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Abstract. The electron, hole, and exciton energy spectra are calculated within the 
effective mass and rectangular potential approximations for a combined semiconductor 
nanoheterosystem consisting of a cylindrical semiconductor quantum wire crossing the 
plane quantum well. It is shown that the electron (hole) in such a system is characterized 
by five quantum numbers related to five degrees of freedom for a quasiparticle. The 
dependences of the quasiparticle energy on the quantum wire radius and the quantum 
well width are researched. 
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1. Introduction 

The progress in the investigation of low-dimensional 
semiconductor systems is stimulated by the development 
of new technologies of the fabrication of nanocrystals 
which allow one to produce different nanoheterosystems 
(two-dimensional quantum wells, one-dimensional 
quantum wires (QW), and zero-dimensional quantum 
dots (QD) [1, 2]).  

In order to obtain the new useful properties of 
modern objects, it is necessary to study the physical 
phenomena taking place in them or, in other words, it is 
necessary to establish the theory for the basic quasi-
particles and their interaction between one another and 
with outer fields of different nature. The theory of the 
spectra of electrons, holes, excitons, and phonons and 
the interaction of these quasiparticles between one 
another and also with the electric and magnetic fields in 
quantum dots [3-5], quantum wires [6, 7], and quantum 
wells [8, 9] is related to the field of mesophysics. It was 
intensively developed during the last decades and 
reached not only the qualitative but also quantitative 
agreement with the experimental data. 

In addition, the rapid development of experimental 
investigations of nanoheterosystems brought to the 
existence of rather complicated combined nanocon-
structions containing different spatial combinations of 
quantum dots, quantum wires, and quantum wells. The 
research of such systems is important due to the 
perspective of their utilization in the physical, 

biomedical, and optoelectronic devices [10]. The theory 
of the spectra of quasiparticles in such systems has not 
been constructed yet, because they are rather compli-
cated for the mathematical description. Therefore, it is 
interesting and important to study the peculiarities of the 
behavior of quasiparticles (electrons, holes, and exci-
tons) at least in rather simple systems. One of them is a 
cylindrical semiconductor quantum wire crossing the 
plane quantum well. 

2. Theory of the spectrum of an uncoupled electron-
hole pair in a cylindrical quantum wire crossing the 
quantum well 

Here, we consider the nanoheterosystem consisting of a 
cylindrical semiconductor quantum wire with radius 0ρ  
crossing the plane quantum well with width 0h  (Fig. 1). 

Depending on the relations between the potentials 
formed by the media "0" (U0), "1" (U1), "2" (U2) for the 
electron (hole), the crossing region creates a cylindrical 
quantum dot (when U0 < U1 and U0 < U2) or an antidot 
(U0 > U1, U0 > U2). The system is placed into the 
external medium ("3") with the infinite potential (U3) for 
a quasiparticle. 

The other problem is the scattering at the 
complicated potential barrier. It is to be considered in 
future. 

In the case where U0 < U1 and U0 < U2, we concern 
the problem of the stationary states of quasiparticles 
localized in the space of a quantum dot (medium "0"). 
Due to the circumstance that the theories of the spectra 
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of an electron and a hole are developed in analogy, the 
further consideration is performed for an electron. 

In order to study the electron energy states, one has 
to solve the stationary Schrödinger equation 
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In the cylindrical coordinate system, it takes the form 
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The effective masses and the potential energies of 
an electron in different parts of the nanoheterosystem are 
fixed and assumed to be equal to the corresponding 
parameters in the respective bulk crystals: 
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The dielectric constants in the quantum dot ( 0ε ) 
and in media 1 and 2 ( 1ε , 2ε ) are not very different from 
each other ( 0ε ~ 1ε ~ 2ε ). In this case, the self-forces 
arising for the charged quasiparticles due to the presence 
of the interfaces between the cylindrical quantum dot 
and media 1 and 2 can be evaluated by the following 
way. 

 

 

 

 

 

 

 

 

 

Fig. 1. Geometrical scheme of a quantum wire crossing the 
quantum well. 

