con-
ductance as a weighted sum of the partial contributions of 
the two sets of bands. Instead a more complicated 3D BTK 
model that takes into account the shape of the Fermi sur-
face and allows modelling complex 3D anisotropies of the 
gaps should be used [13]. As we will show, the use of this 
model gives PCARS unsuspected predictive capabilities 
concerning the shape of the Fermi surface as well as the 
presence and the geometry of lines of nodes. In the follow-
ing of this paper we will present some examples of how 
directional PCARS has been used and of what kind of in-
formation it can provide. Before that, however, we will 
briefly recall the 3D BTK model. 

2. The 3D BTK model 

In its original formulation, the BTK model [5] was one-
dimensional, i.e., all the momenta of the incident electrons 
were assumed to be perpendicular to the N/S interface. It 
was also based on other simplifying assumptions: i) the 
Fermi surface is spherical in both banks, i.e., a free-
electron approach is used; ii) the Fermi velocity is the 
same in both banks; iii) the barrier is ideal and has null 
thickness, i.e., it is represented by a repulsive potential 

0 ( )U xδ  located at the interface. Within these limitations, 
the normal-state transparency of the barrier Nτ  only de-
pends on the dimensionless parameter 0= / FZ U v  and 
contains no geometrical factors: 2= 1/(1 ).N Zτ +  The 
point-contact conductance is thus given by 
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where Γ  is a broadening parameter [14]. The 1D approach 
was unable to explain the results of PCARS or tunneling in 
anisotropic superconductors where the order parameter 
does not have a s-wave symmetry in the k  space, as for 
example in cuprates. In these cases, indeed, it is necessary 
to account for the fact that electrons can approach the in-
terface from any direction. Calling n  the unit vector nor-
mal to the interface and Nθ  the angle between n  and the 
Fermi wavevector of the incident electron, ,FNk  the nor-
mal barrier transparency becomes 
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Roughly speaking, this means that the probability of 
electron transmission decreases on increasing Z, and for 
any given 0Z ≠  decreases on increasing Nθ  [8,13]. 
Now, any incident electron can undergo four possible 
processes at the interface: a) reflection in N as a hole 
(Andreev reflection); b) reflection as electron (normal 
reflection); c) transmission in S as ELQ; d) transmission 
in S as HLQ. For any given wavevector of the incident 
electron, the problem is 2D since all the momenta lie on 
the same plane. However, the wavevectors of ELQ and 
HLQ in S make with n  angles S+θ  and ,S−θ so that if 
the order parameter has an in-plane angular dependence 
on Sθ , ELQ and HLQ will feel different (in phase and/or 
in magnitude) order parameters = ( )S+Δ Δ θ  and 

= ( )S−Δ Δ −θ  [6]. As a result the relative transparency of 
the junction in the superconducting state becomes [6] 

____________________________________________________ 

 
2 2

2
1 ( ) | ( , ) | ( ( ) 1) | ( , ) ( , ) |

( , ) =
|1 ( ( ) 1) ( , ) ( , ) exp ( ( )) |

N N N N N N N
S N

N N N N d N

E E E
E

E E i
+ + −

+ −

+ τ θ γ θ + τ θ − γ θ γ θ
σ θ

+ τ θ − γ θ γ θ ϕ θ
, (4) 

________________________________________________ 

where  

 
2 2( ) ( ) | |

( , ) =
| |N

E i E i
E ±

±
±

+ Γ − + Γ − Δ
γ θ

Δ
 (5) 

and 

 
/

( ) = ln
/d N i + +

− −

⎡ ⎤Δ Δ
ϕ θ − ⎢ ⎥

Δ Δ⎢ ⎥⎣ ⎦
 (6) 

is the phase difference seen by the HLQ with respect to the 
ELQ. Note that in Eqs. (5) and (6) the dependence on Nθ  
results from the dependence of Δ  on Sθ  and from the fact 
that sin ( ) = sin ( )FN N FS Sk kθ θ  as required by the con-
servation of the momenta in the direction parallel to the 
interface. It is worthwhile to remark that here we have as-
sumed an angular dependence of the order parameter on 
the plane defined by the wavevector of the incident elec-
tron and by n. This corresponds, for example, to PCARS 
experiments in cuprates with the current injected along the 
ab  plane. The normalized conductance that can be com-
pared to (normalized) PCARS spectra is finally given by 
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This model can be generalized in a straightforward 
manner to the case of multiband superconductors, as 

shown in [8] and [13], by simply expressing the total nor-
malized conductance as the weighted sum of the partial 
contributions of each band. The fitting function will con-
tain various parameters: in addition to Δ  (maximum am-
plitude of the gap), Γ  (broadening) and Z  for each band, 
there will be the weight of the contributions of the various 
bands. With two bands, the parameters are already seven; 
the use of more bands risks to make the fit meaningless. 
Indeed, in all the cases of multiband superconductors stu-
died so far (e.g., MgB2, borocarbides, Fe-based supercon-
ductors) effective two-band models have been proposed by 
treating similar bands on the same footing. 

As already pointed out, the model described so far 
works well in isotropic superconductors or layered super-
conductors, like cuprates, provided that the current is in-
jected along the ab plane. One of the basic assumptions it 
is based on, however, is that the Fermi surface is spherical 
(circular) in both the N and the S side (indeed, the magni-
tudes of the Fermi wavevectors FNk  and FSk  can be dif-
ferent but do not depend on the angle). If the Fermi surfac-
es were really spherical, a generalization to the 3D case 
could be achieved easily by integrating over the whole 
solid angle, eventually including the full dependence of the 
order parameter on the azimuthal and inclination angles 
[6]. The problem remains of how to express the c-axis 
conductance in cuprates (where the Fermi surface is practi-
cally cylindrical) and, more generally, the conductance in 
multiband superconductors with complex shapes of the 
Fermi surface. 
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A generalization of the model to a 3D case with arbitra-
rily-shaped Fermi surface sheets is conceptually easy, 
though it can become very demanding from the point of 
view of calculations. The general equation that provides 
the normalized conductance at = 0T  was given in Ref. 8 
and reads 
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In this equation, i  is the band index, the brackets indicate an 
average over the ith Fermi surface sheet, the subscript n  
refers to the direction of current injection, , =i n i ⋅k kv nv  is 
the projection of the velocity on the ith band along the direc-
tion of the unit vector n. The normal-state barrier transpa-
rency is 
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where , = ,N n N ⋅v nv  Nv  being the (constant in magni-
tude) Fermi velocity in the normal material. In Eq. (8) the 
quantity ( )i n Eσ k  is expressed by an equation similar 
to (4), but where ,( ) ,N N i nτ θ → τ k  and the order parame-
ter in the ith band is dependent on k, i.e., ,( ) = .i iΔ Δ kk  

