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Abstract. The theoretical consideration of the energy of the lowest singlet and triplet terms of
shallow D -centers (two electrons, bound with one-charge Coulomb center) in semiconduc-
tors with an ionic and covalent binding has been carried out. The electron-phonon interaction
is described by a Frohlich Hamiltonian . The energy of D -center is described with the use of
a Buimistrov-Pekar method of canonical transformations for arbitrary electron-phonon cou-
pling. It is shown, that for all area of electron-phonon interaction parameters the Buimistrov-
Pekar method yields the lowest values of the ground state energy of D -centers and free
bipolaron in comparison with the best, for today, numerical calculations of the relevant
values which have been carried out within the framework of the direct variation methods. The
calculations have shown the lack of the bound metastable triplet states corresponding to the
lowest triplet energy term of D™ -center and bipolaron for all the area of electron-phonon
interaction parameters, in complete analogy to the Hill theorem about the lack of the bound
excited states of H™ ion. It is shown that the account of interaction with acoustic phonons can
produce considerable lowering the ground state energy of D -center in comparison with the
magnitude 1.0555Ry (where Ry* = m* e 2g§h , m —is the effective mass of an electron, g — is

a static permittivity of a crystal).
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1. Introduction

Two-electronic centres in the semiconductors (in Si and
Ge[1],in GaAs, InP, InSb [2]) are observed on the study
of the frequency dependence of photoconductivity in the
field of the far infrared frequencies. Atomic analog of a
considered system is the negatively charged atom of hy-
drogen with an ionization energy 0.0555Ry. In the ne-
glecting by the chemical shift and the electron-phonon
interaction, the centres in a crystal have the same en-
ergy, but are measured in effective rydbergs
Ry*=m* e“/zgghz (where m* — is the effective mass of
an electron, & — is a static susceptibility of a crystal).
The account of interaction with phonons can consider-
ably reduce the binding energy of two-electron system in
a crystal in comparison with magnitude 0.0555Ry*
[3,4]. In alkali-haloid crystals the analogs of D-centres
are F'-centres.

Recently, the subjects bound with the study of the en-
ergy structure of two-electron systems has been intensively

spread on the low-dimensional systems, including quan-
tum points. The developments are conducted both in ex-
perimental field, and in the field of theoretical study of
energy levels of — quasi-two-dimensional systems, ana-
logs of D™-centres [3] and bipolarons [4] in isotropic crys-
tals. Partly it is connected with the interest to similar
systems considerably increased in resent years due to the
development of nano-technologies and principal possi-
bility to produce quantum computers using electronic spin
resonance and, in particular, in structures Ge-Si [5].

In the first works [6,7] devoted to calculations of en-
ergies of similar two-electron formations electron corre-
lations were neglected, which considerably reduced mag-
nitude of D -centre binding energy. But nevertheless, the
Buimistrov-Pekar method offered in [6] for calculation
of an energy of one-electron and two-electron states in
crystals for arbitrary coupling of an electron system with
phonons is, as we suppose, the one of the most prime and
effective method for the calculations of an energy spec-
trum of electron systems in solids.
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This method, in the connection with its simplicity,
enough frequently has been utilized for the calculations
of an energy of spesific systems, both the one-electron,
and two-electron once in the crystals with an arbitrary
coupling of electrons with the phonon field. Neverthe-
less, usually it is supposed (see, for example, [8]) that the
Buimistrov-Pekar method yields the less exact values of
an energy of two-electron systems, in comparison with
the method of the optimized canonical transformation
offered by Adamowski [4] and up to day giving the lowest
values of an energy of two-electron systems (bipolarons
and D -centres, or bound bipolarons).

We shall show that at enough flexible trial electron
wave function (WF), the account of interelectron corre-
lations (WF is directly dependent on the distance between
electrons) the Buimistrov-Pekar method yields for all pa-
rameters of electron-phonon interaction the lower val-
ues, than the Adamowski method. The latter, alongside
with tested by us the simple for analytical calculations
system of functions, makes possible reliable numerical
calculations in the framework of the given method of an
energy of two-electron systems (D -centers, bipolarons
and exchanged-coupled pairs of paramagnetic centers)
in anisotropic crystals, and also in low-dimensional sys-
tems for arbitrary coupling of electrons with phonons. In
the earlier work [9], the given system of functions was
tested for the calculation of an energy bipolaron in crys-
tals with an anisotropic effective mass and inductivity in
the requirements of strong electron-phonon interaction.

