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Abstract. The susceptibility of thin superconductor film was obtained. The absorption of
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1. Introduction

The superconductor-semiconductor systems are actual
because the extremely low level of self-noises is the main
characteristic of the systems. In this connection the elec-
trodynamics of thin superconductor film at semiconduc-
tor substrate is the actual problem. The study of super-
conductor-semiconductor systems is of interest now. Nu-
merous works are devoted to consideration of different
features in behavior of the superconductor-semiconduc-
tor systems. The works touch upon both fundamental and
application aspects of the problem as well. In [1] the thin
superconducting LaSrCuO film electrical and optical
properties were studied. In [2] presented were some su-
perconductor-semiconductor devices. It was, for exam-
ple, the superconductor straight-line resonator that pos-
sesses has an electromagnetic feed-through level below
�65 dB up to 10 GHz. In this work, a semiconductor-
superconductor microwave digital phase shifter based on
an YbaCuO thin film was demonstrated.  The organic
layered superconductor composites are synthesized and
studied (see, for example [3]). The electrodynamical prop-
erties of various superconducting structures are inten-
sively studied, too. Thus, in Ref.[4] the measurements of
the emitted spectra for electromagnetic waves of the tera-
Hertz range from tunnel-injected non-equilibrium
YbaCuO superconductor were carried out. The observed
spectra  have a single broad-picked structure with the

peak frequency about 5 THz.  The linear and nonlinear
electromagnetic properties of superconducting systems
are widely studied (see, for example [5]). All these studies
suggest that the study of interaction between external elec-
tromagnetic field and the system containing supercon-
ductor nano-systems (including thin films)  is very impor-
tant and actual problem.

The characteristic dispersion properties for supercon-
ductors obviously are in the range of frequencies close to
superconducting energy gap, because the state density of
superconductor quasi-particles is rather high just near
the energy gap. For the most �classic� superconductors
these frequencies are small (1011�1012 Hz) as comparable
to characteristic frequencies of semiconductor (the opti-
cal phonons frequencies, for example).  One can think
that more interesting could be the systems consisting of
high-TC (HTSC) structures at a semiconductor substrate.
These systems are characterized by the gap frequencies
about  1013�1014 Hz that lie in the range of characteristic
optical phonon frequencies of semiconductors. As a re-
sult, for superconducting thin film with the thickness
h ≈100 nm being comparable with the Pippard penetra-
tion depth, the wavelength of electromagnetic waves cor-
responding to the resonant range of the frequencies are
much larger than h. Then, the near-field approximation
can be used in the studies of these systems. On the other
hand, at so small distances the local field are rapidly
varied and these inhomogeneities have to be taken into
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account. Then the non-local electrodynamical interac-
tions inside the system can result in arising the local os-
cillations. These oscillation processes are caused by in-
teraction between electromagnetic field and local cur-
rents inside the system. The local currents depend on elec-
tron and phonon excitations. Then, the oscillating elec-
tromagnetic field is characterized by the frequencies de-
pendent on the electronic properties of the system as well
as the shape and dimension of superconducting system.
The generalized excitations that arise in the system are
eigenmodes of the system. These excitations character-
ize the system as a whole. The dispersion relation of these
oscillations - the connection between the resonant fre-
quencies and wave vector of the external field that causes
the oscillations - are the important characteristic of the
system. The dispersion relations define the response of
the system on the external electromagnetic field and are
the most important characteristic.

This work is devoted to calculations of the non-local
effective susceptibility of thin superconductor film at the
semiconductor surface. The calculations are made in the
frame of the near-field approximation [6] in the meso-
scopic approach. Unlike most of works where the elec-
trodynamical properties of thin films are considered (see,
for example [7]), the developed approach is based on the
solution of the Lippmann-Schwinger equation for self-
consistent field [8], which enabled us to calculate the ef-
fective susceptibility directly.  The main idea of determi-
nation of the dispersion relations in the inhomogeneous
system is the calculation of the absorbed energy by the
system of external electromagnetic field, because this
absorption have to extremely increase when frequency
and wave vector of external field correspond to
eigenmodes of  the system.

2. Dispersion relations

The eigenmodes of a system are characterized by both
time parameter (frequency � ω) and space propagation
parameter (wave vector � k

r
). Then, the eigenmode is com-

pletely determined if the relation between the frequency
and wave vector is known. This dispersion characteristic
can be very simply determined for a homogeneous sys-
tem. Indeed, in this system the Fourier transformation
can be performed. In this case, the susceptibility of the
system is dependent on ω and k

r
. As it is well known, the

dispersion relations in this case can be determined by
putting the pole part of susceptibility to zero [9, 10]. This
point has very simple explanation. Namely, let one de-
fines the transmitting function of the system that con-
nects the linear response of the system with the external
(exciting) field � the effective susceptibility. In the case of
homogeneous system, this connection can be presented as

),(),(),( )( ωωω kEkkJ ext
rrrtrt

Χ= , (1)

where ),( ωkJ
rr

 is the response of the system to external
field ),( ωkE ext

rr
, ),( ωk

rt
Χ   is the effective susceptibility.

