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Abstract. We propose the theory of the micro-domains (MD) formation in ferroelectric
photorefractive crystals appeared under steady illumination by laser beam perpendicular to
the polar axis.

The crystal has the donor level made of photoactive impurity atoms. The longitudinal photo-
voltaic current leads to surface charges accumulation at the light spot boundary. These charges
are localized at the nano-clusters of different size and charge density randomly distributed in
the thin transition layer between light and dark. Each such cluster can be treated as the seeding
for one MD growth. Therefore the numerous MD appear around the illuminated area. The
micro-domain shape and physical properties are studied in the phenomenological Ginsburg-
Landau-Devonshire theory framework with respect to the screening effects of ferroelectric
medium.

We obtained, that when the cluster charge density is more that the critical one, MD become
very long and thin ones and in principle can intergrow through the perfect sample. In such a
case they could be easily registered experimentally. So, exactly due to the transverse modula-
tion effects the MD length can be sharply increased from the dozens of microns and up to the
crystal length.

All theoretical results are in a good qualitative agreement with our experiments on photo-
micro-domain formation in LiNbOj crystals and light scattering caused by them.

Keywords: micro-domains, photorefractive ferroelectric crystals, GLD-theory, screening ef-
fects.
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1. Introduction

Nowadays the problems of light-induced micro-domain
(MD) formation in the different ferroelectric materials
are of especial interest owing to their potential usage in
optical information storage. So, both experimental data
and theoretical investigations concerning generation
conditions, stability and properties of MD are extremely
desirable.

Let us consider the process of the micro-domain (MD)
onset [1] in the uniaxial ferroelectric near the charged
volume defects (clusters) of the different nature. There
exist both shallow donor levels and deep traps being able
to generate or to capture free charge carriers in photo-
refractive crystals (PRC). Clusters arisen due to imple-
mentation of the non stechiometric (i.e. with the small
solubility limit) photoactive impurity will be of our es-
sential interest [2]. Really, such impurity atoms tend to
cluster-like formation with size about (0.5+5) nm (see e.g.

Ref. [3]). Under the light illumination clusters become
positively charged owing to photocarriers transfer to the
conduction band or negatively charged due to the photo-
carriers capture. The illuminated region has much larger
conductivity owing to photocarriers than the not illumi-
nated one. Owing to this fact and photovoltaic effect [4],
photoinduced inner field is rather high and strongly in-
fluences on the spontaneous induction amplitude and dis-
tribution inside the light area. So, in the case of abrupt
light and dark boundary, the spontaneous induction
screening effects outside the illuminated area must be
taken into account. Moreover, one can assume that screen-
ing space charges, localized in the very thin transition
layer at the light and dark boundary in the form of
charged clusters, could cause the MD formation process.
Hereinafter we regard this screening charge as surface
charge with spatially distributed density.

We will show, that these screening surface charges
will lead to the surrounding repolarization and the nu-
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merous needle-like micro-domains arise outside the illu-
minated area. Under definite values of material param-
eters MD longitudinal size substantially exceeds the
transversal one and they grow through the sample [5].

2. The model

Now we investigate the question about the initial mono
domain PRC spontaneous induction D changes with the
appearance of the illuminated area with the longitudinal
size ag and inhomogeneous surface charge density with
the average transverse period b,. The calculations scheme
is represented in Fig. 1. The spontaneous induction is
aligned along z axis far from the cluster. Light beam has
the cylindrical form with axis parallel to y axis. Hereaf-
ter we suppose that by << ay and the boundary between
light and dark is rather sharp.

Charged clusters localized at the light spot edge cre-
ate the additional surface charge with density o(x,y,z)
(we estimate it in 3.2). This density reaches its maximal
value at the points with the maximal photoactive impu-
rity concentration. Therefore maximal electric field is
produced near these points and with the appropriate
charge sign it will lead to the surrounding repolarization
around the illuminated area. Note that it is not worth to
say about repolarization inside the cluster because
ferroelectric phase is absent due to the local symmetry
breaking in this region.
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Fig. 1. The calculations scheme with the spontaneous induction
distribution (solid line in region “1”) outside illuminated area,
denoted by “2”. Dashed line represents the light intensity distribu-
tion inside the illuminated area “2” and the transition layer “3”.
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3. General equations
3.1. Stationary equations outside the light area

