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Abstract. We have studied theoretically the combined effect of quantum confinement and
“dielectric enhancement” on the characteristics of the exciton ground state in quasi-1D silicon
nanowires. Consideration has been made within effective mass and classical image force
approximations. As a result, exciton binding energy, total energy of the exciton transition,
radiative recombination time, intensity and internal quantum efficiency of the exciton photo-
luminescence (PL) in quantum wires (QW) have been obtained as functions of wire thickness,
dielectric constants of adjacent materials, conduction and valence band-offsets. It was shown
that even at room temperatures and moderate intensities of laser excitation the quantum
efficiency of the exciton PL can achieve very high values (tens of %) in the case of extremely
thin QWs (with thickness 1+3 nm). Moreover, according to theory, the exciton recombination
time and the quantum efficiency have to be oscillating functions of QW thickness in thickness
range 1+5 nm due to the indirect band-gap nature of silicon material.
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1. Introduction

In low-dimensional heterostructures, characteristics of
electron, hole and exciton states are determined by quan-
tum confinement conditions, such as nanostructure size
and form, band-offsets at the heterointerfaces, dielectric
properties of the adjacent media, etc. Different approxi-
mations are used considering such structures. One of the
most popular is the effective mass method (it works well
up to characteristic sizes of about 1-2 nm). Besides, in a
number of works the approximation of infinitely large
band-offsets (infinitely high barriers) is used. Within such
approximation, it is possible to account for the “dielec-
tric enhancement” effect (influence of interface polari-
zation on the exciton binding energy) [1-3], but the ap-
proximation is too crude to give right values of quasi-
particle energies in real structures with finite barriers.
Contrary, in other models the effect of finite band-offsets
is considered (see e.g.[4,5]), but only supposing no dif-
ference in dielectric constants of adjacent materials. This
approximation allows avoiding difficulties connected
with nonphysical divergence of classical electrostatic
potential at heterointerfaces. In the present work, we have
made calculations for silicon quantum wires taking into
account both “dielectric enhancement” effect and finite
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band-offsets for conduction and valence bands at
heterointerfaces. Classical electrostatic potentials in the
near vicinity of heterointerfaces (0.1-0.2 nm) are replaced
in our model by linear extrapolations from more distant
regions at both sides of interface. Such extrapolations
allow to operate with smooth and continuous total
potentials (sum of the electrostatic and band-offset
potentials in the whole actual region including interface.
Due to practically complete compensation of the contri-
butions from thin transition layers at opposite sides of
interface into self-action energy shifts, the final results
obtained in our approximations should be only slightly
different from more complicated consideration (e.g., when
spatial dispersion effects are taken into account).

2. Wave functions and ground state energy of
QW Wannier-Mott excitons

In our model system, we consider isolated cylindrical
quantum wire formed by material / around QW and ma-
terial 2 inside QW. Parameters of the system are as fol-
lows: isotropic effective electron masses m,; and m,; ,
isotropic effective heavy hole masses n1,; and my,; , di-
electric constants €; and &, conduction and valence band-
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offsets at heterointerfaces U, and U, QW thickness d (or
radius R = d/2). We consider crystal orientation that pro-
vides additional channel for radiative transitions in indi-
rect band-gap materials like silicon. It is the geometry
when four of six wave vectors K; (i = 1...6) correspond-
ing to the bottoms of the lowest X-valleys in the conduc-
tion band are normal to the wire axis (z-axis in our nota-
tions). The wave function of the ground exciton state (for
example, with K, vector directed along X-axis) can be
written as ®g =L 2exp(iK}Z)exp(iKpix,)¥(2,0e.P1).
where L is the QW length and Z is the exciton center-of-
mass coordinate along the wire axis. In this case W-func-
tion of the internal motion of the electron-hole pair in the
ground exciton state has to be a solution of the following
Schrodinger equation:
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where p; =+/x? +y2 A, =d* 1dp? +(1/ p,)(d!dp,),i=
= e(h), z = z, — z;. Potential energies Uy(p,) and U(py,)
describe electron and hole self-action due to interfaces
polarization, U,(z,p.,p; ) includes both direct Coulomb
electron-hole interaction and indirect interaction via in-
terface polarization. Bulk material characteristics of ef-
fective mass method U,(p,) and U,(p;,) are the bottoms of
conduction and valence bands as functions of distance
from the wire axis. For material 2 inside QW (p < R)
U. = 0and U, = Owhile for material / around QW (p > R)
U. = U,and U, = U, Energy E, is the bulk band-gap of
amaterial 2. Using Green-function method [4] it is possi-
ble to obtain following explicit expressions for all poten-
tial energies in (1):
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where K, and [,,, are the modified Bessel functions. Elec-

