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Abstract. The paper is devoted to developing methods of analytical and experimental investi-
gations of diffraction and interference phenomena used in test systems for optical elements.
The theoretical analysis and experimental results illustrate the possibility of describing dif-
fraction phenomena using the objects and methods that were developed in singular optics. It
was shown that a system of dislocations in singular component of diffraction field represents
its topology. The diffracted field has a system of hidden optical vortices that are smoothly
transformed during deformation of an aperture depending on boundary flexion. The pro-
posed experimental proof ground can be useful for the analysis of a wavefront structure. It is
also considered the technique for more accurate evaluation of Ronchi test results. The mathe-
matical background of the Ronchi test technique is developed. It describes sufficiently well
the wavefront shape, grating plate parameters, image sensor characteristics, parameters of
image acquisition and restoration. The fringe pattern distributions and their spatial spectrum
are calculated. Both the results of computer simulation of Ronchi fringe pattern and experi-
mental ones obtained using image sensor and the applied image enhancement algorithms are
shown.
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1. Introduction

Recently alongside with the classical interferometer con-
structed by the principle of division of amplitude of a
light wave, works on creation and application of inter-
ferometer based on the principle of the wave front repli-
cation take place, too. The attention of researchers is
involved in these devices, mainly, due to their high sta-
bility to vibrations. Besides devices under such circuits
do not demand application of reference optical surfaces
and allow conducting the control at illumination by white
light or with allocation of any wavelength. For the con-
trol of optical systems of microscopes the interferometers
are advanced on the basis of application low-frequency
diffraction gratings. Such scheme was offered in the be-
ginning of the last century to the Italian scientists Vasco
Ronchi for the control of astronomical systems. In this
paper, we discuss the actual further development of the
methods for optical element control.

Special attention is given to singular wave component:
edge dislocation wave (D-wave) that was described by the
complex Fresnel integral and contains the main numerical
information about diffraction process. Thus, the role of
introduced edge dislocation wave is beyond the scope of
physical interpretation of a rigorous Sommerfield’s solu-

tion [1-3] of plane wave diffraction on a half-plane. Us-
ing the singular component of diffraction field is helpful
for investigation of the features of diffraction plane wave
on two-dimensional aperture. In this paper, we consider
a new method of studying the spatial structure of the dif-
fraction field and describing the determinative singular
component of electromagnetic field diffracted on arbi-
trary two-dimensional apertures. This approach can be
used for modelling the diffraction phenomena and study-
ing the creation of optical vortices [4.5] under diffraction
on an elliptical aperture and the transformation of hid-
den dislocation trajectory under smooth deformation of
aperture from circular to elliptical one.

2. Singular approach to diffraction phenomena

In our previous paper [6,7], was introduced D-wave as an
informative part of the diffracted field. The aperture-dif-
fracted field was represented as superposition of two com-
ponents that exist as real waves: an ordinary wave with
amplitude half that of the incident wave and D-wave. The
most important feature of this component is zero ampli-
tude on lines corresponding to linear dislocations. The
result of incident wave Ej diffraction on complementary
screens was denoted in the following form:
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E|=Ey2+ D, E,=Ey)2-D’, @)
where E is the diffraction field for the screen and E, is the
field for an obstacle. We note that the introduced D-wave
is the same for the aperture and complementary screen in
scalar theory: D = D’. Moreover, the diffraction field for
a phase screen with a p-phase step coincides with the D-
wave for the same screen amplitude. This result revealed
inherent relationship of Babinet principle: £ + E;, = E,,.
It should be also stated that this is a scalar form of the
Babinet theorem, but a vector form has also symmetry
feature for electromagnetic field components [§].