The calculation is greatly simplified in particular cases. 
For example, if the barrier is very high ( )Z →∞  
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where 3= 1/{4 | [ ( )] | }i i EF
D Eπ ∇k k k  is the normal densi-

ty of states of the ith band at the Fermi energy and wave 
vector k in S. In general, ( )i n Eσ k  cannot be taken outside 
the integral because it contains k-dependent quantities like 

iΔ  and ,i nτ k  (see Eq. (4)) and thus ,i nkv  (see Eq. (9)). 
However, if Z →∞  and if the order parameters are isotro-
pic one can approximate the problem by assuming that 

( ) = ( ),i n iE Eσ σk  i.e., it does not have any dependence on 
k. Note that this implies using the 1D BTK model (Eq. (1)) 
to calculate ( ).i Eσ  In these conditions, the normalized 
conductance simply becomes a weighted average of the 
contributions of the various bands, where the weights are 
often briefly indicated in literature as 2N〈 〉v  [15]. By the 
way, this approach has been used (as we will show later) 
to predict the results of directional PCARS in the case of 
MgB2 [7]. 

Another case in which Eq. (8) acquires a more appeal-
ing form is when = 0,Z  the Fermi surface is spherical and 
the order parameters are all isotropic. In this case, ,i nτ k  is 

constant and the partial conductances lose any dependence 
on k (i.e., , ( ) = ( ))i n iE Eσ σk  and can thus be taken outside 
the integral over the Fermi surfaces. In these conditions, 
Eq. (8) reduces again to a weighted average of the partial 
conductances of the bands where the weights can be ex-
pressed as ,i i n FSi

D〈 〉k kv  [15]: 
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where ,i nS  is the area of the projection of the ith sheet of 
the Fermi surface on a plane perpendicular to n. In this 
very particular and simplified case, therefore, an imme-
diate geometrical interpretation of the normalized conduc-
tance can be given, that immediately clarifies the impor-
tance of the dimensionality of the Fermi surface sheets in 
determining the point-contact Andreev-reflection spectra. 

In the general case of intermediate barrier height and 
anisotropic gaps, neither Eq. (10) nor Eq. (11) can be used 
to calculate the PCARS spectra. Equation (8) and the real 
shape of the Fermi surface must be used instead. The con-
ductance of the N/S junction in general cannot be ex-
pressed as a weighted average of the partial contributions 
of the various bands, but one can still talk of the “weight” 
of the ith band referring to the normal state conductance 
(when , = 1i nσ k ). This “weight” is determined solely by 
the normal-state barrier transparencies , ,i nτ k  containing 
the barrier parameters iZ  (see Eq. (9)), and by the shape of 
the Fermi surface sheets. 

It is clear from the above that the calculation of the 
normalized PCARS spectra in the most general case is a 
feasible task, but can be rather tough. If one has access to 
the explicit full k dependence of the order parameter, or 
better the map of the gap over the Fermi surface, then 
Eq. (8) can be used to predict the expected shape of the 
PCARS spectra for arbitrary directions of current injec-
tions, and with a given value of the barrier parameter(s). 
These curves can then be compared to the experimental 
ones to determine whether the theoretical ( )iΔ k  is plau-
sible or not. 

Often, however, one performs PCARS experiments 
with little or no suggestion about what the symmetry of the 
order parameter could be. In these cases, the form of the 

( )iΔ k  functions that allows best fitting or at least qualita-
tively reproducing the experimental spectra must be found. 
This procedure would require repeating many times the 
calculations of Eq. (8) by slightly changing the adjustable 
parameters and this can be too time-consuming if the real 
Fermi surface is used. A compromise between the necessi-
ties of a fast calculation and of a greater accuracy of the 
fitting model consists: i) in using a model Fermi surface 
made up of analytical surfaces (spheroids, hyperboloids 
and so on) that mimic as well as possible the “real” ones; 
and ii) in making a simple guess about the symmetry of the 
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order parameter by using analytical expressions of the 
( )iΔ k  functions. In this way, the complex integral over 

the Fermi surface can be reduced to easily solvable inte-
grals over the spherical coordinates (in the reciprocal 
space) Fk  (magnitude of the Fermi wavevector), θ  (azi-
muthal angle) and φ  (inclination angle). The explicit ex-
pressions of Eq. (8) for different directions of current in-
jection are reported elsewhere [13]. In the following 
sections, we will show how this 3D BTK model allows 
reproducing the shape of the PCARS spectra in various 
multiband superconductors like MgB2, CaC6 and Fe-based 
superconductors of the 122 family. 

3. Directional PCARS in magnesium diboride 

MgB2 has a layered structure with graphite-like, honey-
comb B layers intercalated by Mg planes with hexagonal 
close-packed structure. Its Fermi surface, shown in 

Fig. 1(a), is made up of two hole-like warped cylinders 
(originated by the σ  bands) whose axis lies on the Γ–A 
line, and of a 3D electron-like tubular network (originated 
by the π bands) [16]. It was soon understood that this 
structure allowed the coexistence of two distinct supercon-
ducting energy gaps [17], and indeed a number of experi-
mental tools gave anomalous results that could find an ex-
planation only within a two-gap picture. 

Paradoxically, the first point-contact and tunnel spec-
troscopy measurements in polycrystalline samples gave 
contradicting results, sometimes showing two gaps, some-
times only one [18]. The explanation of this issue required 
some more theoretical investigation. In Ref. 7 the problem 
of understanding how multiband superconductivity mani-
fests itself in tunneling measurements (large Z) was solved 
by using Eq. (10) and further simplifying the problem 
thanks to the fact that the gaps are isotropic (in practice, a 
1D injection was assumed). In the end, the normalized 

Fig. 1. (Color online) (a) Fermi surface of MgB2. (b) Model Fermi surface used for the calculation of the theoretical spectra within the
two-band 3D BTK model. (c) Theoretical PCARS curves generated at T = 4.2 K by using the two-band 3D BTK model with the gaps
calculated in Ref. 7, i.e., = 2.70πΔ  meV and = 7.09σΔ  meV and the model Fermi surface depicted in (b), for I ab  (bottom) and
I c  (top). The bottom (blue) and the top thin (red) curves were obtained by using the same parameters, i.e., Zπ = 0.37, Γπ = 1.65 meV,
Zσ = 0.85, Γσ = 2.10 meV, that allow reproducing the ab-plane spectrum of panel (d); the top thick (red) curve has parameters optimized
to reproduce the shape of the c axis spectrum of panel (d), i.e. Zπ = 0.17, Γπ = 0.5 meV, Zσ = 0.85, Γσ = 0.4 meV. (d) Symbols: two
examples of PCARS spectra taken in MgB2 single crystals, with current injected along the ab plane (bottom) and along the c axis (top).
The vertical scale is on the left axis; the top curve has been offset by 1 for clarity. Lines: two examples of STS spectra taken in different
grains of a polycrystal (from Ref. 24). The vertical scale is on the right axis and the top curve has been offset for clarity. Vertical lines
show the correspondence of the gap features in PCARS and STS spectra along the different directions. 
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conductance was expressed as a weighted average of the 
contribution from the σ and π bands, with weighting fac-
tors of the form 2 2