2. Basic relation

Hereafter we will use the system of units in which 7 =1,
®=1and 2m* = 1. It follows that the unit of energy is %i®

and the unit of lengthis L = ‘/ h/ 2m*w0 . Inthese units a

Hamiltonian D™ of center in a crystal with an ionic bond
(or bound bipolaron in the treatment [4]) is

H= anaq -+ Z|: v? __+Vef (r; )] )]

i=1,2
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wherer; —is position of i-electron with an effective mass
m*,rq, is a distance between electrons. Let’s assume that
the Coulomb charge focused at the origin of the coordi-
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nates. The influence of polarization of a crystal on a
Coulomb field of a static charge is taken into account by
introduction static permittivity &. The high-frequency
permittivity €., enters in an operator the electron-elec-
tron interaction, aa (aq) —is an operator of birth (annihi-
lation) of a longitudinal optical phonon with a wave vec-
tor q. We assume that the frequency of phonons does not
depend from q and is equal to o, o is the dimensionless
Frohlich constant, V' —is a volume of a crystal.

In a covalent crystal the Hamiltonian of electron-
phonon interaction can be presented as

ef(r)——Z

4moc 1 7?
ﬂ——(ak+a_k)exp(lkr)

22
oo m 3)
8mph’c
where o — is a deformation potential constant, p—is a
crystal density, ¢ —is a sound velocity (mc? serves as the

energy unit for acoustic phonons, and the length unit is
hfmc).

2.1. The application of the Buimistrov-Pekar
method for calculating the energy of two-
electron systems in polar crystals with arbitrary
electron-phonon coupling

In a modern account the Buimistrov-Pekar method is re-
duced to apphcatlon to a Hamiltonian (1) canonical trans-
formation ¢®He ™™ with a unitary operator S =

= Z(Fl:(rl’rZ)ak — Fk (rl’rz)al_:) , where Fy (r,rp)-1s
k
a certain function of the electron coordmates Thus, the
followmg expresswns are valid: eSape’ = a; +F,
ea; PR S =a) P Fy k-
After the averaging on the phonon variables, we re-
ceive the following functional

H :£+2ViFk*ViFk +
n2 k,i

+ 2{ Vi- +vk (F explikr; )+ Fy. exp(ikr; ))}
+ ) FiFy. @
k

The expression (4) —is the initial one for further op-
erations.
Let’s choose the function Fj. as

F =Cr+1if(n,n), (5

where Cy, ¥, — are the variation parameters.
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Having substituted (5) in (4), varied on C and 9, (con-
trary to the Buimistrov-Pekar method in [4], the param-
eters Cj, and y, are picked in the given analytical form)
we receive the following expression for a functional of
the ground state of a two-electronic system:

Ebp:JS+‘]i’ (6)

Ji==Y Vi ——— %)

k 2k +Uka)k

Ui = (P2 | fe (1. m)| P12 (P12 |Lk (n.n)|¥i2) -
—-(¥2 |fk(r1’r2)Lk(r17r2)| Y1), ®)

LZ (1, 1) = exp(—ikn) + exp(—ikr,) , 9

U =(Y12 | e (1. r)| W12 (W12 |f:(”1””2)| Yo) -
~(¥i2 | Fi (i m) fi ()| W), (10)

where J; is the component which has appeared for an
intermediate coupling, and Jg — corresponds to the func-
tional D™ — center in the limit of strong electron-phonon
interaction

‘]s =T12 +ﬂvee _We +

+ D Vi [(exp(—ikry ) + exp(=ikry))| 2 (11)
k
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The expression (11) is written in the general form and
is valid both for optical and acoustic phonons, if we choose
for optical or acoustic phonons the corresponding units
of length, energies and constants of electron-phonon in-
teraction.