tron-hole interaction energy can be expressed as
Uen(z, Pe»Ph)=_[COS(nZ)Weh(n, PesPr)dN . For elec-
tron and hole outSide QW, when both p, and p;, >R,
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For electron inside QW and hole outside QW or for
inverse situation
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where € = (&; + &)/2. Finally, for both electron and hole
inside QW, when p, and p, <R,
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In expressions (4)—(6) p~ =p.and p.=p; if p,<p;
or p.=ppand ps = p,if p, < p,. Taking into account the
equality [6]
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and transversal isotropy of the ground state wave func-
tion it is evident that first term in the right-hand side of
Egs. (4)—(6) is responsible for direct Coulomb interaction
between electron and hole while second describes indi-
rect interaction via interface polarization (image force
potential).

We have calculated the exciton spectrum using wave
function decomposition over eigenstates of a model quasi-
1D system. Within this method wave functions of con-
fined exciton states in QW are constructed from the rel-
evant eigenstates of a model Hamiltonian for which trans-
versal and longitudinal motions of carriers can be sepa-
rated:
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In the above expression C,,, 1/ j are the expansion
coefficients, n(/) are the radial quantum numbers of con-
fined electron (hole) states, m(k) are the azimuthal quan-
tum numbers of these states, j are the quantum numbers of
bound electron-hole states in a model system with quasi-
1D Coulomb interaction. The accuracy of this method is
limited by a number of terms in the wave function decom-
position. For the exciton ground state only terms with
m =0and k = 01in (8) are important.

Wave functions x i (p;) for carrier transversal mo-
tion in rectangular potential gaps and the corresponding
eigenenergies E; can be easily found in a standard
way. E.g. for the states with m = 0 (k = 0) the following
eigenvalue problem has to be solved:
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[_—Ai +Ui]%il(pi) =E;xi1(p;) for p; >R, and
Zmil
)
h2
———Axin(p) = Eixi2(p;) for p; <R,
2mip
with boundary conditions y;(R,)=x;»(R_) and
A/my) x'n (R =A/mpp) x'in (R_) . Potential energy
U.in (9) is the renormalized barrier height, U, =
=U,; —-U,(0),where U (0) is the energy shift at the cyl-
inder axis due to carrier self-action via interface polari-
zation:
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Appropriate solutions are y; =a;Kq(k;;p;) and

Xio = al'z]()(kizpi) with kil = "2(0, _Ei )ml-l /h and

kip = ,/2E,~mi2 /h. Here E; are the energies measured
from the renormalized (by self-action energy shifts U(0))
conduction (i = ¢) and valence (i = /&) band bottoms of
bulk material 2. They can be found from the following
equation:

@k;l JO(kiZR) Kl(kilR) _
my kip Jy(kipR) Ko(k;R)
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Coefficients a;; and a;, can be determined from the
boundary conditions and the wave function normaliza-
tion condition 27rj:pli2(p) dp =1, where x; =xi
ifp>Rand %;
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=Xin ifp<R.