The excitation of the eigenmodes means that action of
infinitesimal field caused the nonzero response. It can be
realized only if at 0),( →ωkE ext

rr
, ∞→Χ ),( ωk

rt
. Because

the effective susceptibility is connected with an initial
susceptibility � the linear response on the total (local)
field ),( ωχ k

rt
 � via self-energy part ),( ωkS

rt

 as
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−− −=Χ ωωχω kSkk

rtrtrt
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then the condition of arising the eigenmodes can be writ-
ten in the form

[ ] 0),(),(det 1 =−− ωωχ kSk
rtrt

. (3)

Eq. (3) is the dispersion relation that gives us the set of
the wave vectors and frequencies at which action of in-
finitesimal external field generates nonzero local cur-
rents.

In the case of inhomogeneous systems, the effective
susceptibility can not be a simple function of the wave
vector. The effective susceptibility will  depend on  the
coordinate of a point in which the local current is deter-
mined. In other words, the problem is that the effective
susceptibility is not the global characteristic of the sys-
tem as it was in the homogeneous system case.  The effec-
tive susceptibility here only describes the response of the
point in the system on the external excitation. Obviously,
this characteristic can not give us the information about
general oscillating processes in the system. As an ana-
log, the local current in a single element of an oscillating
contour  does not characterize the oscillating process in
the whole contour.

Because the superconductor is characterized by a
nonlocal response on the total field, the problem of deter-
mining the dispersion relation for a thin superconductor
film falls into the kind of the problems mentioned above.
The way that can lead to solution of the problem is in the
finding the global characteristic of the system. That char-
acteristic, obviously, can be the energy of external field
absorbed by the system. It is clear that the resonance
condition � or excitation of  an eigenmodes leads to ex-
tremely strong absorption of energy of the external field
by the system.  The idea of calculation of the absorbed
energy value to establish the eigenmode dispersion rela-
tions lies in the base of the present consideration.

3. Linear response on the external field

To solve of the problem of determining eigenmodes of the
system under consideration, one needs to calculate the
absorption of energy of external electromagnetic field
acting on the system. For this purpose, one needs to in-
troduce the linear response of the bulk superconductor
on the local field ),( ωχ RR ′

rrt
. It is clear that this charac-

teristic is the characteristic of the material. This linear
response function connects the local currents inside the
superconductor medium with the local electromagnetic
field. In a general case of nonlocality, this connection
has the form
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),(),,(),( ωωχωω RERRRdiRJ
V

′′′−= ∫
rrrrtrrr

, (4)

where integration is performed over the particle volume.
We shall represent the system under consideration as the
superconductor film located in any medium. Then, for
this system integration in Eq. (4) should be fulfilled over
the film volume. For definiteness, we suppose that the me-
dium consists of two semi-spaces with flat interface � the
semiconductor substrate and external medium (Fig. 1).

The electrodynamical properties of the medium are
characterized by the Green function ( )ω,,rrG ′rrt

. As it is
well known, for the considered medium, the Green func-
tion consists of two parts  [11,12]

),(),,(),( ωωχωω RERRRdiRJ
V

′′′−= ∫
rrrrtrrr

. (5)

The first of them named as the direct part of the Green
function describes the photon propagating in the upper
medium. The second part of the Green function is named
as indirect part. In far zone, it describes the reflection
and transmission processes caused by the interface.

To calculate the energy of external field absorbed by
the system under consideration, one needs to know the
effective susceptibility that is the mean linear response
on the external field. To perform this calculation one
should consider the equation for self-consistent field. This
equation is usually named as the Lippmann-Schwinger
equation [6,12] and for the system under consideration
has the form
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with k
r

 wave vector in the plane of substrate surface, and
),,,( ωωχ zzki jl ′′′−

r
 bulk nonlocal tensor of conductivity.

In Eq. (6), the fact that the system in the plane of the
interface is homogeneous was used for performing the
Fourier transformation in the plane of the film (XOY
plane, Fig. 1). Integration is made over the thickness of
the film. The conductivity tensor connects the local cur-
rents with self-consistent local field
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rrr

. (7)

The conductivity can be calculated in the microscopic
approach. For example, this conductivity was calculated
for BCS model of superconductivity in the frame of RPA
in the work [13]. Using modified UV transformations
method, the conductivity was calculated for supercon-
ductors with a strong coupling [14].