, pl( )i
i i nD〈 〉 ∝ ωk kv  where pl

iω  is the 
contribution of the electrons in the ith band to the plasma 
frequency. In this limit, the ratio of the normal state con-
ductivities is equal to the ratio of the square of the plasma 
frequencies and the total normalized conductance of a SIN 
junction can be expressed as 

 
2 2

pl pl
2 2

pl pl

( ) ( ) ( ) ( )
( ) =

( ) ( )

V V
G V

π σ
π σ
π σ

ω σ + ω σ
=

ω + ω
  

 = ( ) (1 ) ( )w V w Vπ π π σσ + − σ , (12) 

where the partial normalized conductances of the two 
bands , ( )Vπ σσ  can be calculated within the BTK model. 
Despite the rather crude approximations of the derivation, 
the model is able to explain the apparent contradictions in 
the number of gaps observed by the first PCARS mea-
surements in polycrystals as being due to the large aniso-
tropy of the plasma frequencies. Indeed, the predicted rela-
tive weight of the σ band is very small for tunneling in the 
c  direction (of the order of 1%) so that if the current is 
injected along the c axis of a given grain only the smaller 
π-band gap is observed. Instead, for tunneling along the ab 
planes both the gaps are clearly visible. It is worthwhile to 
note that the discernibility of the two gaps is made possible 
by the large difference in their amplitudes. A map of the 
gap distribution over the Fermi surface obtained by Choi et 
al. [19] shows that the gap amplitudes are to a good extent 
uniform over the cylindrical and the tubular surfaces: the 
distributions of the σ and π gaps are rather narrow and do 
not overlap so that it is reasonable to associate uniform 
gaps to each surface. 

The (uniform over the relevant FS sheet) values of the 
gaps were calculated by Brinkman et al. [7] within the 
Eliashberg theory giving Δπ = 2.70 meV and Δσ = 
= 7.09 meV. Indeed, these values are very similar to those 
(Δπ = 2.8 meV and 7.0σΔ  meV) that Szabó et al. [20] 
had already obtained by fitting the PCARS spectra meas-
ured in different regions of a polycrystal with an effective 
two-band BTK model where the conductance was ex-
pressed as (1 ) ,π σασ + −α σ  with the weight α  being an 
adjustable parameter ranging between 0.1 and 0.9. Similar 
results were obtained a few months later in thin films of 
MgB2 [21], where the fit of experimental PCARS spectra 
with an adjustable weight gave = (2.3 0.3)πΔ ±  meV and 

= (6.2 0.7)σΔ ±  meV. By carrying out a large number of 
PCARS measurements in oriented MgB2 films and fitting 
the spectra with an effective two-band model with adjusta-
ble weight, Yanson and coworkers determined the experi-
mental distribution of gap amplitudes [22,23]. As for the 
small gap, this distribution is much narrower than the theo-
retical one calculated by Choi et al. [19], and is peaked at 

= 2.45πΔ  meV; the distribution of the large gap has a 
width similar to the theoretical one, but has a single maxi-
mum at = 7.0σΔ  meV. Scanning tunneling microscopy 
measurements on single grains of a polycrystals [24] gave 
clear evidence of grain-dependent (i.e., direction-depen-
dent) spectra that were fitted to an effective two-band BTK 
model, giving the gap amplitudes = 2.3πΔ  meV and 

= 7.1σΔ  meV. The weight of the π-band contribution was 
determined from the fit and turned out to range from 100% 
to about 70% depending on the grain, in good agreement 
with predictions. 

It was only with the advent of good-quality single crys-
tals (which allowed controlling the direction of the injected 
current and/or of the applied magnetic field with respect to 
the crystallographic axes) that the potential of PCARS 
could be exploited to its best. For example, thanks to direc-
tional point-contact measurements in single crystals (in the 
inverse configuration, i.e., using a MgB2 crystal as the 
“needle”) in magnetic fields parallel to the c  axis, Yan-
son’s group was the first to resolve the so-called 2gE  
phonon mode in the 2 2/d V dI  spectra [25] thus proving 
that this phonon mode is coupled to σ-band carriers and is 
thus responsible for the superconducting pairing [26]. 
Moreover, PCARS in single crystals allowed testing the 
predictions about the weights of the two band systems in 
the tunnel conductance. Actually, since the crystals grow 
in the form of thin platelets with the normal parallel to the 
c axis, making point contacts in the I ab  configuration 
by using the standard needle-anvil configuration was al-
most impossible. Therefore we used a “soft” PCARS tech-
nique in which a small drop of Ag conductive paste put on 
the sample surface plays the role of the normal-metal elec-
trode. This technique allows placing the contact anywhere 
on the surface, included the side faces, so as to inject the 
current either parallel or perpendicular to the ab  planes. 
Figure 1(d) presents two examples of spectra measured by 
us in MgB2 single crystals, with I ab  (bottom) and I c  
(top) [27]. For comparison, the spectra taken by scanning 
tunneling spectroscopy (STS) in single grains of a poly-
crystals (from Ref. 24) are also shown. It is clear that, 
while for I ab  two pairs of peaks symmetric with respect 
to zero bias are observed, in the I c  configuration only 
the peaks associated to the small gap are clearly observed, 
while the large gap manifests itself only in a pair of shoul-
ders. A fit to the experimental PCARS curves with an ef-
fective two-band model, i.e., ( ) = (1 )G V w wπ π π σσ + − σ  
(where ,π σσ  are calculated within the 2D BTK model and 
the weight is considered as an adjustable parameter) gives: 
for ,I ab  = 2.8πΔ  meV, = 7.2σΔ  meV and 

= 0.75;wπ  for I c , = 2.53πΔ  meV, = 6.8σΔ  meV and 
= 0.96.wπ  It is clear that the best fit is not obtained by 

using the weight predicted in the tunneling case [7]; the 
discrepancy is very small for injection along the c  axis, 
but is larger in the ab-plane contacts. The reason is ob-
viously that the proportionality between the weight and the 
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plasma frequency, which is at the base of the two-band 
model for tunneling by Brinkman et al. is true only when 
Z →∞  and for one-dimensional injection, which is not the 
case here since the values of the barrier parameters turn out 
to be: = 0.484Zπ  and = 1.03Zσ  for ,I ab  = 0.775Zπ  
and = 0.2Zσ  for .I c  As for the gaps, the values reported 
above refer to these spectra only, but averaging over differ-
ent spectra [27] we were able to evaluate the range of varia-
tion of the gaps obtaining = (7.1 0.5) meVσΔ ±  and 

= (2.9 0.3)πΔ ±  meV, which are in excellent agreement 
with the predictions. 

