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Abstract. Noise-induced escape from the metastable part of potential is considered on time
scales preceding the formation of quasiequilibrium within that part of the potential. It is
shown that, counterintuitively, the escape flux may depend exponentially strongly, and in a
complicated manner, on time and friction.
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1. Introduction

The history of noise-induced escapes started in 1889 when
Swedish physicist and chemist Svante Arrhenius after in-
tensive discussion of various chemical reaction-rate data

established that the rate coefficient R has a form
AU

R=Ae T ,where AU denotes the threshold energy for

activation, T is temperature and 4 is a prefactor [1].

Then it was realized that escape from a metastable
state can happen only via noise-assisted hopping events.
Therefore the theory of escape rate was waiting for a
theory of fluctuations during a long time and only in 1940
there was a seminal work of Kramers where he consid-
ered a weak noise-induced flux from a single metastable
classical potential well, i.e. he considered a stochastic
system [2]:

. dU .
g+—=-Tg+ f,@)
dq
< f,()>=0, < f,,()f,(0)>=21T5(t), T << AU (1)

which was put initially at the bottom of a metastable po-
tential well U(g) with barrier AU. Kramers calculated
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the quasistationary probability flux across the barrier,
i.e. the flux established after the formation of a quasi-
equilibrium distribution within the well. This flux is char-
acterized by a slow exponential decay in time ¢, an
Arrhenius dependence on temperature 7, and relatively
weak dependence on friction I'™:
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where 4 depends on I"and 7'in a nonactivated way.

Models of type (1) are relevant to chemical reactions,
SQUIDs, Josephson junctions and many other real sys-
tems, including the recently designed mechanical elec-
trometers [3-6].

There have been many developments and generaliza-
tions of the Kramers problem but both Kramers and most
of those who followed him considered only the quasista-
tionary flux [3]. But how does the flux evolve from its
zero value at the initial moment to its quasi-stationary
value J,? The answer may obviously depend on initial
conditions and a relevant boundary. As for the boundary,
it was shown by us [7-9], that the most general qualita-
tive features of the flux are valid for any type of bound-
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ary (for the sake of simplicity, we shall consider only the
absorbing wall). As for the initial conditions, the most
natural are those corresponding to the stable stationary
state of the noise-free system, i.e. ¢ = g;,,¢ =0, where g,
is the coordinate of the bottom of the potential well. If
noise is switched on suddenly then the time evolution of
the escape flux from the noise-free metastable initial state
is highly relevant.

It may seem natural to assume that the flux evolution
from zero to the quasistationary regime is a monotonic
function without any “irregularities”. Apart from the
naive argument that “noise smoothes everything”, this
assumption appears sound because the probability dis-
tribution W is distinctly centered at the bottom of the
well both initially and in the quasistationary stage:
W(g,g4,t =0)=05(q—q;)0(¢) while at the quasistatio-
nary stage W is a narrow peak of width o JT around
that same state g = ¢;,, ¢ =0. Moreover, it was shown
recently that, both in the underdamped and overdamped
limits, the escape flux grows with time t smoothly at 7 ~ #,
[10], where #/is time for formation of quasiequilibrium
within the well:

AU .
T mine2/my T ®

t

Despite the above-mentioned arguments, we proved
theoretically and demonstrated experimentally that there
are two generic situations when the escape flux behaves
in a quite complicated way [7-9]. Apart from filling the
“gap” in time scales in the Kramers problem this work is
motivated by growing interest in the very short time scales
that is now relevant to certain experiments, such as those
studying chemical reactions down to femtosecond time
scales [6].

2. Basic concept

The previous work by Shneidman [10] on nonstationary
escape rates in the Kramers problem was based on the
direct solution of the Fokker-Planck equation. We apply
the method of optimal fluctuation to this problem for the
first time [7-9]. A transition probability density in a path-
integral representation can be written as [11]:

oy lepotpinn)=  [DIOPLFOBGEN -3 @

x(t;)=x;

where xrand x; are respectively final (at 7 = #,) and initial
(atz =1t;) values of dynamical variables while P[f{¢)] is a
functional characterizing a probability density of a
given noise realization f{¢). The dependence of P on
noise intensity 7 is usually of the activation-like type

S1/1
1 "p . . ..
Plro]= Ee Dnoise | where Z is a normalization factor
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t
[11]. In particular, for a white noise [11], §[f(1)]:éjdff (D).
0

Transforming from noise variables to dynamical vari-

ables {f —>x} we derive that flux can be sought as

_ Smin (1)
J(t)=A(t)e Proise  where D, ., =2TT.

The activation energy Spin(7) is a minimum of the func-
tional S[x(r)] among all trajectories providing a direct
transition while the prefactor A(7) depends on T relatively
weakly. At small T'and short ¢, the factor exp(—Syin(?)/T)
depends on t much more strongly than prefactor 4. So,
we concentrate on studying S,,;,(t) which is:

noise

Smin (1) = min lela (S),

t 2
§=Jer, L:(q+rq+‘;—ZJ /(4T ®)
0

The minimization was done over a set of escape paths
[¢(7)] at a given exit velocity q(t) , with a further mini-
mization over this velocity. The path minimizing S may
be called the most probable escape path (MPEP). We
describe below results obtained for the escape problem in
two distinctive cases.