The analytical solution of Eq. (6) can be written in
the terms of effective susceptibility ),,,( ωχ zzkij ′

r
 or lin-

ear response on external field  that connects the local
currents caused by external field with this external field
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0
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The solution can be obtained in the framework of the
method developed in the works [8,15] and has the form

),,(),,,(),,,( ωωχω zkQzzkzzk ljilij ′′=′Χ
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, (9)

with
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The expression ),,( ωzkS jl ′
r

 has the meaning of self-
energy part and describes the corrections of a pole part
of effective susceptibility by electrodynamical interac-
tions in the system. For monochromatic external field,
the self-energy part can be written in the form
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where kz is z-component of the wave vector of external
field. If the external field is the plane wave with the inci-
dent angle ϑ,  then ϑω cos)/( ckz = .

Then, the linear response on the external field (the
effective susceptibility) allows us to calculate the local
fields and currents in the system. Namely, the self-con-
sistent (local) field in arbitrary point in the zk −,

r
 space

can be calculated according to

( ) ( )ωωω ,,),,,(,, )( zkEzzkLzkE ext
lili ′′=

rrr
, (12)

with the local-field operator

h
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Fig. 1. Sketch of the system under consideration.
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One should note that representation of self-consistent
field in the term of local-field operator instead of the stand-
ard representation via the local-field factor [12]  caused
by nonlocal nature of superconductivity requires to use
the integral nonlocal constitutive equations [Eq. (7)]

4. Absorption of external field energy

Let us define the dissipative function as the energy of
external electromagnetic field absorbed by the unit vol-
ume of the system for unit time. Then, normalized
dissipative function can be written as
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where <�> means the averaging over the volume and
(...)  over time, and Iext is the intensity of  external field.
Substituting Eqs. (8) and  (12) into this equation and ta-
king into account that ( )*)()( ext
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where τi is the unit vector of the external field polari-
zation.

It should be noted that in the case of a local constitu-
tive equation (London-type superconductor)
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the connection between the current and external field has
the form
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Using Eqs.(15) and (16) one obtains the connection
between local and external fields
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Then, the dissipative function of the film of London-
type superconductor is
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Taking into account Eq. (17) one obtains
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Because electrical susceptibility for superconductor
is a real value, Eq. (21) shows us that superconductor
film of London-type can not absorb energy of external
field. This, at first view, strange result has very simple
explanation. Namely, for the nano-scale objects, the lo-
cal field is a very rapidly varying value. Then, all the
interactions inside the object are nonlocal. In this con-
nection, one can assert that only nonlocal models for su-
perconductivity one has to consider for studying electro-
dynamical interactions in the system containing the small
superconducting particles (or thin films). To analyze the
dispersion relations of the small object, one should to
attentively consider the experimental set up to excite any
eigenmode in the bounded system. Let us, for example,
consider the experimental set up for surface wave
excitations. The most widely used method of excitation
of surface plasmon-polariton is the method of attenuated
internal reflectivity (Fig. 2) in which the probing beam
radiates the film placed at the surface of ATR-prism. The
intensity of reflected radiation is measured as a function
of the incidence angle ϑ. The excitation of the surface
wave that occurs at the angle ϑR is characterized by
abrupt decrease of the reflection signal at the detector.
This surface plasmon-polariton resonance is character-
ized by strong absorption of the external field energy by

1

surface wave

3

2

4

J

Fig. 2. Set up for excitation of  surface  wave  by the  attenuated

total  internal reflectivity (ATR) method. 1 �  light  source (la-

ser); 2 � ATR prism; 3 � detector; 4 � the film in which the

surface wave is excited.



40
SQO, 7(1), 2004

V. Lozovski, D. Reznik: Electrodynamic linear response of a superconductor film ...

the system under consideration. It means that the
dissipative function has a maximum at any values of fre-
quency ω and wave vector Rprism ck ϑωε sin)/(= . It is
obvious that the set of pairs frequency-wave vector com-
posite the curves that are the dispersion relations of
eigenmodes.  To demonstrate this, method  we shall cal-
culate the absorption of the external electrodynamic field
energy for thin superconducting film placed at the sur-
face of semiconductor.