Now a step forward in the analysis of the PCARS spect-
ra in MgB2 can be made by using the 3D BTK model to 
see whether, and to which extent, its results differ from 
those of the simplified two-band BTK model in the tunne-
ling regime, particularly concerning the “weight” of the 
partial π and σ contributions. The calculation can be sim-
plified by using, instead of the real Fermi surface, an effec-
tive “model FS” that has already been used in the past [28]. 
The simplification is based on the assumption that the two 
tubular networks and the two warped cylinders are degene-
rate (this is equivalent to generally speaking of σ  and π  
bands without making any distinction within the two sys-
tems). As shown in Fig. 1(b), this model FS consists of a 
warped cylinder centered at the Γ  point of the BZ and of a 
half ring torus that simulates the 3D tubular network asso-
ciated to the π bands. The major and minor radii (Rπ  and 

)rπ of the torus should be chosen in such a way to repro-
duce the real Fermi surface as accurately as possible [28]. 
Once the Fermi surface is known, the calculation of the 
normalized conductance can be performed by using the 
explicit version of Eq. (8) for the two different directions 
as reported in Ref. 13. Figure 1(c) shows the results of this 
calculation. We took = 2.70πΔ  meV, = 7.09σΔ  meV, as 
calculated in Ref. 7, and adjusted the barrier parameters 
Zπ  and Zσ  in order to reproduce the general shape of the 
experimental curves of Fig. 1(d). Actually, for this purpose 
we had also to introduce in the 3D BTK model broadening 
parameters σΓ  and ,πΓ  and perform the calculation at the 
experimental temperature of 4.2 K. The resulting curves 
are shown in Fig. 1(c) as solid lines. The bottom line refers 
to the ab-plane contact and was obtained by using 

= 0.37,Zπ  = 1.65πΓ  meV, = 0.85,Zσ  = 2.10σΓ  meV. 
The “weight” of the π band (in the sense defined above) is 
equal to 0.88 and is thus much higher than that predicted in 
the case of unidirectional current injection and Z →∞  [7] 
(note that also in the 2D BTK fit the weight of the π band 
had to be taken of the order of 75%). By using the same 
parameters, but with the current injection along the c axis, 
we obtained the thinner of the two top curves of Fig. 1(c). 
In this case, the weight of the π band is as high as 0.98, in 
better agreement with the values calculated in the 1D 
tunneling limit [7]. To obtain a good fit (thick line) of the 
experimental c-axis spectrum, however, we had to reduce 

both the broadening parameters and change Zπ  (i.e., we 
had to use = 0.17,Zπ  = 0.5πΓ  meV and = 0.4σΓ  meV) 
but the weight remains practically the same. Note that the 
reduction in ,σ πΓ  is necessary because the amplitude of 
the Andreev signal in the c-axis curve of Fig. 1(d) is higher 
than in the ab-plane one. The reduction in Zπ  is necessary 
because of the “Z-enhancing effect” described elsewhere 
[13], i.e., a depletion of the zero-bias conductance that 
arises from the shape of the Fermi surface and is particu-
larly evident when large portions of it are parallel to n. 
This effects generally makes the spectra feature zero-bias 
minima even if the barrier parameter is very small or zero. 

4. Directional PCARS in Ca-intercalated graphite 

CaC6 shows the highest = 11.5cT  K among graphite-
intercalated compounds. Its lattice structure is similar to 
that of MgB2 in the sense that it shows alternating graphite 
layers (with honeycomb structure) and Ca planes, with a 
rhombohedral structure [29]. Indeed, also the bandstructure 
is similar to that of magnesium diboride and includes both 
the σ and π bands. The difference, however, is that in this 
case the former are completely filled and play no role in 
superconductivity [30]. Moreover, there is a three-
dimensional, nearly free-electron band, sometimes called 
interlayer band, that crosses the Fermi level. This band is 
also present, although unoccupied, in pure graphite, but in 
CaC6 it is formed by both Ca and C orbitals [30]. As sug-
gested by bandstructure calculations [31,32] it has a fun-
damental role in superconductivity, because its carriers are 
coupled to both Ca and C phonon modes. 

The Fermi surface of CaC6 is shown in Fig. 2(a). It is 
made up of a series of warped cylindrical surfaces parallel to 
the kz direction. One of these intersects the nearly-spherical 
Ca orbital [33]. As pointed out in Refs. 30 and 33 this pre-
vents any separation between Fermi surface sheets asso-
ciated with the interlayer band and sheets associated with the 
C bands, i.e., the nature of electron states changes in the 
different sheets but also within each sheet. CaC6 cannot thus 
be considered a multiband superconductor, but a k-de-
pendence of the superconducting order parameter is ex-
pected and was indeed predicted by ab-initio calculations 
within the superconducting density functional theory 
(SCDFT) [33]. A map of the gap amplitude on the Fermi 
surface [33] shows that the gap is on average smaller on the 
warped cylinders and larger on the sphere — actually, the 
relevant distributions of gap values do not overlap except in 
the region of intersection of the FS sheets. Owing to the 
different dimensionality of these Fermi surface sheets it is 
reasonable to expect that directional PCARS measurements 
can unveil some anisotropy in the amplitude of the gap, de-
pending on whether the current is injected parallel or per-
pendicular to the c axis. 
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The first STS results in CaC6 showed a single and ap-
parently isotropic gap but gave conflicting results concern-
ing its amplitude: from 1.6 [34] to 2.3 meV [35], although 
all these experiments were carried out, at least nominally, 
with the current injected along the same direction (c axis). 
To address the issue of the gap amplitude and of its possi-
ble anisotropy, we performed directional PCARS experi-
ments in CaC6 single crystals [36]. 