The stationary distribution of the induction outside the
light area is described by the following system of equa-
tions [6], namely, phenomenological equation of state
for second order phase transitions:

arD+pD> —yAD=E, (1a)

where ar=o(T—- T,.) <0, T, is the phase transition tem-
perature, E is the electric field, which is sum of the inter-
nal (depolarization) and external field. Hereafter we con-
sider the case without the external electric field, i.e. E
makes sense of the internal field. Here we suppose that
the absolute value of longitudinal induction component
D. is much larger than the transversal ones D, , and de-
note D, = D (see commentary to (17)).

Note that contribution of homogeneous elastic strain
to the equation (1a) is reduced to the renormalization of
the coefficients orrand B (see, e.g. Ref. [7]), but it is known
that the inhomogeneous distributions of the spontaneous
induction like domain walls lead to the inhomogeneous
distribution of the elastic strain [8]. These kinds of struc-
tures require support of inhomogeneous mechanical con-
straints, like defects and dislocations. In order to take
these effects into account it is necessary to add to (la)
electrostriction terms and take into consideration the elas-
tic equilibrium conditions. Hereafter we neglect the in-
homogeneous strain presence. The more complicated
models considering inhomogeneous strain influence is are
progress now.

Maxwell equations and the condition of macroscopic
current absence have to be added to (1a):

X,y

dD
—=4mep, P=pPp—Pe>
dz

i= 2[_5kVpk + e pxElg; =0, E=-Vo,
k=h,e

dh =—qe =€
(1b)

where @is the electric potential, pj, . is the proper (dark)
bulk charge density of holes and electrons respectively,
Op.e» Ui are their diffusion coefficient and mobility, e is
the absolute value of electron charge. Here we consider
the diffusion and the conductivity currents. Taking into
account Einstein relation ¢, &/t = kT, it is easy to ob-
tain from (1b) that outside the illuminated area bulk
charge density p has the form

. 49 0 o_ Po
p =—pg sinh] — P, =P, =—, 2
0 (kBT} h ¢ 2 &)

where constants poh,e are dark charge densities, which do
not depend on light intensity, existing only in the illumi-
nated area. System (1) must be supplemented with the
boundary conditions

D(Jr| >> [R,|) = Dy, (D~ Dyl = gy = 470 3)
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Here vector R,, determines the illuminated area sur-
face, nis its outer normal (see Fig. 1), Dy is spontaneous
induction far from the light spot, in the bulk ferroelectric

itequals to £ \/—ay / B , D, is induction exactly inside

the light spot edge Representation (2) corresponds to the
mechanism of the free carriers thermalization [4] in con-
trast to o which represents the surface density of the charge
localized in the deep levels.

Differentiation of the first equation (1b) with respect
to the second one and equation (2) leads to the following
relationship:

d*D kT
E:R%SCC]’I ¢ _2, RD: LZ’ (4)
dZ 4re pO

where Rp is the Debye-Hukkel screening radius.

In the dark region of the sample far from the outer
boundaries (regions 1) we suppose that |e(p| <<kpgT .So
sec h(ep / kgT)— 1, one can essentially simplify equa-
tion (4) and express electric field E via the second deriva-
tive of the induction D only:

2
d*D
E~Rp—.
dz

(5a)

Contrary, exactly on the light spot boundary (transition
layer 3) we suppose that |e(p| >>kgT. So sech(e(p/ k BT) —0.
If the light intensity decreases monotonically approach-
ing the spot edge, the second derivative of the induction
D is finite, electric field E exponentially decreases:

E=0. (5b)

Using the relation (5a) it is easy to rewrite equation
(1a) outside light spot with renormalized correlation ener-

gy

=0.(6)

2 2 2

d d d
OCTD+ﬁD3— 'J/—2+—2 +(’}/+R12))—2
dx“ dy dz

Note, that this equation is homogeneous in contrast
to the inhomogeneous equation (1a). Estimations of R
and yvalues have the view y~ 107 14+1071° cm?, R?}) ~
3-(10713+10"") cm?. Tt is seen that R%;, >> y and equation
(6) is substantially anisotropic:

n=v+Rp>> 1y, (7)

