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Some properties of extremely restricted thermal radiation

beams
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Abstract. Physical peculiarities of the equilibrium thermal radiation have been considered
within the black body model for the case of ultimate restrained photon flows inside an ideal
(“lossless™) optical communication channel. Restrictions connected with the uncertainty re-
lations have been used to determine critical interrelations between the thermal radiation
parameters, sizes of thermal radiator and ideal photodetector. The effects conditioned by the
“cutting” of the thermal radiation mode number in a small-size (but not quantum-size) radia-
tor have been included into consideration. Spectral efficiency has been analysed in terms of
the amount of information contents in spatially restricted beams of thermal radiation.
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1. Introduction

Current trends of the nonbiological vision technology (an
electron vision [1], or photoelectronics) and optical in-
formation systems development are coloured by an aspi-
ration to master the thermal radiation (TR) spectrum.
This relates to a various areas of science and technology:
astrophysics and space technology, biology and medi-
cine, ecological monitoring, solid-state electronic tech-
nology, etc.

The main task of this paper is to analyze the ultimate
physical restrictions of TR photon flows that emerge due
to the size peculiarities of radiator and/or photodetector,
which are acting in an ideal “lossless” optical communi-
cation channel (OCC).

The small-size radiators (SSR) occupy a specific niche
in the above problem [2]. Thermodynamic aspects of TR
inside the finite-dimensional black body (b.b.) cavity have
been developed in [3]. Partly, the size-related problem in
connection with spectral dependence of detectivity and
noise equivalent temperature has been encompassed in
[4].

Thermal radiation is accentuated in connection with
actuality of the problem of detecting and processing TR

information, and widely scaled application of correspond-
ing technology. We believe that classic b.b. will preserve
its tried-and-true physical model that will help to distin-
guish TR of SSR from b.b.TR [5]. We shall apply the
phenomenological consideration in the maximum gen-
eral approach to avoid the cumbrous calculations. The
absence of any complicated optical apertures on the path
between the SSR and PD is adopted. Specific optical
aspects of the above problem have been discussed in [6].
These reservations permit us to carry on the discussion
proceeding from the position of the fundamental princi-
ples. The meaning of “small system” imports that the
system under consideration is really small in size but not
quantum-size yet.

2. Fundamental restrictions

Below we shall use universally acknowledged photon
characteristics [7, 8]:

photon energy —hAv=hC/A (2.1)

where C — velocity of light; # = 6.62.10727 erg-s — the
Planck constantand # = h/2x
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photon momentum— M = hk; |M| =h/A, (2.2)

and also the fundamental uncertainty relations between:

energy Eand timet: AE-At>h/2 (2.3)

momentum M and coordinate x: AM -Ax=>h/2 (2.4)

photon number N and photon phase ¢: AN -Ap >1/2.
(2.5)

The equilibrium in TR is determined by the Bose-Ein-
stein statistics. The mean number of photons excited into
the b.b.TR mode of frequency v at a temperature T “K
can be written as (Planck’s formula is adopted):

(n) = lexp(rv /kT)-1]" (2.6)

2.1. Ultimate dimensions of radiator and PD in
a “lossless” OCC

Equations (2.1)—(2.4) can be used to find out conditions
of realization of the ideal “lossless” OCC that includes a
TR SSR and an ideal photodetector (PD).

It is evident that for a free space OCC it is profitably
to form the narrowest light beam if the distance between
radiator and PD is long. This provides minimum losses
of the TR power along the canal.

Taking into account that photons do not interact with
each other [9], a minimal emission solid angle (0,;,) at
low occupation (n) of TR modes can be determined
through the uncertainty of a single photon momentum
(AM) as O =AM /M. From Eq. (2.4) it is found, that
at a fixed wavelength A and radiator size R = Ax, one can
not expect for the angle to be less than

B,in > /2R @2.1.1)

Obviously, geometrical correlation between size D of
PD and maximum length L, of the “lossless” OCC is
given by

Oumin = D/2Lmax (2.1.1%)

asitisseen in Fig. 1, where size D exactly overcovers the
open side of the 6,,;,. In this case, for example, at fixed
A=10pum, R =1 cmand D = 10 cm, the maximum length
of the “lossless” information transmission will be equal
only to Ly.x = RD/A =100 m. This enough trivial evalu-
ation shows that principle restrictions of optical infor-
mation transmitting in visible (0.4-0.7 um) and IR spec-
tra occurred within the real space scales, and they have
to be accounted in practice.