Figure 2(d) shows two examples of PCARS curves 
(symbols) measured at 0.4 K with current either along the 
ab plane (bottom) or along the c axis (top). Unlike in 
MgB2, the curves show one single pair of symmetric peaks 
in either direction. Moreover, it is possible to fit each of 
them (as well as all the others we measured) with the 2D 
single-band BTK model by using an s-wave gap. However, 
as clearly shown by the position of the peaks, the amplitude 
of the gap is not the same along the two directions. As for 
the curves shown in Fig. 2(d), the fit with the 2D BTK mo-

del was obtained by using =Δ  1.44 meV, =Γ  0.61 meV 
and =Z  0.75 for the ab-plane contact, =Δ  1.7 meV, =Γ  
= 0.84 meV and =Z  0.97 for the c-axis contact. The gap 
values correspond to values of 2 / B ck TΔ  equal to 2.98 and 
3.48, respectively. The reproducibility of these results was 
very high. In 15 ab-plane measurements carried out at 0.4 
and 4.2 K the order parameter Δ  ranged between 1.1 and 
1.7 meV following rather well a Gaussian distribution 
peaked at abΔ = 1.35 meV and with standard deviation 
sab= 0.14 meV. In 14 c-axis contacts the gap ranged be-
tween 1.3 and 1.94 meV with a Gaussian distribution with 
mean cΔ = 1.71 meV and standard deviation cs = 0.08 meV 
(in good agreement with the values reported in Ref. 34). For 
the sake of the following discussion, it is very interesting to 
note that the Z  values observed in c-axis contacts (between 
0.74 and 1.01) are systematically greater than those of ab-
plane contacts (between 0.48 and 0.75). 

Fig. 2. (a) Fermi surface of CaC6. The almost spherical surface originates from the nearly-free electron band (interlayer band) while the
warped cylinders are mainly arising from the carbon π bands. As shown in [30], this distinction is however not strict. (b) Model Fermi sur-
face used for the calculations within the 3D BTK model. For simplicity, we assumed two isotropic gaps of different amplitudes (indicated
by different colors) to reside on the spherical surface and on the warped cylinders (here represented by a hyperboloid of revolution). Note
that in the cell of panel (a) there are 7 cylinders for each spherical surface. (c) Theoretical spectra at T = 400 mK calculated by using the 3D
BTK model and the schematic Fermi surface of panel (b). Apart from the gap values 1 = 1.7Δ  meV and 2 = 1.3Δ  meV that reside on the
two portions of the FS, the parameters 1 = 0.60Z  and 2 = 0.95Z  were used. Note that these values are the same for both I c  and .I ab
Finally, the broadening parameters were set to zero. (d) Symbols: experimental PCARS spectra measured at 400 mK with current injected
along the c axis (top) and along the ab plane (bottom). Thin lines are the theoretical spectra calculated as in panel (c) but using the broaden-
ing parameters 1 = 0.8Γ  meV and 2 = 0.5Γ  meV. 
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In Ref. 36 we also showed that the difference in the 
spectra taken along the ab  plane and along the c  axis is 
perfectly compatible with the distribution of gap values 
calculated from first principles [33] within the SCDFT. 
There, we used the full k dependence of the order parame-
ter and calculated the spectra (at = 0)T  by using the exact 
integration over the Fermi surface according to Eq. (8). 
Here we show that a very good approximation of the com-
plete calculation, and a good agreement with the experi-
ment, can be obtained by using an effective two-band 3D 
BTK model based on a model Fermi surface that disre-
gards the most complicated and fine details of the real 
Fermi surface, and instead of the real continuous distribu-
tion of gap values uses only two gaps. As shown in 
Fig. 2(b), let us model the Fermi surface with a sphere 
and a hyperboloid of revolution with axis parallel to ,zk  
and tangent to the sphere as it happens in the real Fermi 
surface — even though in the 3D BTK model the two 
Fermi surfaces are treated as if they were completely se-
parated. We also account for the fact that in the Brillouin 
zone there are 7 cylinders for each sphere. 

As for the (uniform) gaps to be associated with the two 
Fermi surfaces, let us choose the “effective” values 

1 = 1.3 meVΔ  on the spherical Fermi surface and 
2 = 1.7 meVΔ  on the hyperboloid. These values allow re-

producing, within the 3D BTK model, the theoretical 
PCARS spectra that result from Eq. (8) when the real FS and 
the complete gap distributions are used [36]. For the same 
reason, we will take 1 = 0.60Z  and 2 = 0.95.Z  Note that 
the two values of Z refer to the two bands and do not change 
on changing the direction of current injection. The resulting 
spectra however show, as in the experiments, a deeper zero-
bias depletion of the signal in the c-axis case, due to the 
aforementioned “Z-enhancing effect” [13]. The theoretical 
curves calculated at = 0.4T  K and with no broadening (i.e., 

1 2= = 0)Γ Γ  are shown in Fig. 2(c). They both show a 
clear pair of peaks associated with the smaller gap, plus ad-
ditional peaks (less pronounced in the ab-plane direction) 
associated with the larger gap. The situation is somehow 
similar to that of MgB2, i.e., the gap residing on the quasi-
2D Fermi surface sheet (here 1Δ ) is more detectable in the 
configuration where the projection of the relevant FS has a 
larger area (i.e., along the ab plane). The experimental situa-
tion (Fig. 2(d)) is however much less ideal, since the broa-
dening (not due to the temperature, but probably to pair-
breaking effects due to a disordered layer at the interface 
[37]) actually smears out the double-peak structure and de-
creases the amplitude of the Andreev signal. Curves very 
similar to the experimental ones are indeed obtained by in-
troducing in the model the broadening parameters 

1 = 0.8 meVΓ  and 2 = 0.5Γ  meV (lines in Fig. 4(d)). A 
comparison of these curves to the experimental ones shows 
that the position of the peaks is reproduced, as well as the 
general shape of the curves. The effect of the real continuous 
distribution of gap values is perceivable in the subgap re-

gion, where the experimental curves are more “V-shaped” 
than the theoretical ones. 

5. Directional PCARS in Co-doped Ca122 

The iron pnictide CaFe2As2, belonging to the so-
called 122 family, becomes superconducting upon appli-
cation of a modest non-hydrostatic pressure [38] or by 
partial substitution of Fe with Co [39]. The phase dia-
gram of Ca(Fe1–xCox)2As2 as a function of x [40,41] 
shows that superconductivity sets in abruptly, and with a 

cT  close to the maximum, when the high-temperature 
magnetic and structural transitions are still present. 

Figure 3(a) shows the Fermi surface of 6% Co-doped 
CaFe2As2, calculated within the density-functional 
theory (DFT) by using the Elk FP-LAPW Code 
(http://elk.sourceforge.net/)  and the GGA approach for 
the exchange correlation potential. A virtual-crystal ap-
proximation was used to account for the partial substitu-
tion of Fe with Co [42]. The choice of the doping content 
is of course based on the fact that the PCARS measure-
ments we are going to discuss were carried out on single 
crystals of Ca(Fe1.94Co0.06)2As2 with on = 20cT  K and 
an effective eff = 17cT  K [42]. Because of the lack of direct 
experimental information on the low-temperature lattice con-
stants of the compound of our interest, the bandstructure cal-
culations were performed by using the low-temperature lat-
tice constants of the parent compound CaFe2As2 in the 
tetragonal phase (estimated from those calculated in the or-
thorhombic phase [42,43]) owing to the fact that, at room 
temperature, the lattice parameters do not change very much 
upon Co doping [40]. Further details about the calculations 
can be found in Ref. 42. 