Free energy density has the following form

2 2 2
g:a_TD2+ED4+Z d_D +Z d_D +’}/_L d_D
2 4 2| dx 2\ dy 2 1dz

®)

Hereinafter, in order to obtain the distribution of D
one could solve either (6) or minimize free energy (8),
taking into account the boundary conditions (3).
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3.2. Stationary solutions inside the light area

Let us consider the symmetrical with respect to x axis
illuminated area |z| < ay with constant light intensity /),
centered in the coordinate origin (region 2 in Fig. 1).
Under the sufficient intensity and for the light quanta
energy higher than the threshold one, the photoconduc-
tivity inside illuminated area is much greater then the
dark one, i.e. the latter can be neglected. Really the free
carriers density in the illuminated area is much larger
than the one outside it. Owing to this fact equation of
state (1a) is valid inside the illuminated area 2, but with
essentially renormalized coefficients o7, §, v [4]. This
renormalization and high values of photovoltaic inner
field E, ~ (30+80) kV/cm (see Ref. [9]) (really aoE, >>
>> [ gTle) strongly influence on the spontaneous induc-
tion amplitude and distribution inside the light area. So,
in the case of abrupt light and dark boundary, the spon-
taneous induction screening effects outside the illumi-
nated area must be taken into account. Moreover, one
can assume that screening space charges, localized at
the boundary in the form of charged clusters can cause
the MD formation process.

Thus, when neglecting the dark conductivity py, , << 7,,
the inner electric field £, inside the illuminated area (re-
gion 2) can be found from the Maxwell equations and the
condition of macroscopic current absence [10]:

on}
ot

=-Tn,ny +sl, (ng —-ny ),

% = &n_;+_divj"
ot ot e

divD = 471'6(]121— -n, ),

in =ettenE, +eé,Vn, + (ng —-ny )SI()G. (9a)

Where the following designations are introduced: n,
is the concentration of free electrons, ng 1s the concen-
tration of donors, n? is the concentration of ionized do-
nors (traps), I is the capture coefficient of an electron by
a trap, s is the photoionization coefficient, /; is the pump
intensity, e is the absolute value of the electron charge, j,,
is the density of electron current, y, is the electron mobil-
ity, &, is the diffusion coefficient, G; = By, eey, is the
Glass vector components (the double convolution of the
photovoltaic-tensor with the pump wave polarization e,,).
For the materials with |G.| >> |G, | the transverse cur-
rents are the same order that the dark ones. So let us
consider only the influence of longitudinal photovoltaic
current,i.e. G=G.and E,= E,..

After elementary transformations and standard bifur-
cation analyses [11], one can show that time-indepen-
dent solution of nonlinear system (9) with constant coef-
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ficients ng , Ue, 8, G, and equation of state (1a) with
renormalized coefficients due to the free carriers pres-
ence [4] is stable in the vicinity of the stable stationary
pointj=0,divD =0, azD + D= E,. This solution is the
following:

G,.T slg Yo slond 51
Ep=_ Pz n:i—, ne=n:1—= 20 +ﬁ__0,
el,s 2r r 2r

(b)
%)

Note that below transition temperature the absolute
value of coefficient o7 < 0 is much smaller than unity. As
it follows from (9b), always 1n°;> n,, as it should be ex-
pected. Note, that G,, ~ Dy, [4]. It is seen that electric
field E, is proportional to induction D;. If they have op-
posite signs, E, can significantly decrease Dy and can be
regarded as depolarization field.

It is worth to underline, that (9b) is valid only in re-
gion 2 (see Fig. 1), but not inside the transition layer 3,

where E, decreases to zero due to both Iy — 0 and

|e(p| >>kpT (see(5b)). Really, in the transition layer the
real I, and D gradients could not be neglected. These
gradients and inhomogeneous distributions of photoac-
tive clusters with localized space charge in the region
can cause the local symmetry breaking and spontaneous
induction destroying from D = Dy at the transition layer
inner boundary 23 to Dy— 0 and E), = 0 at the transition
layer outer boundary 31. In other words transition layer
3 can be regarded as screening layer with usual screen-
ing mechanism by space charge layer [6], [12].