In the case of mixed ion-covalent binding a good ap-
proximation, can be obtained by summing the contribu-
tion of optical and acoustic phonons, which is valid as-
suming that the optical and acoustic branches of phonon
operators commute among themselves. Thus, passing in
(11) from the summation to the integration on the wave
vector, the phonon contribution to the complete functional
valid for ion - covalent crystals can be expressed as

2 @2
Yio¥s ,

2
1 1 a
Jf = —262 (— - —)J 3 qulzz\yzz3df
€ € I3

(12)

Choosing f; (ry,ry) = Ly (17, 7>) ,and, hence, Up=Up
we receive
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3. Numerical calculations

Let’s choose the two-electron VF as a linear combination
of Gaussian orbitals

W(r.r)=

X

1
VN2

N
x Y Ci(l+(=1)° Py)exp(-ayri = 2aymiry —azr3)
i=1

(14)

where P}, — is the electron coordinate permutation op-
erator, S =0 and S = 1 for the singlet and triplet states,
correspondingly.

WFs of the polaron and F center are chosen as

1

n
ZCi exp(—al-rz) s
i=1

where C;, oy, 0yy;, 0, 03; — are variation parameters,r is
the coordinate of an electron in the polaron, ry,r, — are,
accordingly, the coordinates of the first and second elec-
trons in bipolaron, N;,, N| — are normalization multi-
pliers.

In the limit 1 -0 (n=¢.,/gy, where €., and g —
are high-frequency and static permittivity correspond-
ingly) the connection of electrons with the Coulomb ker-
nel weakens and D™ centre becomes equivalent to the one-
centre bipolaron or Pecar bipolaron.

The one-center bipolaron configuration can be con-
sidered as the elementary two-electron system in a crys-
tal. At the same time, the functional of the given system
includes the most complex part describing nonlocal in-
teraction of the two-electron system with a phonon field.
From this point of view the adding of interaction with a
field of a static charge just slightly complicates numeri-
cal calculations of an energy spectrum of the bound
bipolaron or D -center.

The Table 1 lists the values of the free bipolaron en-
ergy Ep, obtained using the Gaussian functions (14)
(S=0).

For all the area of bipolaron existence, the Buimist-
rov-Pekar method yields the lowest values for the energy
of the ground state and the widest field of existence of the
free bipolaron in comparison with the best numerical
calculations of the given values carried out within the
scope of direct variation methods [10]. In Table 1, also
for comparison, given are the best for today numerical
calculations of the energy EZ4 3, carried out in [10]. An
amount of items in WF (145 for calculation of the
bipolaron energy are N = 5.
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Table 1. The values of the bipolaron energy in units 7@ calculated by the Buimistrov-Pekar method (Eg,) and that of optimized
canonical transformation ( E gp ) [10] for various parameters of the electron-phonon interaction. An amount of items in WF (14) for

calculation of the bipolaron energy are N = 5.

The energy of the free bipolaron ground state for various a values

a 6 7 9 20
n EBp Egp EBp Egp EBp ESP EBp Egp
0 -12.703 —-12.601 -16.234 -16.067 —24.927 —24.652 -111.928 —-110.504
0.01] —12.595 —-12.487 -16.053 -15.91 —24.650 —24.354 —-110.497 —-109.064
0.1 —14.598 —-14.500 -22.068 -21.756 -96.878 -95.335

Fig. 1 shows the dependencies of the free bipolaron
(1) and double polaron (2) energy, respectively, from pa-
rameters of electron-phonon coupling constant o calcu-
lated by the Buimistrov-Pekar method for n =0 in %@
units). Fig. 2 shows the phase diagram of the range of a
bipolaron existence in the plane of parameters {n,o}.

Considering the bound bipolaron, there appears the
additional parameter describing electron interaction with
the field of a static charge. Let’s express the energy of
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Fig. 1. The dependencies of the bipolaron (1) and double polaron
(2) energy respectively from parameters of electron-phonon
coupling constant o calculated by Buimistrov-Pekar method for

n =0in units Aw .
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D -center as a function of two dimensionless parameters,
constant of electron-phonon interaction Frohlich o=
o=e*[2rho)k, (where 1/ =1/e., —1/g,

rp = ‘/h/ 2m w, ho is a frequency of long wavelength
longitudinal optical phonons, m* — is an effective elec-

tronic mass) and the ratio of an effective Rydberg to 7@ —
R=m"e*[2e33w = (e [2rghwe)?.