A comparison of the Fermi surface (FS) of 6% Co-do-
ped CaFe2As2 depicted in Fig. 3(a) with that obtained at 
slightly smaller and slightly larger Co concentrations 
shows that at = 0.06x  the hole-like Fermi surfaces are on 
the verge of a topological transition, from a warped tubular 
shape extending through the whole height of the Brillouin 
zone (BZ), to two separate cup-shaped pockets centered at 
the Z points. The electron-like FS sheets instead retain 
their shape of warped cylinders at the corners of the BZ. 

To calculate the PCARS spectra within the 3D BTK 
model, we need to choose a set of analytical surfaces that 
can be used to mimic the real FS. Figure 3(b) shows a 
possible model FS (only in the upper half of the Brillouin 
zone) made up of a one-sheeted hyperboloid of revolution 
(that simulates the electron-like FS sheets centered in X) 
and an oblate spheroid (to simulate the 3D hole-like FS 
centered in Z). The proportion between the diameters of 
the different sheets respects the real one, although the dis-
tance between them has been increased for clarity (thus 
expanding a little the Brillouin zone in the ( , )x yk k  plane). 
To calculate the PCARS spectra within the 3D BTK mod-
el, we need to assign a gap to each sheet of the model FS. 
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In the case of MgB2 there were no doubts about the sym-
metry of the gaps, which were all isotropic. In the case of 
Fe-based superconductors, the presence of nodes cannot be 
excluded a priori — and actually has been predicted to 
occur in a spin-fluctuation-mediated s ±  picture in particu-
lar conditions in 1111 [9] and 122 [10] compounds. In the 
case of Co-doped CaFe2As2 there are no specific predic-
tions in this sense; however, there are two orders of rea-
sons that suggest the presence of nodes of some kinds in 
the gap that resides on the hole-like Fermi surface. 

The first reason is experimental. In this compound, 
100% of the conductance curves (measured with )I ab  
show a zero-bias peak and broad shoulders at a finite ener-
gy (5–6 meV) as shown for example in Fig. 3(d). There are 
various phenomena that can give rise to a zero-bias peak in 
point-contact spectroscopy [3], but there are good reasons 
[42] to think that, in this case, its origin is intrinsic and is 
not, e.g., related to experimental artifacts. Indeed, a zero-
bias maximum or peak is observed when the gap has lines 

of either nodes (i.e., separating regions of positive and 
negative order parameter) or zeros [6] somewhere on the 
Fermi surface. As shown elsewhere [13] if there is a large 
broadening, as in our case (the amplitude of the curves of 
Fig. 3(d) is rather small) it becomes virtually impossible to 
discriminate between these two alternatives. 

The second reason is that the emergence of lines of nodes 
(that are vertical in the proximity of the top and bottom of the 
BZ) on the outer hole-like FS has been predicted in Ba122 
[10,11] in particular conditions, i.e., when the pnictogen 
height Asz  is reduced, for example by isovalent P doping 
[10]. This is accompanied by a growth in the size of the outer 
hole-like FS around the Z points, a phenomenon which oc-
curs also in Ca(Fe1–xCox)2As2 at the increase of x. At 

= 0.06x  the hole-like Fermi surface even becomes com-
pletely 3D by splitting into closed pockets; a possible sym-
metry of the gap on these surfaces can thus be imagined to be 
an evolution of the peculiar 3D nodal symmetry (with vertic-
al node lines) in these conditions. We guess that the result of 

Fig. 3. (a) Fermi surface of Ca(Fe1.94Co0.06)2As2. The hole-like FS sheets in the centre of the Brillouin zone is on the verge of a topological
transition and is splitting into two closed pockets centered at the Z points. (b) The model Fermi surface used in the 3D BTK model, shown
here only in the upper half of the Brillouin zone. Matt surfaces are the Fermi surface sheets, while the gridded surfaces indicate the ampli-
tude of the relevant gap, which is isotropic on the electron-like FS but anisotropic on the hole-like one. (c) Theoretical curves calculated for 
I ab  (top) and I c  (bottom) using the Fermi surface of panel (b) and the gaps indicated in the labels. Here “1” and “2” refer to the hole-
like (electron-like) FS, respectively. The other parameters were: for curve 1, Γ1 = 1.25 meV, Z1 = 0.05, Γ2 = 6.15 meV, Z2 = 0.145; for 
curve 2, Γ1 = 1.7 meV, 1 = 0.05,Z Γ2 = 6.5 meV, Z2 = 0.23. In both cases the angle between the normal to the interface and the a axis was 
taken to be = /8.α π  The latter set of parameters was also used to calculate the c-axis spectrum (curve 3). (d) Two examples of experimen-
tal curves measured in single crystals of 6% Co-doped CaFe2As2, with the current injected along the ab planes. 
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this evolution can be expressed as a 3D fully anisotropic s-
wave symmetry, whose expression in the reciprocal space is 

24
1 1( , ) = 2 sincosΔ θ φ Δ θ φ  (here, the origin is placed in the 

center of the relevant FS sheet). This gap does not show 
nodes (i.e., it does not change sign) but only lines of zeros 
that intersect each other above and below the Z points. The 
choice of this symmetry may seem unreasonable given that a 
sign change of the order parameter is predicted in Refs. 10, 
11. Indeed, another possibility is to use a 3D d-wave sym-
metry 2

1 1( , ) = cos 2 sinΔ θ φ Δ θ φ  [42] but: i) the results do 
not change very much once a large broadening is inserted in 
the BTK model [13]; ii) the symmetry of the gap of Refs. 
10, 11 in the horizontal plane through Z is different from the 
d wave one and features two additional axes of equation 

= ;y xk k±  in these conditions, interference effects between 
HLQ and ELQ are considerably reduced and the zero-bias 
maximum is expected to arise mostly from the fact that the 
gap is very small in some angular regions. The amplitude 
and the spatial modulation of this gap is shown as a grid-
ded surface around the hole pocket in Fig. 3(b). The gap 
on the electron-like FS is instead chosen to be isotropic. 