As to the longitudinal (along the wire) relative elec-
tron-hole motion, it is convenient to use eigenfunctions
of the following model 1D Schrédinger equation :

n? d?
—l:———WC(Z)]F (2)=E;F;(2), (12)
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where second term in square brackets WC
=—¢%/ & (|z| + a ) approximates direct Coulomb interac-
tion W, = —e?/ &, |r,—1;,| between electron and holein a
wire, m»; is the reduced exciton mass in material 2, m,, =
= meomy [(me + my;). The non-zero positive parameter a
in I/INIC term allows to operate with complete system of
exciton states in QW, including the exciton ground state
[7]. If a = 0, the binding energy of the ground state
tends to infinity while corresponding wave function trans-
forms into &-function. For this reason the approx1mat10n
of Coulomb interaction by the term —e /82| | leads to
the loss of the lowest state (and, as a result, to incom-
pleteness of the eigenfunction system); calculations made
with such conventional 1D Coulomb interaction (see, e.g.
[8]) cannot be satisfactory .

Final results should be independent of a specific value

of the parameter a. However, it is convenient to operate
with optimized value of this parameter for quick conver-
gence of the results. If the lowest confined exciton state in
QW is a subject of interest, then the value of the param-
eter « should be calculated from the requirement for best
convergence of the results just for this state. It is equiva-
lent to the requirement of best approximation by I/INIC -
term of the real Coulomb interaction averaged over car-
rier transversal motion in the ground state. Practically,
it is sufficient to require a coincidence between WC value
at z = 0 and the analogous value of the averaged Cou-
lomb interaction. For bound e-4 states the solutions of
Eq. (12) can be expressed via the Whittaker functions [7],
Fi(2)=C Wa 1/2 (z)[z /‘z” where C; is the normali-
zatlon constant ,pisthe par1ty index (p 1 for odd states
andp 2f0r even states), =(- E; /EB)_ EB=
ety 12e307),7 = 2(| + a)/((x rahig = h2ey 1€ liny)
From the continuity of the wave functlon Fandits flux at
z =0 the dispersion equations W, 1, (2a /(rgor)) =0 for
evenand W 1/, (2a/(rger)) =0 for odd states can be ob-
tained. These dispersion equations determine quantum
numbers ¢; and corresponding eigenenergies E;.

With the above basic system of elgenfunctlons the al-
gebraic equations for the decomposition coefficients
Cyun i, take up the following form:

(E- Eg - Eemn - Ehkl - EJ )Cmn!ij -
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(13)

where 71...) are the matrix elements of the original Ham-
iltonian with real 3D Coulomb interactions in the con-
sidered basis of model wave functions. Energy spectrum
Ey (N = 1,2,...) of the exciton states in QW can be ob-
tained by solving secular equation for this system; corre-
sponding coefficients Cn’;’n k, j Are determined by (13) and
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normalization equation for the wave-function
YN (zpespp) - .

For a verification of the results obtained by the above
described perturbation theory method (for shortness re-
ferred in the following as matrix method) we have calcu-
lated also the energy characteristics of the ground exciton
state in QW by variational method. We have chosen the
variational ground state wave function in the form of
W (2000 P1) = F(Xe(p)(py) with F()=a!"?x
xexp(-a1z1), where o is the variational parameter,
Xe(p.) and xj(py) are the wave functions of the lowest
confined electron and hole states in a wire which can be
found from (9). Eigenenergies E; of the confined states
measured from the renormalized conduction (i = ¢) and
valence (i = /) band edges of bulk material 2 can be found
from the following equation:

mip kiy JokipR) Ky (ki R) _
mjy kip J1(kppR) Ko (k;R)

(14)