The self-force potential of a charged particle in a 
cylindrical quantum dot is found to be rather 
complicated. But, taking into the account that the both 
characteristics of the cylindrical QD are of the same 
order ( 0ρ  ~ 0h ), the cylindrical quantum dot can be 
approximated by a spherical quantum dot of the same 
volume. That is why the radius of the quantum dot is 
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ρ= hR . In order to evaluate the potential of 

the self-forces of quasiparticles in a spherical quantum 
dot, one can make use of the fact that, in the deep 
potential well, a quasiparticle is mainly located at the 
distance of R/2 from the center of the sphere. Herein, the 
charged quasiparticle (an electron or hole) in the 
spherical quantum dot undergoes the action of the 
polarization field with the potential [11] 
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Thus, when the geometrical sizes of the cylindrical 
QD ( 0h , 0ρ ) have the magnitudes satisfying the 
condition  

Up << U0, U1, U2,     (6) 

then, the approximation of the rectangular potential (4) 
can be used to calculate the quasiparticle spectrum. 

Taking into account the symmetry of the problem, 
it is convenient to write the solution of Eq. (1) in the 
cylindrical coordinate system with the origin at the 
center of the quantum dot [12] as follows: 
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Here, 210 ,, AAA  – some constants, )(ρmJ  and )(ρmK  – 
the Bessel and Macdonald functions of integral orders, m 
– magnetic quantum number, 
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and 210 ,, kk χ  − are the unknown parameters. 
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Fig. 2. Electron and hole energy levels )(

110
he

ppz
E

ρ
 versus the 

radius of a quantum wire ( 0ρ ) at the height HgS0 15ah = . 

Further, we use the continuity conditions for the 
wave function and its probability current density at all 
interfaces of the nanoheterosystem, 
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and the conditions for the 1ψ  and 2ψ  wave functions to 
be zero at the outer faces of the quantum wire and the 
quantum well, respectively, 

0),,(
01 =ϕρψ ρ=ρz ,     0),,( 2/2 0

=ϕρψ =hzz .             (10) 

As a result, 21,kχ  unknown till now are obtained in 
the form 

0
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and we get the system of two transcendental equations 
defining E and 0k  as 
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Their solutions fix the energies of electron stationary 
states, E. Here, mnx ρ

 − zeroes of the Bessel functions of 

integral orders, 1=ρn , 2, 3 − radial quantum number, 
1=zn , 2, 3 − axial quantum number. 

 
3. Analysis and discussion of results 

The numerical calculations of the electron (hole) energy 
spectrum was performed for the nanoheterosystem 
formed by the semiconductors HgS−β  (medium "0") 
and CdS−β  (media "1" and "2"). Their parameters are 
presented in Table. 
 
Таble. 

 em  hm  eU , 
eV 

hU , 
eV  

 
a, Å 

gE , 
eV 

CdS 0.2 0.7 3.8 6.3 5.818 2.5 

HgS 0.036 0.044 5.15 5.65 5.851 0.5 

In order to study the spectrum of exciton states in 
the nanoheterosystem under study depending on its 
geometrical parameters, one has to investigate the 
spectra of an electron and a hole creating the exciton. 

The results of calculations of the electron and hole 
energies as functions of the quantum wire radius )( 0ρ  at 
the fixed height of the quantum dot, HgS0 15ah = , and the 
fixed quantum numbers 1=zn , 1=ρn , m = 0 are shown 
in Fig. 2a and b, respectively. 

It is clear that the qualitative behaviors of the 
electron and hole spectra are the same, while their 
quantitative difference is caused only by the difference 
between their effective masses and potential energies. 
Therefore, we are going to analyze the electron 
spectrum. 