The apertured field structure can be analyzed using
investigation of singular points in the D-wave. D-wave
has a system of linear edge dislocation grouped pairs
and the position of optical vortices was determined ana-
lytically. The space structure of the dislocation system
possesses symmetry properties and the hidden disloca-
tions compose the skeleton of the diffraction field. Study-
ing the spatial evolution of dislocations can help to in-
vestigate the topology of the optical field. The structure
of the apertured electromagnetic field is easy to imagine
as a dislocation wireframe, which are continuously
“stretched” so that the aperture is smoothly transform.
The smooth deformation of aperture leads to transform
the linear dislocation. This effect is similar to transfor-
mation of dislocation lines in Gaussian beam after self-
induced Gaussian lens: in case of astigmatic lens we ob-
tain the optical vortice (OV) quadruple. In a general case,
the transformation of singular trajectory determines the
radius of flexion of aperture boundary. The trajectory is
extending from screen while radius is decreased and vice
versa. Fig. 1 shows the transformation of circle disloca-
tion for round triangle and rectangle apertures.

Linear dislocation

3

A priori, itis not clear what happens if an aperture is
more complex. For any rounded apertures, we can ob-
serve the effect of transversal focusing, i.e. the field oscil-
lations evolve in plane, which is perpendicular to direc-
tion of incident wave propagation. The direction of evo-
lution is normal to boundary of an aperture and a radius
of curvature of aperture boundary determines the veloc-
ity of transversal evolution.

The shape of a wavefront was analyzed and visual-
ized by using the reference plane wave that was slightly
tilted with respect to the direction of propagation of the
investigated waves. The observed interference fringes
were shifted by the half of the period along a dislocation
line, it corresponds to the p-shift. The dislocations in each
pair have an opposite topological “charge” that equals
+1. Therefore, we can see the additional fringes appear-
ing between. The experimental verification of the prop-
erties of linear dislocation system in D-wave was per-
formed by subtraction of the plane-wave component from
the diffraction field behind the non-transparent screen,
in a good agreement with the theoretical predictions. In
the frames of Fig. 2, we can observe the quadruple anni-
hilation into dipole and then dislocation disappearing in
accord to the spatial trajectory that was schematically
shown in Fig. 1d.

The structure of the plane wave diffracted by the rec-
tangular aperture was shown in Fig. 2. The transversal
distribution of the amplitude was shown at the distance
equals 2 m for two cases: the square and rectangular with
the size ratio 2:1. We can see the structure differences
between considered cases when illustrating the singular
trajectory behaviour that is shown in Fig. 1d. In this con-
text, the longitudinal trajectories shift accords to chang-
ing the transverse size of the aperture. It is important that

3

Fig. 1. The spatial structure of the trajectories of linear singularities in D-wave for some kinds of two-dimensional apertures. The

transversal dislocation for the circular aperture was transformed while the aperture was smoothly deformed. Schematically shown

are the trajectories of dislocations for circular (a), elliptical (b), triangle (¢) and rectangular (d) apertures.

418

500, 6(3), 2003



O.P. Budnyk, R.A. Lymarenko: Diffraction and interference in wave light ...

Fig. 2. The amplitude distribution of plane wave diffraction on

the rectangular aperture (frame size 4x4 mm, the dotted line
shown an aperture boundary). The first column represents the
diffraction field, second and third columns represent D-wave
and its phase pattern that was visualized using the reference
spherical wave.

the behavior of the wave vector around the optical vorti-
ces is quite non-paraxial. Therefore, a non-paraxial
method of diffraction field modeling is required. In con-
tradiction to another method of solution of the wave equa-
tion, the proposed integral representation of diffracted
field was based on obtained solution of the problem of
plane wave diffraction on rectangular aperture as a prod-
uct of a slit diffraction function. Using the unit rectangu-
lar cell wave representation of two-dimensional aperture,
we obtain the diffraction field in the form:

E=Ex>W,. b

n

It’s easy to see that D-function of the inner unit cell
does not take part in field construction. This peculiarity
of introduced rectangular unit cell — inter-destruction of
field oscillation from joint inside is sufficient decrease of
the needed number of elementary cells in (2). This allows
to sufficiently decrease the time of computer modelling
without losses in accuracy. In the limit case, when the size
of unit cell trends to zero, we obtain the expression for the
secondary wave W (Unit Cell Wave), which is illuminated
by the elementary cell ds = dédn. Then the expression of
diffraction field can be written in the integral form:

E(x, Vs z)= Ides =

f:xp(iUg2 + iU,% )exp(— ikz)dédn, ()

e o I

where Ugand U are dimensionless curvilinear quasipa-
rabolic coordinates:

Ue =i\/;‘/\/(x—§)2 +72 -7,
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and sign “+” is used for x - £ > 0 (y — n > 0) and vice
versa. In paraxial approximations Exp. (3) transforms
into the well-known Rayleigh-Sommerfeld solution for
two-dimensional problems with Dirichlet conditions and
Kirchhoffs approximation and also clearly illustrates the
Huygens-Fresnel principle. Due to specific form of the
convolution kernel, the aperture integral (3) can be re-
duced to the multiple one and moreover to be simplified
using the symmetry of the considered problem. This spe-
ciality allows obtaining the solution in an analytical form
in some cases.

3. Technique for accuracy evaluation
of the Ronchi test

3.1. Geometrical and interferential aspects of
the Ronchi test

In this centennial of Vasco Ronchi’s birth it seems appro-
priate to devote one of these columns to the well-known
method of testing optical systems that he developed in
1920's [1,2]. The essential features of the Ronchi test may
be described by the reference to Fig. 3. A lens (or more
generally, an optical system consisting of a number of
lenses and mirrors) is placed in the position of the “object
under test”. The lens is then illuminated with a beam of
light, which, for the purposes of the present article, will
be assumed to be coherent and quasi-monochromatic.

The lens brings the incident beam to a focus, in the
vicinity of which a diffraction grating is placed perpen-
dicularly to the optical axis. (The optical axis will be
denoted as Z-axis throughout this article.) The grating,
also referred to as a Ronchi ruling, may be as simple as a
low-frequency wire-grid, or as sophisticated as a modern
short-pitched, phase/amplitude grating. The position of
the grating should be adjustable in the vicinity of focus,
so that it may be shifted back and forth along the optical
axis. The grating breaks up the incident beam into multi-
ple diffracted orders, which will subsequently propagate
along Z (Fig. 3). (The pupil relay may simply be the lens
of the eye, which projects the exit pupil of the object un-
der test onto the retina of the observer. Alternatively, it
may be a conventional lens that creates a real image of
the exit pupil on a screen or CCD camera.) The diffracted
orders from the grating will be collected by the relay lens
and, within their overlapping areas, will create interfer-
ence fringes characteristic of the aberrations of the opti-
cal system under consideration. By analyzing these
fringes, one can determine the type and, with some effort,
the magnitude of the aberrations present at the exit pupil
of the system. The above description of the Ronchi test
relied on its modern interpretation based on our current
understanding of physical optics and the theory of dif-
fraction gratings [9-13].
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Fig. 3. A beam of coherent, quasi-monochromatic light is brought
to focus by an optical system that is undergoing tests to deter-
mine its aberrations. A diffraction grating 2, placed perpendicu-
lar to the optical axis in the vicinity of focus, breaks up the
incident beam into several diffraction orders. The diffracted
orders propagate, independently of each other, and are col-
lected by a pupil relay lens, which forms an image of the exit
pupil of the object under test at the observation plane 3.

Several modifications and extensions of the Ronchi
test have appeared over the years, and have helped to
solve specific problems in testing of optical systems. As
an example, we mention the “double-frequency grating
lateral shear interferometer” invented by James Wyant
in the early 1970’s. The grating in this device has two
slightly different frequencies, which give rise to two +15
order beams as well as two —13t order beams; the beams in
each pair are slightly shifted relatively to each other.
Moreover, the (average) pitch of the grating is such that
there is no overlapping between the Oth, +15¢, and —1%
orders. Consequently, interference occurs between the two
+15 order beams (and, likewise, between the two —15¢
order beams). One can thus obtain an arbitrarily small
lateral shear of the wavefront under test, and use the re-
sults to achieve accurate quantitative measurements.