Figure 3(c) shows two examples of ab-plane PCARS 
spectra (curves 1 and 2) calculated at = 2.2T  K (the low-
est experimental temperature in this case) within the 3D 
BTK model, by using values of the gaps that allow repro-
ducing the experimental ab-plane curves of Fig. 3(d). The 
gap amplitudes are indicated in the label, where “1” refers 
to the hole-like FS and “2” to the electron-like one; the 
other best-fitting parameters are listed in the caption. Due 
to the very small amplitude of the curves, a large broadening 
was necessary. The parameters that generate curve 2 were 
also used to calculate a theoretical c-axis spectrum (curve 3) 
even though in this case we do not have any experimental 
curve in this configuration. The success of the model in re-
producing the experimental curves suggests that the chosen 
gap symmetry is probably a good approximation to the real 
one. Moreover, as pointed out elsewhere [42], the presence 
of zero-bias maxima in the c-axis conductance necessarily 
requires that the FS hosting the anisotropic gap is a closed 
surface, as it results from bandstructure calculations. 

6. Directional PCARS in Co-doped Ba122 

 The iron arsenide BaFe2As2 is probably the most wide-
ly studied representative of the so-called 122 family. One 
of the reasons is that it can be made superconducting by 
hole doping (e.g., by K doping in the Ba site), isoelectronic 
doping (e.g., by partial substitution of Ba with Sr, As with 
P or Fe with Ru), electron doping (by Co substitution in 
the Fe site) or external pressure, giving rise to a variety of 
phase diagrams that can be in principle compared to extract 
information about the mechanisms of superconductivity 
[44]. The second reason is that single crystals of all these 
compounds can be grown large enough to allow an exten-
sive experimental investigation by means of almost all the 

available techniques (including, for example, angle-resol-
ved photoemission spectroscopy). Apart from minor dis-
crepancies (mainly about the doping contents) the phase 
diagrams of Ba(Fe1–xCox)2As2 indicate the existence of a 
wide, well-defined and asymmetric superconducting dome 
extending from 0.03x  to 0.15x  [45], with a maxi-
mum at 0.07.x  The lines indicating the tetragonal-to-
orthorhombic structural transition and the magnetic transi-
tion intersect the superconducting dome in the proximity of 
the maximum; in the “underdoped” region, experiments 
seem to indicate microscopic coexistence of SDW and 
superconducting states [45]. Figure 4(a) shows the Fermi 
surface of Ba(Fe1–xCox)2As2 at = 0.08x  calculated in the 
same way as in Co-doped Ca122, by using the lattice con-
stants = = 3.9625a b  Å and = 13.0168c  Å as in Ref. 46. 
The Fermi surface features two hole-like sheets around the 

ZΓ −  axis — both having the shape of warped cylinders, 
although the warping of the outer one is much more 
marked — and two electron-like warped cylinders with the 
characteristic “elliptical” cross-section that depends on .zk  
Figure 4(b) shows the model Fermi surface we chose for 
the calculation of the PCARS spectra within the 3D BTK 
model. It is simply made up of two hyperboloids of revolu-
tion, one for the outer hole-like FS sheet (the inner one is 
neglected) and one for the two electron-like sheets. The 
problem now arises of which symmetry of the order para-
meter one should assume to calculate the PCARS spectra. 

A number of experimental results reported in literature 
(including ARPES [47]) indicate for Ba(Fe1–xCox)2As2 
two isotropic gaps. The first directional PCARS measure-
ments in single crystals ( = 0.07,x  = 23cT  K) [48] that 
were carried out in the needle-anvil configuration and with 
the current along the c axis, showed clear Andreev signals 
but no evidence of multiple gaps and were fitted by a sin-
gle-gap, s-wave 2D BTK model. Our directional PCARS 
measurements in nominally 10% Co-doped Ba122 single 
crystals with = 24.5cT  K [49] gave spectra with clear 
two-band structures in either the I ab  and I c  configu-
rations. These spectra were successfully fitted by using a 
two-band 2D BTK model with two isotropic gaps. 

On the other hand, indications in favor of a complicated 
3D structure of the gap (at least on the hole-like FS) with 
lines of zeros or deep minima were provided by directional 
thermal conductivity [50] and Raman spectroscopy [51] 
measurements; this possibility has been shown theoretical-
ly to be compatible with the general s ±  symmetry [12]. 

Based on the above, here we will first calculate the 
theoretical PCARS spectra within the 3D BTK model by 
assuming two isotropic gaps, 1Δ  on the hole-like FS and 

2Δ  on the electron-like FS, and we will see whether this 
assumption allows reproducing the experimental data, in 
particular the representative spectra reported in Fig. 4(d). 
The first three spectra were measured in single crystals of 
Ba(Fe1–xCox)2As2 with nominal = 0.1,x  bulk on =cT  

24.5 K= and = 1cTδ  K [49], with the current parallel to 
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the ab  plane (first two curves) and to the c axis (third 
curve). All of them feature multiple structures that, as we 
showed elsewhere [49] can be interpreted as being due to 
two distinct gaps and to the strong coupling of electrons to 
spin fluctuations whose characteristic energy Ω  is around 
12 meV (the relevant structure occurring at 1Δ +Ω  if 1Δ  
is the large gap). The bottom curve of Fig. 4(d) was meas-
ured in epitaxial thin films (having the c  axis normal to 
the surface) with = 0.08x  and = (23.8 0.7)cT ±  K grown 
on a MgO substrate, with a Fe buffer layer. The multigap 
structures in this curve are even clearer than in single crys-
tals; as shown by the vertical lines, the position of the gap 
features is the same for all the curves, which is a good in-
dication of consistency. 

By using the 3D BTK model and the Fermi surface of 
panel (b), we can then try to fit the experimental curves of 
panel (d). To do so, we will take all the parameters (includ-
ing the gap amplitudes) as being adjustable, rather than 

fixing the values of the gaps as we did in CaC6 or MgB2. 
Figure 4(c) reports the theoretical curves that best fit the 
experimental ones of panel (d). The gap amplitudes are 
reported in the legend, the other parameters in the caption. 
It is interesting to note that: i) the fit is generally capable of 
reproducing the position of the gap-related structures by 
using consistent values of the gaps, i.e., 1 = (11.0 1.0)Δ ±  
meV and 2 = (3.8 0.8)Δ ±  meV; ii) the fit in the region 

1>eV Δ  works well in thin films, but fails in single crys-
tals where large electron–boson coupling structures domi-
nate the spectrum above 15 meV. This is actually obvious 
since the electron–boson structures cannot be reproduced 
by a BTK model unless the explicit energy dependence of 
the order parameter is taken into account, as we did in 
Refs. 49 and 13; iii) the fit works well in the subgap region 

1<eV Δ  only in ab-plane contacts. In the case I c  in-
stead the theoretical curves systematically show a zero-bias 
dip which is much deeper than the experimental one. This 