On grounds of the reversibility principle [10] for the
case of TR detecting and using Eq. (2.4), the restriction
for the detector size D as a function of operating wave-
length A and AA appears as:

a) DyinAL> A%/2, or b) Av> C2D i, (2.1.2)

were Dy, 1s the least size of PD. Expressions (2.1.2) are
analogues to the diffraction restrictions [11]. The devia-
tion from (2.1.2) results in the decreasing photon prob-
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Fig. 1. Space link model.

ability to fall within the PD area that, in its turn, inevita-
bly leads to a losses of the TR received. Thus, size re-
striction of PD, acting within a “lossless” OCC, results
in the inequality
Dinin 2 ALmax/R. (2.1.2%)

Two elementary operations with (2.1.2*) enable us to
obtain important physical results.

1. Inverting the inequality symbol in (2.1.2*), we ob-
tain a condition for the interference fringes in the classic
Young interference experiment [10-12]. Consequently,
Eq. (2.1.2*) requires a minimum linear PD size D ;, to
exceed certain “interference length” L.,;,. The latter cor-
responds to the distance between the slits on the first screen
in mentioned Young’s experiment. Thus, the minimum
size of PD has to exceed the coherence length of the de-
tecting radiation.

2. Having squared Eq. (2.1.2%), we obtain the next
inequality
D*Q> )2, (2.1.3)
that is equivalent to Sigman’s antenna theorem for the
heterodyne optical detecting [13 ].

Therefore, Egs (2.1.1), (2.1.2%) and (2.1.3) allow us
to conclude that both criteria for the “lossless” transmit-
ting with the direct detecting and with the most efficient
heterodyne detection boils down to a problem of “paral-
lelism" of the radiation beams. Simple combination of
Egs (2.1.1), (2.1.1*) and (2.1.2) results in “global” ex-
pression, which determines acceptable relations between
the sizes R, D and parameters of TR — A, AA, as well as
the geometry of the “lossless” optical communication
channel — Oy, (01 Lipax):

R-D? AL
- =7

20,,inR-D- AL = 2 (2.1.4)

max

As defined by Eq. (2.1.4), a wide variety of choices
design optoelectronic information systems with “limiting
high efficiency” exists, but each of them is restricted by
the classic criterion [11], the “photon volume” V,;, = yel

It will be in point to underline that commonly known
Egs (2.1.1)—(2.1.3) can be simply obtained with no resort
of complicated mathematics but proceeding from only
two points: 1. Applicability of the uncertainty relations,
and 2. Requirement for the OCC to be lossless. The tran-
script of the second point can be obtained from Eqs (2.1.1),
(2.1.1*) and (2.1.2) in the form of the expression
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A D

0 . >—=__ 2.1.5
min = op™ 2L ( )

Thus the “lossless” OCC is realizable in case when
limited angle of the TR light beam 6,,,;,, is overlapped “ex-
actly” by the PD size D. Hence, when measuring the spec-
trum of “lossless” OCC efficiency, the ratio A/D is re-
quired to be constant.

3. Distinctive features of TR from radiator
restricted by size

3.1. Density of modes and TR of SSR

Let us suppose that the main size-factor that restricts equi-
librium between the ideal b.b. TR and SSR is the “cut-
ting” effect of the longwave TR modes. Total number of
TR modes with wavenumbers from k to k +dk (where
k =214 =2nvIC = @/C) inside a b.b. cavity of volume
V >> A}isequal to[7, 8]

An? Ak =y AL

AZ =
(27t)3 2

(3.1.1)

The full number of TR modes inside SSR cavity of the
restricted volume 7 = R3 at thermodynamic equilibrium
cannot contain modes with wavenumbers less than kg
which is determined as
| kg | =mR (3.1.2)

Formally, critical values of size-restricted parameters
of the TR radiation corresponding to Eq. (3.1.2) are

Ar=2R;vg = CI2R; Ex = hCI2R (3.1.3)

where Ag, Vg and Ey are wavelength, frequency and en-
ergy of the lowest mode, respectively. This lowest mode
in some way is an analogue to the zeroth oscillation of
quantum oscillator: the energy of Ex =/hC/2R can not be
realised outside the b.b. cavity.

As the size-correction to the spectral density of modes
for SSR (of a cubic form with side R) the following ex-
pression has been cited in [3]

. 4r -v? I c?
el 4-R?v2 |
The adequate to Eq. (3.1.4) result for number of modes

can be obtained by deducting 7= 3 lowest modes from the
total number of allowed modes within a SSR cavity [4,5]

(3.1.4)

2
47 -v2A
Zp=v EVAY
C

In case when Av=vg -0, the Eq. (3.1.4*) matches the
strict formula from [3].