Fig. 2 proves that, with increase in 0ρ , all quan-

tized energy levels )(
110
he
ppz

E
ρ

 are shifting into the region of 

lower energies. At the fixed 1=zn , 1=ρn , m = 0, the 
spectral levels form the groups over the quantum 
numbers zp  containing the levels with different values 
of the quantum number ρp . Thus, the ground energy 
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Fig. 3. Dependence of the probability density of the electron location at the ground (a), first (b), third (c), and fourth excited level 
(d) on the variables ρ  and z at HgS0 10ρ a=  and HgS0 15ah = . 

level has the quantum numbers 1=zn , 1=ρn , m = 0, 

zp = 1, ρp  = 1. The energies of level groups with zp = 1 
and zp = 2 decrease with increase in the quantum wire 
radius 0ρ  and are limited to the magnitudes of the ener-
gies corresponding to two energy states in a semicon-
ductor layer HgS−β  placed into the medium CdS−β . 

The existence of five quantum numbers mnnz ,, ρ , 

ρppz,  is caused by the fact that the electron can be 
located at the same time in all parts of the 
nanoheterosystem under study (except region "3") 
(Fig. 1), and, hence, it is characterized by five degrees of 
freedom. It is proved by the behavior of the square of the 
wave function modulus. Its dependence on the coordi-
nates z and ρ  is shown in Fig. 3a-d. 

Fig. 3а describes the dependence of the square of 
the wave function modulus of electron ground state on 
the variables z and ρ . It is clear that the probability 
density has one maximum, as it must be from the 
considerations of the general theory of localized states of 
quasiparticles. Fig. 3b corresponds to the first excited 
energy level with the quantum numbers =zn 1, =ρn 1, 

0=m , =zp 1, =ρp 2. From Fig. 3, one can see that the 
probability density has two maxima along the ρ  
direction and one – along the z axis. Fig. 3с describes the 
probability density of the electron location at the third 

excited level with the quantum numbers =zn 1, =ρn 1, 
0=m , 2=zp , =ρp 1. Herein, the square of the wave 

function modulus has two maxima along the z axis (the 
wave function is symmetric, respectively, under the 
change of z by –z) and one – along the ρ  direction. 
Finally, Fig. 3d corresponds to the quantum numbers 

1=zn , 1=ρn , m = 0, 2=zp , =ρp 2, and the probability 
density has two maxima along the both directions. 

The general analysis of the system of equations (8) 
proves that all electron (hole) states are twice 
degenerated over the magnetic quantum number m 
(except 0=m ). In addition, as one can see from Fig. 2, 
there is also the casual degeneration of different states 
(even at 0=m ) because the levels with different zp  
cross one another at the variation of the quantum dot 
radius ( 0ρ ). 

In Fig. 4a, b, we show the dependence of the 
electron and hole energy levels on the height of the 
quantum dot ( 0h ) at the fixed radius of the quantum 
wire ( 0ρ ) and the quantum numbers 1=zn , 1=ρn , 

0=m . 
One can see from Fig. 4 that the behavior of 

quantized energy levels of an electron and a hole at the 
increase of the quantum dot height is analogous to that at 
the increase of the quantum dot radius, but the sequence 
of energy levels is varied. They now form the groups  
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Fig. 4. Dependence of the electron and hole energy levels 

)(
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 on the height of a quantum dot ( 0h ) at HgS0 10a=ρ . 

 

over the quantum number ρp , containing the states with 
different quantum numbers zp . As before, the ground 
energy level is characterized by the quantum numbers 

1=zn , 1=ρn , 0=m , 1=zp , 1=ρp . With increase in 
the height of the quantum dot, the groups of levels with 

1=ρp  and 2=ρp  are limited to the values of energies 
corresponding to two quantum states of quasiparticles in 
the quantum wire HgS−β  of the radius HgS0 10a=ρ , 
placed into the medium CdS−β . 

In Fig. 5a-c, we present the results of calculations 
of the electron spectrum for four lower energy levels 
from 2,1=zp , 2,1=ρp , 1=zp  (Fig. 2a) at 0=m , 

1=m , 2=m , HgS0 10a=ρ , HgS0 15ah =  in a wide range 
of quantum numbers ρn  and zn . 

From the figure, the following main peculiarities of 
e

ppmnn zz
E

ρρ
 are obvious.  