5. Numerical calculations and discussion

To calculate the energy absorbed by the film, one needs
to know the effective susceptibility and local-field opera-
tor [Eqs. (9) and (14)]. From the other side, to calculate
these values, one should know the linear response to the
local field ),,( ωχ RRij ′

rr
. One should perform a calcula-

tion of the function ),,( ωχ RRij ′
rr

 in the frame of any mi-
croscopic model. There are a big number of models (see,
for example, Refs [17�21]) in the frame of which the nu-
merous attempts to describe the HTSC phenomena were

performed. Despite this fact, most of the properties of
HTSC materials can be rather adequately described us-
ing the phonon model with strong coupling. Then, for
simplicity, we shall use this model [22, 23]. Here, we
shall use the approach proposed in [16] that is based on
the modified u-v transformations. The linear response to
the local field ),,( ωχ RRij ′

rr
 for strong-coupling supercon-

ductor was calculated in the framework of RPA using
modified u-v transformation method [16]. Using this non-
local linear response function, one can calculate the en-
ergy  of external field absorbed by superconducting film
at the semiconductor substrate.

Then, we shall assume that thickness of the supercon-
ductor film is much less then the wavelength of the exter-
nal field. At the same time, to use mesoscopic approach
to describe the electrodynamical properties of the sys-
tem, one needs to suppose that film thickness is much
larger than the lattice constant or Dkh /1>>  (kD is the
Debye wave vector). Moreover, the thickness h should be
comparable to the Pippard penetration length ΛP. This
requirement  provides the penetration of the field into the
whole thickness of the film. These requirements are rather
good satisfied for HTSC, where the values of energy gap
are rather great ( Hz1010/ 1513 ÷≈∆= hgω ) and the
Cooper pair dimensions are about few nanometers. Then
the films with the thickness m1010 97 −− ÷≈h  are satisfy
the abovementioned conditions.

In the frame of random phase approximation (RPA),
the linear response function can be written in the form
[13]
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where m and e are the mass and charge of  the charge
carriers, respectively.  Symbol ⊗  means the direct tensor
product. U

t
 is the unit tensor. The calculations were made

in the frame of the so-called method of the pseudo-vacuum
Green function [12]. The main idea of the method con-
sists in consideration of the object (here it is the film)
situated in any medium (pseudo-vacuum), electrodynami-
cal properties of which are supposed as known. In the
case under consideration, this medium consists of two
semi-spaces. Upper semi-space is vacuum and lower semi-
space is semiconductor substrate characterized by dielec-
tric function ε1(ω). For definiteness, we suppose that the
dielectric function has the fallowing form :
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iTO

TOLO

−−

−
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where ε∞ is the high frequency dielectric constant;  ωLO
and ωTO are the frequencies of longitudinal and trans-
verse optical phonons, respectively; γ  is decay constant.

As it was mentioned above, the electrodynamical
Green function of the medium in which the film is situ-
ated (two semi-spaces with flat interface) consists of two
parts and has the form [Eq. (5)]. Because the system un-

W w( , )q

1

2

w ( )q
w ( )q

w

1

2q

q
s

Fig. 3.  The method of dispersion relations determination. The

profile of the dissipative function in the cross-section q = qs (top).

The dissipative function image in Ω, q, ω � space (bottom). The

projection of the local maxima points on the q, ω � plane are the

functions ω1(q) and ω2(q) play the role of two branches of disper-

sion relations of eigenmodes of the system.
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der consideration is homogeneous in the plane of inter-
face, it is convenient to use the so-called −− zk ,

r
 represen-

tation. In this representation, direct and indirect parts of
the Green function in the coordinate system where

)0,( === yx kkkk
r

 can be written in the form (k = k0sinϑ)
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In these equations, the next designations are used:
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sR  are the Fresnel

coefficients for reflection of  p- and s- polarized waves,
respectively.

The results of numerical calculations are shown in
Figs. 4 and 5. In Fig. 5, the projections of the ridges of
dissipative function �mountains� are shown. The lines of
these projections are the dispersion relations of electro-
magnetic waves localized at the superconductor film.  We
can see that three branches of plasmon oscillations caused
by the complicated structure of the dispersion law of su-
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Fig. 4. The view of the normalized dissipative function of super-

conducting film at a semiconductor substrate for different

polarizations of external field. The top pannel corresponds to

absorption of p-polarized wave. The bottom panel corresponds

to absorption of s-polarized wave.
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perconductor which are only slightly renormalized by
electromagnetic interactions in the case of excitation of
s-polarized waves, in the case of p-polarized eigenmodes
change very strongly. Namely, the interaction with the
external field (its dispersion law is shown by the dashed
line) of the plasmon oscillations results in to splitting and
occurring the energy gaps in the dispersion relations of
eigenmodes. One should to note that the question of sta-
bility of these excitations should be considered in a spe-
cial study.
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