Spectral distribution of a “b.b.” TR energy density
er(A) as applied to the SSR TR can be expressed (for

(3.1.4%)
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better comparison between A and R this is done in terms
of wavelengths) as

hC 2 |(ar
eR(l)z8an{l——:|(—)<n> (3.1.5)

4R% | A
Itis essential that the above spectral distribution being

“measured” at a fixed ratio (%]: [A_v]’ results in

\%4

mutually equal positions of specific points (for example
the Wien maximum ) both in the scale of “A” as well as in

AL
“y” scale. Initial value of (TJ in Eq. (3.1.5) can not be

identified with the same form as in Eq. (2.1.2) as the lat-
ter is determined by the radiator size while the value of

AL
A

When 2R >> A, Eq.(3.1.5) is transformed into the clas-
sic form and in case when 2R — Athe SSR drops out of
the “b.b.-model”. Increase in the SSR temperature does
not change the situation : the “invisibility” effect of SSR
in its own TR always takes place, even when a great
number of SSRs (i.e., SSR within a dense cloud like dusty
object) have been observed within a PD aperture, assum-
ing that they provide enough TR energy for detection. A
few aspects of the SSR TR “truncated” spectra have been
considered in Ref. [ 4, 5].

Herein below, we use conventional simplified ap-
proach for systems without losses and aberrations [14].
The photon flow Fp which strikes PD at square with the
radiating area R? throughout a small cone of a solid an-
gle Q) = D%/4L? with reference to [ 15] may be written as

2 2
<Fp >= (8n/13)'(1—l—IﬂJ<n>><%><R2><D—

is arbitrary selected by the observer.

4R% | A 417
(3.1.6)

Itis quite in order to admit an assumption that SSR’s
radiating area can be equated to R?, i.e. to the SSR cross-
sectional area itself.

3.2. Size-restriction of the detecting time

The number of photons (N, (4)) which is larger than
the sensitivity threshold of PD can be expressed via the
photon flow (Fp (L)) as (N, (1)) =(Fp(A))-Tp where,
usually, T'p is the time needed to accumulate an electric
charge larger than the PD noise within the certain band-
width Afp = 1/2Tp [16]. Here we define the time T)p
through the well known concept of signal-to-noise ratio,
for the sake of simplicity assuming condition of noise-
limited-detection (SL) [15]. Hence, taking into account
Eq. (3.1.6), the total photocurrent includes:
—signal current
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<iy >=e-7‘]-<FD>=e-7‘]-(47tC/l3}<

2
X I—L A <n>-R*-Qp,
4R% | A

and
— mean-square shot-noise current due to the signal

e<ig>
Tp
The signal-to-noise ratio being equal to that defines

the sensitivity threshold. Using the above formulae the
expression for T can be found as follows:

-1
4R?
TD= ﬂ'QD' ——1|Av-<n>

It is seen that when (2R/A)? => 1, the detecting time of
SSR increases dramatically. It cannot be emphasised
enough that increase in number of SSRs and/or their tem-
perature, as well as expansion of the frequency interval
Av, do not change the “value” of the correction factor

current iszn =2e-<ig> -Afp=

(3.2.1)

4R?
[7—1]. It is obvious fact that the increase of time

detecting at A — 2R cannot be passed over as a physical
fact.

4. Informative qualities of restricted TR

4.1. Transfer of information through the OCC
by means of TR

Statistical analysis shows [ 17 ] that the maximum of in-
formation transmitting by light can be achieved by using
such a method of light modulation that imparts a statisti-
cal properties of TR into the light. This fact induces us to
discuss the principal aspects of restrictions of the infor-
mation transmission through an OCC that includes TR
radiator and PD. For the reason of simplicity, we will
deal with photon beams only, exclude the electrical cir-
cuit part.

In a simple analysis lets consider that information
has been coded by amplitude of TR light pulses only (du-
ration — At; frequency — v = C/4, and within a bandwidth
of Av). The source is a b.b. radiator of an area A or the
SSR of volume ¥'= R3and radiative area =R>.

A mean number of TR photons per single light pulse
is <Nj,,> = <Fp>At. Thus, the information contains in
a pulse amplitude only. According to the definition
adopted in the theory of information [18, 19], a mean
information content within a single light pulse can be
approximately expressed by Shannon’s formula

<(I)imp>zlog2(l+ FEA}AI J

th

(4.1.1)
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where ANy, is a distinguishablility threshold of individual
pulses amplitude by the photon number. Fluctuation of
the TR photon flow at PD input will be given by

e
xR? -i—;.((u <n> %D

where for SSR using Eq. (3.1.3), Avg =vx —-0=C/2R.
The bandwidth Avg is a minimum feasible frequency
bandwidth for a single mode of equilibrium TR. In other
words, this is, effectively, the intrinsic frequency of the
lowest mode of a b.b. equilibrium TR inside a cavity of
volume ¥V = R3 (in more detail see ref. [5,20] ).