Thus, how can the field determining by (9b) be com-
pensated outside the light area in accordance with (5b)?
This field is compensated by the free carriers, moved by
the field inside the transition layer and captured by the
deep traps on the illuminated area boundary. This proc-
ess lasts up to the moment when they generate the surface
charge density enough to decrease the field to zero.
Charged photo carriers, absorbed by the deep traps at
the abrupt spot edge boundary, create the additional sur-
face charge with density o(x,y,z) stably localized at the
photoinduced inhomogeneities (charged clusters) on light
spot edge. Let us estimate the effective value of o(x,y,z).

We assume that screening transition layer formation
almost determines possible sample repolarization or MD
formation outside the spot via boundary conditions, i.e.
due to the surface charges o(x,y,z). Contrary, MD can
not affect sufficiently on the o(x,y,z) value and distribu-
tion. Therefore it is worth to distinguish two boundaries
of the transition layer 3:

1) The inner boundary 23, where E, = 0 allowing for
intensity discontinuity, but D3 = D, D, # D,. Allowing for
boundary conditions (3) and (9b) one can conclude that

effective surface charge is the following: o(R,) = E,, /4.

arD+pD* =E,

1 G,
o(R,)=——"nj, (10a)
4r ell,s
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Really, it is obvious that this surface density is smaller
than maximal value Dy/47r (see (9¢)) necessary for the full
spontaneous induction screening. The dependence of ef-
fective surface charge s over dimensionless intensity and
impurity concentration is depicted in Fig. 2.

2) The outer boundary 31, where spontaneous induc-
tion and field are much smaller than their bulk values
due to the screening: D3 = 0 and E = 0. Allowing for boun-
dary conditions (3) and (10a) one can conclude that Dy, =
= 4ro. Therefore the boundary conditions (3) acquire the
form:

D(I’ > Rn) =D, Dnl r=Rn = 477:G(Rn)- (IOb)

Subject to the induction vector is parallel to z axis
and ok, >0, itis obvious that 6> 0 atz <0 and <0 at
z > 0 in the case when G, is parallel to z axis and vise
versa (see Fig. 1).

Taking into consideration the free electrons concen-
tration n, dependence on the donor concentration n,; (9b),
one can conclude from (10a) that o(R,,) is proportional to

i
ues respectively. It is worth to underline that (9b) was
derived in the case of constant ng , but if transverse in-
duction components and currents are much smaller than
the longitudinal ones, (10a,b) is valid for ng (x,y). There-
fore, allowing for the fluctuations of donor concentra-
tion [13], the complete modulation of the it at distances
of the cluster size order leads to the surface charge
strongly inhomogeneous distribution of o(x,y). The de-
pendence of effective surface charge s over dimensionless
intensity is depicted in Fig. 2. Really, surface charges

and ng for the large and small concentration val-

0
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Fig. 2. The dependence of effective surface charge o over
dimensionless intensity (basic plot) and dimensionless impurity
concentration (inset).
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are localized at the randomly distributed in the thin tran-
sition layer clusters of photoactive impurity with differ-
ent sizes and averaged transverse period b. Each cluster
can be treated as the seeding for one MD growth if only
D,D,<0,1.e. when G,. > 0 one obtains from (10b) that
o>0atz<0and o<0atz>0. So, the aforementioned
light-induced MD formation would take place only in
the samples with positive longitudinal component of
Glass vector.

4. Micro-domains formation

4.1. Light area with ideal flat edge and constant
charge density

At first let us consider the simplest case when the light
area can be regarded infinite in x,y-directions with ideal
boundaries at z = *qg( and constant charge density
o(—ag) = 0y, o(ay) = —oy (see Fig. 1), where s is the aver-
age value of the modulated charge density. Thus one can
neglect transverse derivatives in equation (6), i.e D, =
= D(z). So, (6) and the boundary conditions (10b) acquire
the form:

d2
ocTD+[3D3 -7L— D=0,
dz
D(|Z| >> a0)=DS, D(Z:ia0)=4ﬂ0-0' (lla)
The novel one-dimensional kink solution [14] of (11a),
which satisfy the boundary conditions, in the region
|z| > aq can be rewritten as:

D=D;, tanh[w(]z| - Zo Z0 =agp + iarctamh(no),
w

n 47r00 ocT oy
- o= -2
0" 2y
(11b)