Despite strong peculiarity at z = 0 in the first deriva-
tive of the variational wave function the asymptotic ex-
pression for the full energy is an analytical function of the
parameter o, E(a)= E, +2U;,(O)+E, +E, + E, (00) +
+U,, +Ug, . Here E, is the exciton binding energy, U,,
and Uy, are the contributions from electron and hole
renormalized potentials, which include the coordinate
dependent rests of image force potentials. For E | the fol-
lowing expression can be obtained:
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X Py, Zﬁ (pp)dpy, . Self-action energy shifts are given by the

expression U = ZEJpxiZ(p)ﬁs(p)dp , where (75 (p)=

=U,(p)-U,(0) inside and U,(p)= U, (p) outside the
wire. The problem of nonphysical divergence of self-ac-
tion potential energy U (p) at p — R can be bypassed
using linear {J . (p) extrapolations in thin interface layer
(0.1+0.2 nm at both sides of interface) from more distant
regions. Transition layer boundaries can be found ap-
proximately from a requirement for potential smoothness.
In the case of & > g it transforms into requirement of
equal U . (p) slopes at opposite boundaries of the transi-
tion layer and coinciding values of the extrapolated full
one-particle potentials U (p) + U, (p) , at the interface.
For &, < g the transition layer boundaries can’t be deter-
mined in that way. Nevertheless, in this case too, it is
possible to use classical image force potentials up to ~0.1
nm vicinity of the interface and linearly extrapolated
values of potentials in thin transition layer like in [9].
Calculations have shown that after explicit evolvement
of U,(0) energy shifts (inside QW) the contribution into
the total energy of remaining parts of self-action becomes
small enough comparing to other terms even at large po-
tential energies within transition layer. Physically, itisa
result of practically complete compensation of remain-
ing self-action contributions from opposite sides of the
interface, so that the above extrapolations (which pro-
vide finite values of potential energies at the interface)
seems to be justified. Infinitely large values of potential
energies at the interface are in fact the result of the clas-
sical approach in which abrupt change in dielectric con-
stant at the interface is assumed. This approximation
becomes invalid for the carriers in transition layer in the
near vicinity of the interface. To solve this problem more
strongly and obtain realistic continuous finite electro-
static potentials in transition layer the effects of spatial
dispersion should be taken into account. However, in this
case consideration becomes much more complicated.
Moreover, it is evident that such complicated considera-
tion can give only small corrections to our results due to
outlined compensation effect in the transition layer.

Fig. 1 illustrates the calculated potential gaps (thick
solid curves) for electrons and holes in Si-SiO, QW struc-
ture with account of self-action image force potentials in
a particular case of x = 1.5 and wire diameter d =1.5 nm.
Traditional potential energy diagram for the QW struc-
ture with conduction and valence band-offsets at wire
walls is shown by thin solid line, the bottoms of the lowest
conduction and valence subbands by dashed lines, and
squares of transversal motion wave functions in these
subbands by dashed-dotted curves (the last in arbitrary
units). It is evident from this figure that interface polari-
zation shifts substantially bottoms of potential gaps and
subbands in QW structures increasing e-h transition en-
ergy by the value of ~2U; (0).

Dependencies of the exciton binding energies on the
QW diameter d are shown in Fig. 2. Calculations have
been made for the parameters of a material inside QW
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Fig. 1. Model of silicon quantum wire in SiO, matrix.
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Fig. 2. Binding energies of the Wannier-Mott exciton in QW as
functions of wire diameter. Numbers at curves are the corre-

sponding dielectric constants & of a barrier material..
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close to those of silicon (effective electron mass m,, =0.25
my , effective heavy hole mass my, = 0.5 my , dielectric
constant & =11.7). The bulk value of exciton binding
energy in this materialis £, =16.6 meV. As to the bar-
rier region, the parameters of SiO, material have been
used except effective dielectric constant £;, With this di-
electric constant as a variable parameter we account ef-
fectively for more complex cases, when besides adjacent
SiO, layer at QW there are other components in a system
(e.g., vacuum pores in porous silicon). This figure dem-
onstrates substantial role of both confinement and dielec-
tric enhancement effects which are responsible for very
large (tenth of eV) exciton binding energies in QW
nanostructures.