(4.1.2)

4.2. Efficiency of “lossless” OCC at a limiting
restriction

Cases under consideration are related to the signal-to-
noise-limited (SL) detection regime [15]. The latter al-
lows to uncover the fundamental restrictions of TR effi-
ciency in OCC. One must remember that Eq. (2.4) leads
to an angular-limiting condition (2.1.2*) that provides
the “lossless” regime. Being squared Eq. (2.1.2%) leads
to extremely limiting solid angle, i.e. equality

Dl%zin/L%nax = AZ/RZ >

that fixes physical (1) and geometrical (Q) parameters
of the OCC. This means that when measuring a spectra of
extremely restrained TR beams in a “lossless” OCC one
has also to “move” the D2, / 12, ratio following the
Eq. (4.2.1). In that way, one measures the physical prop-
erties of the TR spectrum but not a “spectral losses” of
the TR.

From (4.2.1)and (3.1.6 ) <Fp> becomes

22 M)
l-— | —}t<n>
4R | A

4.2.1)

< Fpy>=n(C/A): (4.2.1%)

It can readily be seen from Eq. (4.2.1%) that the re-
strictions being introduced for the lossless OCC (Eq. (2.4)
results in a single mode operation even within a wide
bandwidth AA.

Below four different regimes have been considered:

1. No principal restrictions on photon flow;
ANy, is determined by the dispersion of Fp

Because the value of AN, is given by the fluctuation of
TR photon number Fp at the PD input (4.1.2), conse-
quently, we can rewrite AN,

1/2
AN, = <(AFD )2> At
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Then, substituting Eqs (3.1.6) and (4.1.2) into
Eq. (4.1.1) for a single large radiator, ®; = becomes

imp
(q)imp >1 -

1/2
AL D? hc
=1 1+]12 Rl3 ] — XAX—- -

(4.2.2)

2. SSR has been included in to the OCC; ANy,
is determined by the dispersion of Fp

In case of a single SSR (4 = R? i.e. Rggg = 1073 cm) the
information content corresponds to Eq. (4.2.2). With a sin-
gle mode regime in the mind, the solid angle Qj, = D*/L?
must be replaced by the A1%/R? ratio in agreement with
Egs (2.1.1) and (2.1.1*). This replacement is essential
because the radiator of a given size (Rgsgr = 10~ cm) can
not provide an adequate filling with TR a solid angle of
Q) = 10-° within the chosen range of wavelength. Hence
the information spectrum for this case can be presented as

(q)imp>2 = 1Og2[1 +

- 2'2 AL 1/2
+ [L)[] __}-ETJ-exp(— hC/MT) (4.2.2%)

A 4R?

A spectral dependence of information content in a sin-
gle pulse that arrives from large radiator (R = 50 cm,
A =25 cm? (curve 1), and from SSR (Rgsg =103 cm,
A = (Rssr)? = 109 cm? (curve 2)) are shown in Fig. 2.

Naturally, the information contents are radically dif-
fer in appearance. An important feature can be discerned
from this figure: within a narrow frequency band at the
maximum of the spectral distribution the information

contents <¢imp >1 and ((Dimp>2 are differ by about of

10 T
/A ﬁl\
1
1
l
s |
E 1
R [ g s e
\ I
i
2 I
el
L N\
0.1 ——r ————
1 10 100

A, pm

Fig. 2. Spectral dependence of information content in a single
pulse from: / — large size radiator, R = 50 cm, 4 = 25 cm?; 2 —
SSR, R =102 cm, 4 = 1079 cm?.
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thirty times only, whereas emitting areas are differ dra-
matically by 25/107° times. This takes place because the
losses along the optical pathway ( L ) have been excluded

from (CDimp )2 (A R? => D?/L?). The latter means that

the spectrum ((Dimp )2 was measured for the “lossless”

OCC. In practice this regime requires the ratio A%/D? to
be constant during the spectral measurements.

3. No principal restrictions on photon flow;
ANy, is determined by the uncertainty of
“photon number-phase” type (2.5)

Distinctive feature of this restriction is that the AN, is
formed by the phase fluctuation A@ = vAt. Using the quad-
ratic form of Eq. ( 2.3 ) [ 21 ] one can obtain required
inequality, adequate to Eq. (2.5)
|

<AN g>1? -(v-At)ZE (4.2.5)

Then, extremely low threshold can be defined via the
light pulse duration Az as AN, = <ANp>>12 = 2vAr) .