3. Single-well metastable potential

It has been proven rigorously that while I' = 2w (@ is
the frequency of eigenoscillation in the bottom of the po-
tential well) then Sy,;,(¢) and flux varies with t in a stepwise
manner [7-9] (Fig. 1 (b)). This conclusion is valid at any
position of the absorbing wall. For weak damping
(<< a)O) the characteristic scales of time and activation
energy in the n-th step are

nr AU
t, o< —, Smin([n)oc—, n=12. (6)
D) T

o t}’l

Different steps correspond to different topologies of
the MPEP. Thus, at short time scales J(¢) depends
exponentially strongly both on I"and on ¢ (Fig. 1 (a)).

3. The overdamped regime

As T grows, the length of a step increases while the height
decreases and, at T" << @), the steps vanish. If T becomes
large enough we come to overdamped regime where the
system may be described by twice smaller number of dy-
namical variables. As a consequence the activation en-
ergy can be explicitly expressed in quadratures for an
arbitrary potential and arbitrary time. This allows one
to find and classify all extremal paths. In this regime it is
also possible to calculate the prefactor, using the numeri-
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Fig. 1. a — Examples of MPEPs (plotted in the energy-coordi-
nate plane E-g where E:i]2/2+U(q)) for an escape from the
bottom of the metastable well U(g) = ¢%/2 at q<\/5 (thick solid
line) to beyond the barrier at g= ‘E (U(g)=— at g> ‘/5 , which
is equivalent to the absorbing wall indicated by triangles), at
I'=0.05; b — the corresponding theoretical (thick solid line) and
experimental (thin jagged line) dependences of the action Sy,
on the escape time 7. The dashed and dotted lines indicate: in
(b) the 15t and 2" inflection point with dS/dt = 0; and in (a) the
corresponding MPEPs. The thin solid line shows: in (b) the large-
time asymptote level equal to the barrier height AU; and in (a)
the corresponding MPEP. The dash-dotted line shows in (@) the
MPEP corresponding to some arbitrarily chosen time ¢ = 4.51
and demonstrates, in particular, that the escape velocity is gen-
erally non-zero. The inset shows the experimental dependence
of the flux on time, for 7= 1.0.

cal scheme suggested in [12]. Thus we provide a com-
plete description of the noise-induced escape/transition
in the overdamped system at short time scales 1 << ,[13].
The theoretical results are verified in computer simula-
tions (Fig. 2).
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Fig. 2. The dynamics of the escape flux J(¢) for overdamped
regime in the Duffing potential U(q) = —¢%/2 + ¢*/4, for T = 0.04,
measured in computer simulations (thin jagged line), and calcu-
lated by our theory (thick solid line).

5. Multi-well metastable potential

Unlike the single-well case, where the formation time of
quasi-equilibrium is of the order of 74, its formation in the
multi-well case proceeds via two distinct stages: first,
quasi-equilibrium is formed within the initial well which
as in the single-well case, takes 7 ~ #;: flux J(¢) evolves at
this stage quite similarly to the single-well case and at
weak damping has steps; second, quasi-equilibrium be-
tween wells becomes established which takes exponen-
tially longer (¢ ~ ¢ exp(AU /T) >>t ) where AU means
a minimal internal barrier) (Fig. 3). During the latter
stage (as well as during the subsequent quasi-stationary
stage), the flux J(¢) can be described via a solution of
kinetic equations for the well populations W, and W,
using the concept of constant inter-attractor transition
rates a; [14,15]:

—tlt

J(t) EWla13 +W2a23 :a13e_f/ts +aqs(e qs _e_l‘/ls ),

- 1
Iy =0, Ly =0ys =0 (02003 +00103),

T<<Ug ~Uy, t>>1y (7)

The physical meaning of the two terms in (7) is easily
understood. The first one corresponds to direct escapes (i.c.
those ones which do not go via the bottom of well-2) and
dominates before the quasi-equilibrium is established;
whereas the second term, corresponding to indirect escapes,
dominates in the ensuing quasi-stationary stage: it is the
asymptotic part of this latter flux, Oyg exp(—t/ty) 5 thatis
called the quasi-stationary flux.

Although the coefficients o, a1, 04 can readily be
obtained from the Kramers-Melnikov theory[2,16], o3
and o3 cannot be found in this way. One of us has devel-
oped a theory of 3, op3 based on the concept of optimal
fluctuation [14,15]:

0ty (1+ (2,95 exp(Uy —U,) /T)™)
1+ (mexp(kS p_y51 /T))*!

®)
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Fig. 3. a — A double-well metastable potential, which describes the simplest SQUID U(q)=0.06(q+1.5)%> —cos(q), q <4.5,
U(q) =—o0, g>4.5, and schematically shown direct (dotted line) and indirect (dashed line) escape path 1—3 i.e. escapes from the

well 1 beyond the coordinate of absorbing wall ¢ = 4.5; b — simulations of the dependence of the escape flux J(¢) on time (thin jagged
line) at T'=0.15, T =0.4 compared with the approximation of J(#) by eq.(7) (thick full line); a2, 0n; and e are calculated by the
Kramers-Melnikov formula [16] while o3, 0p3 are calculated by eq.(8) with m=1.1.

where Q , are the frequencies of eigenoscillation in the
bottom of wells 1,2; k =1 or —1 for ranges of " providing
the noise-free relaxation from s, respectively into 2 or 1;
the action S;,_, for the transition s2 — sl is calcu-
lated from the theory [8,14,15]; and m is the only adjust-
able parameter, related to the prefactor.

As seen from eq. (8) the rates o3 and op3 depend on

friction exponentially strongly, at sufficiently small tem-
perature and have a quite complicated behavior [8,14,15].
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