3.2. The experimental results and computer
modeling of Ronchi fringe pattern

For computer simulation of aberrations field we use
Zernike polynomial in the following form:

zl =R} (p)e™, )

(n—s)

s!(m—s)!(n—m—s)!

o n=2s

.5

Rrrlz—Zm _

where n is a degree of polynomial, /is an angular param-
eter, 0is a polar angle, p is a normalized radial distance,
m = (n—1[)/21s a positive number. The arbitrary function
(wavefront) W(p,0) with K degree can be represented as
the linear combination of the radial Zernike polynomial:

k n
W(p.0)=Y Y c,rlle™ ©)

n=01Il=-n
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W(p.6)= Ek‘, iAnmUnm =

n=0m=0

k n .
- 2 zAnmRrrll_zm{sm }(n—ZmP , (M
cos

n=0m=0

where sin corresponds to n—2m >0, and cos under n—2m <0,
Cy,1 = Ay (n+1)2 are coefficients in series development for
W(p,0).

Usually the wavefront function was written as mono-
mial, i.e. series of x and y degrees:

k i
W y)=D > Byxdyi ®)

i=0 j=0

Such function was appeared when the data proces-
sing is provided by using the least-squares method. It is
possible to transform every Zernike polynomial into the
form that corresponds to Exp. (8):

fee k-2 =

S
% i )" 2m ) 2jep yn=2m=2j=p &)
P 2i+p

where p and ¢ are parameters that depend on n and m.

It is possible to draw the following features about

Ronchi test:

sensitivity of the Ronchi method essentially de-
pends on the circuit of the control, parameters of a con-
trollable detail, quality of the photoreception device;

the qualitative control based on Ronchi method is
rather rough and may be used only at initial stages of
optics processing;

the quantitative control test using the Ronchi
method may be carried out and satisfy to Rayleigh’s cri-
terion only at presence of the high-quality photorecep-
tion device, allowing to provide transfer of a curvature of
fringes pattern and mounts providing exact installation
of a diffraction grate.

The problem of the computerized Ronchigram analy-
sis to be solved is difficult. Because of the traditional
methods are not accurate enough to give reliable results.
Instead of more complex analysis of Ronchigrams, we
propose to analyze the spatial spectrum of obtained inter-
ferogam, i.e. fringes pattern distribution. The computer
simulation showed that the maximum of amplitude is lo-
calized in the spatial frequency area for different types of
aberrations. This method is more convenient for provid-
ing the computer data processing. The carried out re-
searches have shown that the given method is perspective
and, with all its limitations, the procedure is still appli-
cable. Experimental data and analytical results are found
to be in a good agreement.
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He-Ne laser A =0.63 um, 50 mW

Fig. 4. Experimental setup: / — microobjective, 2 — pin-hole 20 mm, 3 — objective D = 200 mm, F = 100 cm, 4 — diaphragm D = 20
mm, 5 — test-objective /' = 21 cm, 6 — diffraction grate d = 15 um, 7 — observation plane, § — objective, 9 — CCD camera.

Fig. 5. Sliding the grating along the optical axis (aberration n = 4m = 2) (modeling, experimental Ronchigram and its spatial
spectrum).
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4. Conclusions

The paper represents the technique for wavefront struc-
ture analysis for testing of optical elements. The theo-
retical analysis and experimental results illustrate the
possibility of describing diffraction phenomena using the
objects and methods that were developed in singular op-
tics. It was shown that a system of hidden dislocation
lines composes the skeleton and represents the diffrac-
tion field topology. The singular trajectory evolution for
rounded apertures was discussed. It was shown that the
trajectories evolve in direction that coincides to direc-
tion of incident wave propagation and an aperture defor-
mation determines the longitudinal scaling. Due to this,
the investigation of spatial evolution of aperture-dif-
fracted field is reduced to studying the transformation of
system of closed pairs of linear dislocation in singular
component. This approach to the problem can be useful
in the explanation of other diffraction effects, in practi-
cal applications, and even in revealing new phenomena
in this traditional area of optics. The totality of experi-
mental results substantiated the theoretical conclusions.
The paper also represents the technique for accuracy
evaluation of Ronchi test of optical elements. Proposed
method of Ronchigramm analysis in spatial frequency
area is not optimal due to partition of spatial spectrum
component of different Zernike polynoms. It was pro-
posed the wavelet transform using for optimal filtration
and recognition instead of the Fourier transform that is
more convenient for practical realization of measuring
system based on analysis of orientation and spatial posi-
tion of Ronchigram elements.
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