Thus, substituting AN, with (2vAf) ! and Eq. (4.1.1) can
be rewritten as

8nC A2 Y Ar
(q)imp>3 :]0g2|:1+(711_4m717)x
2
X<n >(£}A-D—(At)2]
2)  a4r?

4. Photon flow is restricted by Eq. (2.1.1);
ANy, is determined by the uncertainty of “pho-
ton number-phase” type (2.5)

(4.2.6)

For this double-restricted signal (i.e. by Eqs (2.1.1)
and (4.2.5)) similarly we get

<c1)imp>4 -

cY(, 22 Yar ) .
:1og2[1+27{ﬂ 1—4? 7J<n>(m) (4.2.6%)

Fig. 3 shows the information content spectra for above
two cases (3 and 4). First, it has to be underlined a sig-
nificant increase of information contain versus previous
case depicted in Fig. 2. Moreover, this “exotic” way of
TR information transfer contains not incurious fact. Re-
gime of doubly restricted TR beam (Eq. (4.2.6%)) terns
out to be more effective within a long wavelength region
(A > 20 um) versus one-fold restricted case Eq. (4.2.6).
Physically, this can be explained by more intense ran-
dom processes in the multi-mode regime (Eq. (4.2.6)),
whereas the single-mode case (Eq. (4.2.6%)) is character-
ised by the higher population of the single acting mode

S00, 6(3), 2003



E.A. Salkov, G.S. Svechnikov: Some properties of extremely restricted ...

1000

A, pm

Fig. 3. Spectral distribution of the information content in the
b.b.TR (T = 3000 K) pulse (Af = 10 s) for the large radiator
(R=1cm). I -Qp=D¥L?>= 10", (AMA) = 102 Noise is deter-
mined by the uncertainty relation (2.5); i.e. ANp = (2vAn)'; 2 -
Qp is extremely restricted by uncertainty relation (2.4). ANp =
= (2vAry L.

(the crossing of curves in Fig. 4 occur at <n>=3.7) and
thus results in more stable time and phase fluctuations.
This result shows that spatially (6 > A /2R) and “time”
(Ar=(2ANV) ) restricted photon flow behaves as a “noise-
proof”. Realisation aspects of this temping way of infor-
mation transfer by TR will be discussed in the next paper.

5. Conclusions

It is essential to underline the universal character of the
(A/2R)-factor. The latter exposes itself in classic proc-
esses (restriction of TR modes number and solid angles)
as well as in quantum (uncertainty relations) phenomena.
(See, e.g. Egs (2.1.1), (3.1.5), (4.2.2%), etc.).

1. Restriction of the angular parameter of the TR
beam within a “lossless” OCC by the uncertainty rela-
tion (2.4), leads to a single-mode regime of observation.
The restriction criteria can be connected with sizes of
radiator (R ), and detector PD (D) as well as with the TR
parameters. In a whole set of parameters, the “total” re-
stricting factor can be reduced to the “photon volume”
=13 (Eq. (2.1.4)).

2. It is well known that 75 % of the b.b. TR energy
falls onto the spectrum region of A > 4,,, (4,,,—is the Wien’s
maximum wavelength). In case of the SSR just from this
region the model of the b.b. starts to “dissolve”. Thus the
total TR energy of the SSR has to be calculated by inte-
grating of Eq. (3.1.5) within the limits from vg toee.

3. Using a scanning system for detecting TR from the
SSR or from fine-dispersed objects (aggregation) requires
special tools for the scanning rate control to take into
account possibility of the detecting time increase at
2R — AEq. (3.2.1).

4. Measurements of the spectral distribution of the
information content in extremely restrained beams of
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the “lossless” OCC makes sense only when the ratio
D2 /L2 is kept in accordance with Eq. (4.2.1). In

min | “max : ; :
this way one automatically gets above mentioned physi-

cal spectral properties of TR information content but not
a “spectral losses” of the information on its pathway be-
cause of the predetermined solid angle.

5. The restriction of the Fp fluctuations that follows
from the uncertainty relations (2.3 ), and (2.5), i.e.
ANy, = <AFp*>12A1 = (2vAf) !, leads to a virtual possi-
bility of drastic increase of the information content
<<I>l-mp >3 and <<I>l-mp >4 (Fig. 3).

The practical realisation of this tempting regime re-
quires a special study.
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