Substituting exact solution (11b) into (6) and perform-
ing integration over non-illuminated sample volume V' =
= S(/—ayp), one can obtain minimum free energy F and its
density g = G/V values in the form:

0<ng <1l

Foin =Vgp+58s —
wi>>1

2 3
_a_T V_8_S l+n_0_n_0
4B wl3 2 6

Thus, free energy (11c) is the sum of bulk and surface
energy densities gz and gg respectively. Solution (11b) is
two symmetrical MD at ‘z‘ <z, where D <0, in the
inverse polarized matrix at |z| >z, where D > 0 (see
solid curve in Fig. 2). Therefore the value (zo— ag) is MD
length L,;p. Notice, that as it follows from (11b),
Lyp— < atny— 1, i.e. the repolarization of the matrix
should take place at 17y = 1. But it was shown above that

(11c)
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this and higher values 179> 1 can not be achieved on the
illuminated area boundary (see (9¢) and (10a)).

Note, that solution (11b) becomes imaginary and has
no meaning because of the finiteness of hyperbolic tan-
gent function (1 = |tanh(z)|) for the case 4wo > D;. In this
case one has to use another exact solution of the equation
(11a) which does not oscillate and has the form
* Dicoth(w(z —zp)). It is obvious that this solution satisfy
the boundary conditions for 4o > D, (19> 1) because of
the condition |coth(z)| > 1. But this induction distribution
diverges at z = zy and has infinite energy (8), therefore
most probable that this distribution is unstable. In such a
case real system could create strong electric fields at z = z,
which would decrease s up to the case 470 < D in a self-
consistent manner. Therefore, our theory also is not valid
at np— 1, owing to the strong nonlinear effects, which
essentially decrease 1 in a self-consistent manner. Us-
ing 1y << 1, for ideal flat light spot surface one obtains
MD length L,,p and domain wall thickness:

‘/2 2
LMD z47TGO J/Lﬂ , WMD ~ —ﬂ

—or ar

(12)

Notice, that as predicted in section 4.1, the sign of o
determines MD-formation. Really, MD appear only in
the case, when Do > 0.

4.2. MD growth around one charged cluster

At first let us consider the case when one charged cluster
is localized at the light area boundary at z = ¢, and
|x| < b, with negative charge density, o = —o(x) (see inset
to Fig. 3). Thus one cannot neglect transverse deriva-
tives in equation (6), i.e D, = D(x,z). Neglecting the elec-
tric field transverse components, (6) and the boundary
conditions (10b) acquire the form:

3 d*  4?
OcTD+ﬁD — yLd—2+yd—2 :O, ap <z,
Z X

D(z>>ay) =D, D(z=ay)=-4n0(x). (13a)

About the features of o(x), we suppose the following.
In the central part of the cluster charge density is maxi-
mum and rather homogeneous, i.e. ¢ (x = 0) = ¢, but it
sharply decreasing to zero approaching cluster edges,
i.e. o(Jx| = b.) = 0. In order to obtain analytical expres-
sions for spontaneous induction distribution, we propose
the following representation for o(x):

oo i

4ro
0<

<<l (13b)

N

Where 6(x) is the step theta-function. The one-dimen-
sional kink solution [14] of (13a), which satisfy the bound-
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Fig. 3. Three dimensional plot for the dimensionless D(x,z)/D;
distribution near one cluster for the following parameters w.b. =
=0.022, n.= 0.5. Inset represents s(x) distribution with the follow-
ing parameter values 1. = 0.5, 0.3, 0.1 for the curves I, 2, 3
respectively.

ary conditions with density (13b), in the region z > a( can
be rewritten as:

_ “a0)-00, 111
D = D, tanh wc(z ao) O(bc |x| 1 b rctanh(),.) |,
c
4
ﬂo-c’ Ds= _a_T,
Dy \ B

2
wc<x)=‘/—“—T— (bc—lxl)l[—manh(”c)] .
27 19
(14a)

bC

Notice, that solution (14a) can be used as estimation
at x=0;+b, . Itis easy to check from (14a) that our suppo-
sition |e(p| << kpT usedin (6) means eD; WCR% <<kpT .
The region of repolarization, i.e. MD, can be found from
the condition D < 0 (see 3D plot in Fig. 3), so its outer
boundary D = 0 at z = zy(x) has the shape of the spike
with the base at z = qg and b, > |x|:

0k —)(
Zo(x)=ag+——|1 . rctanh(n,.). (14b)

W, (x)

z>4ag, Ne =

The end of the spike has the coordinates x =0, z =
= z0(0). Therefore the value (zy(0) — a¢) is maximum MD
length L,,,x. Note, that due to w.<w, Ly.x > Lyp from
(12a) always when o, > 0. Moreover, in the most cases
the effective density oy is much smaller than the peak one
o,. Thus, one obtains:

SQO0, 6(3), 2003

1 o
Linax = ———arctanh(1),.), =" >>1.(15a)

w,.(0) Lyp w.(0)0,

L max

The maximum transverse size of MD H ., is the base
2b. ~ nm. So, from (14a) and (15a) one can obtain that
whenw,— 0

L

max —ar

— ooif onlyn, — b,

max y

The situation which corresponds to (15b) really
means, that spike-like MD transforms into a very long
needle-like one and in principle can intergrow through
the perfect sample. In such a case it could be easily de-
tected experimentally. The aforementioned intergrowth
(15b) is possible if maximum cluster charge density o, is
more that the critical one:

Dy —Or Dy
o. >0, whereo,, =Etanh b, >y <E. (16a)

One can estimate that at y~ 10141019 cm?, oy~ 1072

(15b)

(see, e.g. Ref. [15]), b.~ 1 nm, so b, {—ar [2y <<1 and

3430,

sy | =L 2 E,

2y 2J-2yap

where FE. is coercive electric field. One can estimate that
the critical surface density op,.x = E, as it should be ex-
pected. It is worth to underline that if o, is defined, the
intergrowth is possible for “small” clusters, namely:

(16b)

b.<b

c cr»

dno 2
b. = arctanh[ < Y
N

D —Or

/ 27 < (1+10 )nm

Substituting exact solution (14a) into free energy func-
tional (6) and integrating over z, then over x, y, we ob-
tain minimum free energy F and its density g = F/V val-
ues in the same form and meaning that (11c) with substi-
tution ng— n.and w — w,.

Notice, that in the case of radial symmetry o(x,y) =
= o(r,) and thus D = D(r ), we used solution (13b) for
estimations after substitution x — r,. Really the afore-
mentioned solution and all inequalities appeared to be a
good approximation in the region where A| = d?/dr 2,
i.e.atr| >> b Jarctanh(n,),i.e. not on the top of the MD
spike. But the main conclusion is valid in case of radial
symmetry: if o, approaching o;,,x determined by (16),
one can observe conic needle-like MD intergrowing from
charged clusters through the dark area of the PRC. So,
exactly due to the transverse modulation effects the MD
length can be sharply increased from the dozens of mi-
crons and up to the crystal length.

4ro .
(16c)
N

D
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4.3. Light area with modulated surface charge
density

Now let us consider the case when the cylindrical light
area can be regarded plain near the polar axis z with
boundaries at z = *a, and inhomogeneous charge den-
sity o(—ag) = o(x,y), ol(ay) = —o(x,y), (charged circles in
Fig. 1). About the features of o(x,y), we suppose the fol-
lowing:

e () {5

do 2 _ do > [ 90 >

dx dy 0 .

The last expression in (17) means that the distribu-
tion function of o(x,y) spatial period is well-localized
near average cluster period by << ay.

In is easy to verify by considering electrostatic prob-
lem, that the resulting electric field transverse compo-
nents, generated by the numerous inhomogeneously dis-
tributed surface charges of one sign, are much smaller
than the ones from single charge even at distances greater
than average period by. So, after statistical averaging at
|z| > a¢ the induction transverse components can be ne-
glected. This statement confirms our initial supposition
|D.,| <<|D.| (see commentary to (1b)). Thus one must
take into account transverse derivatives in equation (6),
i.e D,= D(x,y,z). So boundary conditions (9) acquire the
form:

(17)

(18)

The approximate analytical solution for D can be
found from minimum (6) by direct variational principle.
This solution must be transformed into (11) if o(x,y) = oy.
Therefore we found it in the form analogous to precise
one-dimensional solution (11), but satisfying the bound-
ary conditions (18):

D(|z| >>ag) = Dy, D(z ==ag) = 4n0(x, y).