Fig. 4. (a) Fermi surface of Ba(Fe1.92Co0.08)2As2, with the strongly warped hole-like FS sheets around Γ  and the electron-like FS
sheets at the corners of the Brillouin zone. (b) The model Fermi surface used in the 3D BTK model. Matt surfaces are the Fermi surface
sheets, while the gridded surfaces indicate the amplitude of the relevant gap. The drawing refers to the case of isotropic gaps on both the
bands. (c) Theoretical curves calculated for I ab  (1 and 2) and I c  (3 and 4) and using the Fermi surface of panel (b). The gap ampli-
tudes indicated in the labels were chosen in order to fit the position of the gap features in the experimental curves of panel (d). The other
fitting parameters are the following: for curve 1, Γ1 = 1.85 meV, Z1 = 0.03, Γ2 = 3.6 meV, Z2 = 0.31; for curve 2, Γ1 = 1.75 meV, Z1 = 0.08,
Γ2 = = 3.0 meV, Z2 = 0.245; for curve 3, Γ1 = 2.8 meV, Z1 = 0.05, Γ2 = 1.3 meV, Z2 = 0; for curve 4, Γ1 = 3.85 meV, Z1 = 0.1, Γ2 = 1.4
meV,  Z2 = 0. (d) Some examples of the experimental curves measured in 8% Co-doped BaFe2As2 with I ab  (top) and I c  (bottom).
The lowest-lying curve was measured in epitaxial films [52] with = 0.08x  and Tc = (23.8 ± 0.7) K, the others in single crystals. 
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happens even if both 1Z  and 2Z  are unrealistically taken 
to be zero, because of the aforementioned Z-enhancing 
effect related to the shape of the relevant FS sheet. 

The failure of the model in reproducing the zero-bias 
region of the curves in  c-axis contacts clearly indicates 
that either: i) there is some additional effect, not consi-
dered here, that gives rise to a zero-bias enhancing that 
partially compensates the signal depletion due to the shape 
of the Fermi surface, or ii) the smaller gap is not isotropic. 
The two possibilities are still under investigation, but pre-
liminary (although detailed) results show that the existence 
on the hole-like FS of horizontal and/or vertical node lines 
could not be sufficient to explain the observed discrepancy. 
In this regard, it is worth noting that only the use of the 3D 
BTK model allows unveiling effects like this, while the 2D 
BTK model (based on the assumption of spherical Fermi 
surfaces and with an adjustable weight) allows fitting the 
curves in both directions without any difficulty, as we did 
in Ref. 49. 

7. Conclusions 

 The discovery of new multiband and anisotropic super-
conductors at the beginning of the third millennium has 
revitalized the research about superconductivity, but has 
also required a refinement and a development of the expe-
rimental and theoretical techniques. With the progress in 
the investigation of these compounds, the necessity has 
arisen to go deeper and deeper in the subtle details of their 
properties in order to discriminate between different possi-
ble pairing mechanisms, understand how general some 
properties are, determine which of them are fundamental 
and which are sample-dependent, and so on. 

Point-contact Andreev-reflection spectroscopy is a sim-
ple, versatile and very powerful tool for the investigation 
of superconductors. However, the interpretation of the 
PCARS results in multiband and/or anisotropic compounds 
is much more challenging than it used to be in convention-
al superconductors and possibly even in cuprates. In par-
ticular, although the use of the simplest models for the fit 
of the PCARS spectra can usually provide good general 
information about the number and amplitude of the gaps, 
more sophisticated methods of analysis are required to 
study the fine details of the gap symmetry and structure. 

In this review we have shown that the capabilities of 
PCARS can be extended — though without any particular 
improvement in the experimental technique in itself — by 
suitably generalizing the Blonder–Tinkham–Klapwijk 
model to the case of multiple Fermi surface sheets and 
anisotropic order parameters, thanks to a systematic link 
with Fermi-surface calculations. The so-called “3D” BTK 
model makes use of a model FS that mimics the real one, 
and can account for virtually any kind of k dependence of 
the order parameter. With respect to the 1D and 2D ver-
sions of the same model, it relaxes some simplifying as-

sumptions that are no longer justified in these compounds; 
moreover, the “weight” of the different bands in the total 
conductance for any given direction of current injection is 
no longer an adjustable parameter but is completely deter-
mined by the barrier height and by the shape of the Fermi 
surface. With respect to the full integration over the real 
FS, it has the advantage of being analytical and thus much 
less demanding in terms of calculation. 

To show the benefits of using this approach, we have 
reported some representative examples of its application to 
multiband or anisotropic superconductors. In MgB2, the 
paradigm of multiband superconductivity, we have shown 
that the 3D BTK model allows reproducing very well the 
directional PCARS spectra by using the values of the (iso-
tropic) gaps calculated from first principles [7,9]. Also the 
systematic zero-bias depletion of conductance observed in 
c-axis contacts is naturally reproduced as a consequence of 
the different dimensionality of the σ and π bands. In CaC6, 
an anisotropic superconductor with a marked k dependence 
of the order parameter but no lines of nodes [33], we have 
shown that theoretical PCARS spectra in excellent agree-
ment with the experimental ones can be obtained by using 
an effective model with two uniform gaps associated to 
two inequivalent FS sheets having different dimensionali-
ty. In this case, the availability of the complete map of gap 
amplitude on the Fermi surface [33] allows calculating the 
PCARS spectra also by integrating explicitly over the real 
FS [36]; the comparison of the spectra however shows that 
the effective “two-gap, two-FS” model is sufficient to per-
fectly catch the features of the system. In Co-doped 
CaFe2As2, the systematic observation of zero-bias maxima 
in the PCARS spectra suggests the presence of lines of 
nodes crossing the Fermi surface [42]; however, a reasona-
ble guess about the shape of these nodes and their location 
on the FS sheets can be made only by studying the FS 
geometry and exploiting theoretical predictions about the 
emergence of nodes in similar compounds [10,11]. By us-
ing a nodeless large gap on the electron 2D-like FS and a 
smaller gap with full 3D anisotropy on the hole 3D-like 
pockets, we have shown that it is possible to reproduce 
rather well the experimental ab-plane spectra and to pre-
dict the shape of c-axis ones. Finally, in Co-doped 
CaFe2As2 the experimental PCARS spectra do not show 
any zero-bias peak and can indeed be fitted within the 2D 
BTK model by using two isotropic gaps. However, if the 
geometry of the FS is taken into account, as in the 3D 
model, one discovers that two isotropic gaps cannot ac-
count completely for the experimental spectra. In particu-
lar, a deep zero-bias dip for I c  is expected but not ob-
served. This suggests that either the gap is zero in some 
regions of the FS (although simple node lines seem to be 
insufficient, which could point to the existence of “hot 
spots” recently predicted on the hole-like FS), or additional 
phenomena are taking place that give rise to a zero-bias 
peak that partly compensates the depletion. 
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