To demonstrate the total effect of quantum confine-
ment, finite barrier height and interface polarization on
the exciton ground state characteristics, we have consid-
ered silicon QW in SiO,, matrix. In accordance with the
data of [10,11], the band gap of SiO, material varies in a
wide range from ~1.7 eV at low oxygen content to ~8.9 eV
at x ~ 2. For SiO, material we have used linear interpo-
lations m1,; = (0.25 + 0.125x)mg and n1y,; = (0.5 + 0.25x)m
between values of effective masses at x = 0 and x = 2[12].
Dielectric constant €; of SiO, material at different x val-
ues has been determined numerically from the data pre-
sented in [11]; it changes from g ~2.1atx =2 to g ~11.7
at x = 0. The band-offsets in Si-SiO, structure are 3.2 eV
for the conduction band and 4.6 eV for the valence band
[12]. At arbitrary x values band-offsets have been deter-
mined from the data for SiOx band gap [10,11] suggest-
ing that ratio U,/Uj, = 3.2/4.6 is approximately valid at
all actual x values. Fig. 3 illustrates results for silicon
quantum wires in SiO, material. Both variational and
matrix methods have been used for a comparison. No-
ticeable decrease of variational values of exciton bind-
ing energy at small QW thicknesses is a consequence of
increasing failure of the system description at such thick-
nesses by our simple variational function. At small thick-
nesses more complex variational function should be used.
Accounting for finite barriers, at extremely small d it must
transform into wave function of bulk exciton.

Dependencies obtained by the perturbation (matrix)
method are more realistic because their improper behavior
manifests at smaller QW diameters than in variational
method. With larger systems of model Hamiltonian
eigenstates further improvement within matrix method is
available. Despite discussed limitations, in actual range
of QW widths the variational function and perturbation
theory results are close to each other and can be consid-
ered as sufficiently reliable.

In Fig. 4 exciton and lowest e-/ recombination ener-
gies in Si-Si0, QW are compared with the energies ob-
tained assuming infinitely high barriers for electrons and
holes. Thickness dependencies of the band gap between
lowest conduction and valence subbands are shown by
solid curves, while analogous dependencies for the exciton
transition energies by dashed curves. Curves / correspond
to the case of finite barriers while 2 — to infinitely high
barriers. It is seen from this figure that at small wire di-
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band off-sets while curves 2 to infinitely large band off-sets.
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ameters effective band gap in finite barrier QW is consid-
erably narrower than in the idealized case of infinitely
high barriers. It is seen also that electron-hole bounding
into exciton state leads to a substantial additional lower-
ing of the energy of radiative transitions in QW.

3. Radiative recombination rate of the excitons
in QW

The radiative recombination rate have been calculated
using standard scheme. Initial state in QW system is char-
acterized by empty electromagnetic field states and oc-
cupied exciton state with energy E of internal motion,
wave vector K of exciton center-of-mass motion and po-
larization o, while final - by empty exciton states and
one photon state characterized by the energy A, wave-
vector M and polarization A. The probability of transi-
tion between these states per unit time in accordance with
“golden rule” is expressed by the formula Wi y 2.6 =

_(zn/h)|VK,]a,M| S(E+h’K%/2M,, —hw), where

VK nw.10 18 the matrix element of the exciton-photon

interaction operator, M, = m, + m, is the average
translational exciton mass. Single-particle approxima-
tion of multi-electron problem is used in the following.
We assumed also that only two bands contribute to
radiative recombination process. The initial state wave
function of electron subsystem, when all electrons occupy
valence band states, can be written in a form of
antisymmetrized product of Valence band Wannier func-
tions [13], W, (r;, 1y, ... Ty)= q v(r;), where
q; are the coordinates of crystal sites, r; are the coordi-
nates of electrons (spin variables are omitted for simplic-
ity), total number of sites N, = N, A is the antisymmetri-
zation operator, a, q,v are the valence band Wannier func-
tions localized at a site q; and characterized by polari-
zation index n = 1,2,3 . For the case of one electron
excited into conduction band state the electron subsystem
wave function in exciton representation [13] can be writ-
ten as Wi (0. 1y, .. Ty) = 3 F(BYDR 5 (1,15, .. Ty),
where B is the distance between sites at which electron
and hole are localized,