D=D; tanh[wo(lz| —2zo(x, y))l |z| >ayg,

1
zo(x,y)=ag+ —arctanh(n(x, y)),
wo

_4dno(x,y)

n(x’ y) ’ (rl(-x’ y)>=rl() << 1’

N

an Y\ _[(anY\_(m )
dx dy by ’
Ny =470 /—ﬂ 0<n(x,y)<l.
Or

Here the induction amplitude D, and domain wall
thickness 1/wg are variational parameters.

(19)
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Taking into account (17) one can integrate the free
energy density (8) with the trial function (19) and elemen-
tary transformations [16] and easily obtain the free en-
ergy (F) dependence on the variational parameters. Tak-
ing into consideration, that Dy is independent on / in
rather thick PRC and even coincides with * |/—a / B in
bulk ferroelectric, we obtain that it is possible if only
I(F)9Dy = 0 for arbitrary thickness /. In other words
bulk and surface energies can be variated over D,inde-
pendently. Therefore we obtain the following values for
variational parameters and free energy minimum:

(20)

Using (19) and (20), the D distribution in the PRC is
the following:

2
D: _a_T tanh —a—T—2 M (IZ|_ZO(x9y))9
v B 2yt vl 1-n

|2/ > a0,

Zo(x y)=ag+

+ arctanh[47t0'(x, y) }—ﬂ J
or
21

Note, that at y— 0 the solution (21) coincides with
(11) for flat spot edge, as it should be expected. Solution
(21)isaplenty of MD at a( < |z| <zg(x,y),where D <0,
in the inverse polarized matrix at |z| > z(x, y) , where
D > 0. In accordance with (17) and (21), the mean MD
length (L) = Lj,p, but the maximum L, ,, and minimum
Lin MD lengths are strongly different owing to the modu-
lation of the surface density s, i.e. — 0 when the donor

2
_or  2y{ Mg /by

2yr vl 1-n

concentration tends to zero and MD are absent near this

0
d

increase the surface density increases as "ng and MD

kind of the surface. With the donor concentration n

length also nonlinearly increases. Under the condition
4ro/Dg — 1 in the center of clusters MD length L.«
tends to infinity, for the higher density values the strong
depolarization field outside the illuminated area de-
creases 0. Therefore we can estimate the micro domain
length as follows:
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max > - >>Lyps

ar 2y | No/bg
2y v\ 1-n8

(22)
L

min = 0-
The domain wall thickness Wy, ~ 1/wy and mean
MD thickness can be estimated as H ,p, ~ 2b. The shape
of MD boundary is determined from the condition D =0
in the form |z| =z¢(x,y). It is represented in Fig. 4 for
three clusters with different maximal values o, of the sur-
face density o(x) =0, y1-(r, /b.)? attheilluminated
area edge. This density dependence on coordinates is
obtained for the homogeneously charged spherical clus-
ter with radius b,.. Value o, is equal to the product of
cluster diameter and volume charge density. It is seen
that with o, increase the MD length drastically increases.
The domain wall thickness ~1/wy must be positive
real number, so in the case 179 << 1 (see(19) and (20)) the
critical average charge density oy and critical cluster
size (compare with (16)) exist:
D —or cr 4ro 4y
— b, by =—= | ——
ar 4y D

GCV ~ 23
0

oy (23)

As it follows from (23), that when o tends to oy MD

become very long and thin ones and in principle can

intergrow through the perfect sample. In such a case they

could be easily registered experimentally for example by

optical methods. The aforementioned intergrowth is pos-

D/Dy

470/D,

(z—ay)/b.

Fig. 4. The shapes of the MD boundary grown around the clus-
ters with different o(x) distributions (see on the inset) with the
following parameters: wyby = 0.022 and 4nc,/D; = 0.9, 0.5, 0.1 for
the curves 7, 2, 3 respectively.
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sible if the average cluster charge density o is more that
the critical one (23). So, exactly due to the density modu-
lation in transverse directions the MD length can be
sharply increased.