The increase of the quantum numbers zn , ρn , m 
causes the increase of the electron energies in stationary 
states. Herein, the dependence of the quasiparticle 
energy on the quantum numbers ρn  and zn  is smooth 
(almost linear), and its dependence on the magnetic 
quantum number m is sharper (square). So, for example, 

quantum number m is sharper (square). So, for example, 
at 0=m , the stationary states with =zp 1, 2, =ρp 1, 2 
exist in the nanosystem (Fig. 5a). But, at 1=m , the state 
with 2=zp , =ρp 2 exists only at 1=ρn  and 1=zn , 2, 3 
(Fig. 5b). When 2=m , there is no stationary state with 

2=zp . 
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Fig. 5. Dependence of electron energy on the quantum 
numbers mnn pz ,,  at HgS0 10ρ a= , HgS0 15ah = . 
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It is worth to note that the information on the 
electron and hole spectral characteristics does not depict 
the total picture of radiating or absorbing ability of the 
system under study. Thus, it is important to consider the 
problem of the existence of bound states of these 
quasiparticles or the possibility for an exciton to arise. 
Let it be „born” in the region of a quantum dot with 
height 0h  and radius 0ρ . 

In order to solve this problem, one has to use the 
Schrödinger equation 

),(),(),(ˆ
heexexheexheex rrErrrrH ψψ =  (13) 

with the Hamiltonian 

0|))(|)(ˆ)(ˆ),(ˆ
ghehheeheex ErrUrHrHrrH +−++=  (14) 

where 0gE  – width of the forbidden band of the 

quantum dot material, heH ,  – Hamiltonian of the 
uncoupled pair of an electron and a hole, and 

( ) ( ) hehe
he rrrr

e
rrU

−ε
−=−

,

2

  (15) 

– electron-hole interaction potential, where ( )he rr ,ε  – 
dielectric constant which is the complicated function of 
the displacements of an electron and a hole inside the 
nanosystem. 

Equation (9) cannot be solved exactly. But, taking 
into the account that the energy of electron-hole 
interaction is much smaller than the energy of their size 
quantization, the energy of exciton excitement can be 
calculated with enough exactness by the formula 

0g
h
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where ρρ≡ ppmnnk zz . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Dependence of exciton energy ρ110

11011
ppzE   on the radius 

of quantum wire (ρ0) at HgS0 15ah = . 

In Fig. 6, we show the dependences of the exciton 
energies e

h

k
kE  ( ρρ≡ ppmnnk zz ) of the lower spectrum 

part on the quantum wire radius at the fixed height of the 
quantum dot HgS0 15ah = . From the figure, one can see 
that, with increase in the quantum dot radius, the exciton 
energies of all states decrease. It is explained by the 
behavior of e

ppz
E

ρ110  and h
ppz

E
ρ110  analyzed before and 

their general contribution to the exciton excitement 
energy (12). 
 We note that the exciton excitement energy can 
be located rather deep in the forbidden band of a three-
dimensional crystal CdS−β , and it is very sensitive to 
the variation of the quantum wire radius what is to be 
clearly observed in the experiment. 

 
4. Conclusions 

The results of the performed research allow us to draw 
the following conclusions. 

An electron (hole) in the combined nanohetero-
system under study is characterized by five degrees of 
freedom, thus its energy spectrum is defined by five 
quantum numbers ρρ ppmnn zz ,,,, . 

At the fixed mnnz ,, ρ , the spectral levels create 
the groups over the quantum nuber zp , when the radius 
of quantum wire 0ρ  is varied, and over the quantum 
number ρp , when the height of of the quantum dot 0h  
is varied. With increase in 0ρ  or 0h , all quantized 
energy levels shift into the region of smaller energies 
limited by the bottom of the quantum well. 

The increase in the magnitude of the quantum 
numbers mnnz ,, ρ  causes the increase in the electron 
energies in the stationary states. Herein, the dependence 
of the quasiparticle energy on the quantum numbers ρn  
and zn  is smooth (almost linear) and its dependence on 
the magnetic quantum number m is sharper (square). 

At the decrease of the quantum wire radius, the 
exciton energies in all states increase and can be located 
rather deep in the forbidden band of the bulk crystal 
CdS−β . 
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