The Table 2 lists the energies of the ground state of
D (S =0) and D centers, E-and E° correspondingly for
a number of the crystals. The binding energy is desig-
nated as Ep. All energies are expressed in terms of /®.
The superscripts L and A designate values obtained in
[3] and [4] correspondingly. The number of terms in WF
(14) and (15), at the calculations of the energy D™~ and
DO-centers were N = 12 and n = 12, correspondingly.

To estimate the acoustic phonons contribution to the
energy of D™-centers in a covalent crystal, we shall choose

the typical for similar c3rystals parameters. So in silicon
the value 2a%/( pczag Ry")=~0.065 (where a, is the
effective Bohr radius) and the account of the condenson

effect reduces in the lowering the energy of the ground
state of D™ centres up to 1.064Ry*. In crystals with smaller
effective Bohr radius, the contribution of acoustical
phonons can play more considerable role.
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a
Fig. 2. The phase diagram of the range of a bipolaron existence
in the plane of parameters {n,a}.
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Table 2. The energy of the ground state of D~ center (the bound bipolaron). The superscripts L and A designate values obtained in
[3] and [4], correspondingly. The number of terms in WF (14) and (15), at the calculations of the energy D~ and D%-centers were

N =12 and n = 12 correspondingly.

The energy of the ground state of D~ center (the bound bipolaron)

o R ho,meV  E- E, Ep EY E;/EY

CdTe 0.272 0.657 21.08 -1.266 -0.965 0.029 0.693 0.042
CdS 0.529 0.783 38.0 -1.931 -1.363 0.039 0.834 0.047
ZnSe 0.45 0.924 31.4 -1.926 —1.428 0.048 0.978 0.049
AgBr 1.64 1.68 15.4 -5.656 -3.818 0.198 2.178 0.091
-5.637% -3.817% 0.180% 2.177% 0.083L

0.1324 2.1664 0.0614

AgCl 1.9 1.9 24.4 —-6.668 —4.483 0.285 2.583 0.110
~6.643L ~4.482L 0.261L 2.582L 0.101%

~6.6624 0.2024 2.5604 0.0784

CdF, 2.53 1.274 50.0 -7.357 —4.510 0.317 1.98 0.016

To determine of the flexibility of the considered func-  References

tions, we calculated the ground state energy of a nega-
tively charged atom of hydrogen H~. The relevant en-
ergy has made —1.055470 (n = 28 in (14)) in comparison
with the exact value —1.055502 [11].

The problem deserves a separate considerations is de-
served of the possibility of the metastable triplet states of
D -centres existence. The special importance of the given
problem gains owing to the lack of the bound triplet states
of D -centers (that is similar to lack of the bound excited
states of the ion H~ [12]) is the one of the key require-
ments for the realization of a method of detection of a
two-electron system spin state in the quantum computers
based on electron spin resonance [5]. The proposed in [5]
process can be briefly described in the following way: the
application of an electric field along the line connecting
the exchange coupled pair of shallow paramagnetic
centers, that are in a singlet state, can result in the transi-
tion of the charges on the one of Coulomb centers and
formation of D -center. In the triplet state, the similar
transition is impossible. The donors remain neutral, and
the charge transport from center to center is absent. Just
the latter makes observable a spin state of the system.

The variation calculations using the functions (14) for
S =1 have shown that for all the area of electron-phonon
interaction parameters, including the limiting case of
strong coupling (¢ > 20) the relation E »TEp <Ep;
(where E,, Ep, Ep,—is energy of a polaron, neutral do-
nor and D-center in the triplet state correspondingly) is
fulfilled. I.e. in the continual approximation the elec-
tron-phonon interaction does not reduce to formation of
the metastable triplet state of D -center, in complete anal-
ogy to the theorem of lack of bound excited states of a
negatively charged atom of hydrogen H™ [12].
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