4.4. Comparison with the experiment on
LiNbOj: Fe crystals microdomain PILS

It was shown earlier [17] that MD photo generation can
take place not only at the surface but also in the volume
of ferroelectric crystal. The rectangular specimens of the
LiNbO3; monocrystal doped with Fe (the iron concentra-
tion in the melt was N[Fe] = 0.03+0.05 wt. %), faces
transversal dimension 5-15 mm and thickness 2-5 mm
was used in the experiment. Photoactivation is carried
out by the narrow light beam with diameter d; = 1.2 mm,
wavelength A; = 0.44 um, intensity P; = 20 mW, which
propagate along x-axis perpendicularly to the polar axis
and the crystal surface. This setup completely corresponds
to the model geometry shown in Fig. 1. Investigation of
the microdomains photo generation dynamics and its pa-
rameters determination is carried out by the method of
testing light beam scattering, which propagates at small
angle to the direction of y-axis. This scattering appeared
as a weakly bent curve. The indicatrix of the scattering
on MD dependence on the testing beam position in xz
plane allows one to determine the characteristics of de-
fects arising in crystal under illumination.

As it was predicted in our model, scattering centers
looks like needles, oriented along polar z-axis. The av-
erage MD length Ly,p= 900 um (£10%) is determined
for the case, when the pump region has the view of the
round cylinder with diameter d; = 1.2 mm, crossing the
sample in the facet center normally to the crystal surface.
The scattering indicatrix of the testing beam propagat-
ing close to the polar z-axis is measured for the determi-
nation of the average MD radius by = 0.9 um (=10 %).

These defects appear in the crystal volume only in the
case when the pump intensity has the nonzero gradient
along the polar axis dl; /dz#0. In particular, if the
pump has the stripe form, oriented along z-axis, then MD
do not arise in the crystal volume. This quite agrees with
the proposed model, in accordance with which MD arise
on the boundary of the illuminated region.

It should be noted that the disposition of MD rela-
tively light boundary is asymmetric. In particular, MD
penetration depth into illuminated region is approxi-
mately 1/3 of their length. In accordance with our theory
MD is situated outside the light spot in the case of sharp
boundary light-shade. Diffuseness of this boundary leads
to the charged layer thickness increase and, therefore,
MD penetration to the illuminated region.

MD arise due to the seeding surface charge o on the
light spot boundary, i.e. the main role of the pump is the
spatial separation of charges in consequence of photo
galvanic effect (PGE), the stimulation of MD arrange
onset and the creation of the inner electric field with
anomaly large voltage [12]. However, besides that, the
pump beam can play the same role as the testing one. In
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Fig. 5. The scattering of the pump beam in LiNbOj5: Fe. Letters
“a” and “b” mark the photorefractive and photo-microdomain
scattering respectively.

this case the typical scattering appears as a narrow strip
oriented perpendicularly to z-axis (Fig. 5).

The density of MD, which defines average distance
Al | between them, was calculated from the testing ra-
diation absorption coefficient value. Namely, the aver-
age MD quantity on the unit area of the surface, perpen-
djcular to z-axis, isequal N, =7- 10°cm 2. The quan-
tity A/, =12 um appears much less than both the aver-
age length L,,p and the average radius by of micro-
domains. This confirms the supposition used in our theory
about the independence of individual microdomains.

5. Conclusions

The model of the MD formation in photorefractive
uniaxial ferroelectrics near the illuminated area polar-
ized due to the screening effects has been developed.

We have shown that MD onset does take place near
the charged volume defects or clusters. Such clusters, as
the photoinduced inhomogeneities at the points with the
maximal photoactive impurity concentration, could cre-
ate the surface charge density on the light spot edge.

When surface charges are localized at the nano-clus-
ters of different size and charge density randomly dis-
tributed in the thin transition layer between light and
dark, each cluster can be treated as the seeding for one
MD growth. Therefore the numerous MD appear around
the illuminated area.

We obtained, that when the cluster charge density is
more that the critical one, MD become very long and
thin ones and in principle can intergrow through the per-
fect sample. In such a case they could be easily registered
experimentally. So, exactly due to the transverse modu-
lation effects the MD length can be sharply increased
from the dozens of microns and up to the crystal length.
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The considered light-induced MD formation would
take place only in the samples with positive longitudinal
component of Glass vector.

The aforementioned mechanism of MD formation,
MD shape and sizes are in a good qualitative agreement
with the experiments on MD observation [5], [17].
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