o p=N" 2sz exp(KR)X Ryp (X, 1. Ty) -

s

wave function X§ p +p corresponds to the state with an

electron excited from the o-polarized valence Wannier state
atasite Rinto conduction band Wannier stateatasite R+ B,

o _ AI I \% C
XR,R+B (I'l . I'2 ,...,I'N) =A v aqi #R V%0 (I'] )aR+B (rj,ij )

For the ground exciton state in QW, when longitudinal
and transversal motions of carriers are completely sepa-

rated, w_ takes the following form:
2 -1/2 .
Y Kopo = ZF(ﬂH)NII : 2‘,‘3’41)(11(“1?”)><
Bi R

XY exp(iK,8)Ze (8) Y, 1 (B)X
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(16)
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X AH aqi¢R||+t,v¢0' (I'] )aR||+ﬂ||+S (I'] #J );
v

where s and ¢ are the transversal coordinates of sites, R,
are the crystal sites coordinates along QW, B is the dis-
tance between electron and hole along QW , N is the
total number of sites along QW. Within such approach
F, ¥, and } aretheenvelope functions introduced in
previous section, but smeared oversites, i.e. Yoz =bXe(n)
F =-/bF , where b is the site edge length.

Operator of the electron-photon interaction is ex-
pressed by a standard formula V = —en/(mc)Y, 1A P K
where A(r) is the vector-potential of electromagnetic field
atapointrand p; = —inV; is the momentum operator of
the /-th electron. For a quantized electromagnetic field the

vector-potential is expressed as A(r;) = /27 /[(Vo) x

X(c/n)ey exp(—inr;), where Vis the system volume, wis
the photon frequency, n = (@wn/c)e;, is the photon wave
vector, e is the unit polarization vector, n is the refrac-
tion index.

Taking into account that Wannier functions are
strongly localized at corresponding crystal sites the ma-
K|.Kox.0 ~ af-
ter integration over all electron variables and replace-
ment of the remaining sum by the integral reduces to the
following form:

2nhLo o
VK,n,w,/l,G =—1’ v F(O)SK”,,]”ML <CleydlV,o >

(17)

where L is the QW length, d = er is the electric dipole
operator. Transversal component of the matrix element is

trixelement Vie -9 5 =<Wo 1Vypa IV

expressedas M | = f expli(Ko, —n )l (P (p)d%p .

Due to negligibly small transversal photon wave vectors
n, comparing to the Ko, value the last formula can be
written as

My =27 [ 19 (Koxp)2e (P11 (P)pdp.
0

(18)

If total probability of QW exciton radiative recombi-
nation is a subject of interest we have to summarize con-
tributions from all states in the exciton 1D-subband and
integrate the result over all possible final photon states
accounting for all conservation laws:

W = #JdWIIJnLdWLdea(w_%\/nl% +n1 JX
5 2 B2
x; Z 277? I

6| E+ —hw
o K|| 2

VK” ,T|” 0,0 (hw)’

ex

(19)
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where f'is the exciton distribution function, integration
over @ is introduced to account for photon dispersion
low. With 2/3 weight coefficient accounting for the frac-
tion of degenerate valleys from which radiative transi-
tions can occur in QW and using Boltzmann distribution
for the excitons in 2D-subband the final result for the
probability of exciton radiative recombination per unit
time is expressed by the following formula:

1/2 WE
fic

where p? is the square of the matrix element <C|d;|V>,
F(7) is the wave function of mutual electron-hole longi-
tudinal motion (see previous section), E is the exciton
recombination energy, 7'is the temperature. At large wire
diameters the matrix element M | turns to zero (only
phonon or impurity assisted transitions contribute to the
exciton luminescence in bulk silicon). However, in thin
QWs the probability of exciton luminescence without
phonon (or impurity) assistance increases substantially
due to increased overlapping of electron and hole wave
functions of transversal motion. An excess pulse ~ 7K,
in this case is transferred directly to the QW as a whole.
Fig. 5 demonstrates the calculated dependencies of
the reduced exciton radiative lifetime 7,, on QW diam-
eter. Calculations were made using value 'L'fjr =107s of
background (LO-phonon or impurity assisted) radiative
recombination time of excitons reported in the literature
for high-quality silicon material and the value
Kox = 0.85-(2nla) for the X-valley distance from the
center of Brillouin zone (silicon lattice constant
a = 0.54 nm). The reduced exciton radiative lifetime 7,
is determined by the reciprocal law relation 1/7,, =
=1/ T)bcr + W,QW. Oscillating character of the dependen-
cies 7, (d)and M | (d)is associated with the interference
between X-electron and I'-hole wave functions in the re-
gion of their transversal localization (oscillations should
be absent in the case of direct band gap materials). The

o h?
M, .kgT

16 p2

weV =—L_F200
r o 7 0)

3
] M3, (20)

1x107

_
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>

T T

-
S
@
T

Exciton radiation time 7,,, s

1040 1 1 1 1
1 2 3 4 5

Quantum wire thickness d, nm

Fig. 5. Exciton radiative lifetime 7., as function of Si-SiO, QW
thickness. Curves: /] —x=1.5,2-x=1.75, 3 -x=2.
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interference effect becomes most pronounced at QW thick-
nesses d comparable with 1/ Ky, value.

4. Quantum efficiency and intensity of the
exciton PL in QW structures

We consider here the exciton luminescence which results
from electron-hole (e-/) pairs generation by laser irra-
diation with photon energy exceeding QW band gap but
lower than band gap of barrier material. Excited elec-
trons and holes relax quickly to the lowest X- and I'-val-
ley states and due to the Coulomb interaction have chance
to create Wannier-Mott excitons considered in previous
sections. The exciton states under certain conditions can
serve as an important channel for the radiative recombi-
nation processes.

A theoretical analysis of the exciton luminescence in
semiconductors at high temperatures was made in [14]. It
was shown that the exciton mechanism of edge lumines-
cence could play an important role manifesting itself at
least in comparable intensities of exciton and interband
radiative transitions. Note that at quasi equilibrium con-
ditions the relationship between exciton concentration
n, and concentration of free electron-hole pairs n,.; is
governed by the parameter E,/kgT where E | is the abso-
lute value of the exciton binding energy in the ground
state. As E,/kpT grows (e.g., due to quantum confine-
ment and dielectric enhancement effects in QW systems)
the ratio n,/n,., increases as well. This leads to an en-
hancement of the excitonic component of the recombina-
tion processes. The relationship between exciton and elec-
tron (hole) concentrations at quasi-equilibrium takes up
the following form:

_ /*
n,=npln,

21)

where n,, n and p are the total non-equilibrium 1D con-
centrations (particles per unit QW length) of excitons,
electrons and holes, respectively,

E)C
= Nexp| _k_T .
B

Here N = ‘/ Lk BT/(27rh2) , W 1s the reduced exciton

mass. Expressions (21) and (22) can be obtained from the
equality of quasi-chemical potentials of the exciton and
electron-hole subsystems under quasi equilibrium condi-
tions. Taking into account that at intense homogeneous
laser excitation the concentrations of excess carriers are
equal, Ap = An, and that total concentrations are deter-
mined practically by the excess carriers (p~Ap, n~An)
the conservation laws for the fluxes of e-/ pairs and
excitons reduce to the following forms:

(22)

p __p .

—=———Yp-n nx]-i-loadc, (23)
dt p

dn

—X =X iylp-n"n ]
dt R y p X1
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where d is the QW diameter, ¢ = kd (k~ 1) is the form-
factor, 7, and 7, are the lifetimes of e-4 pairs and excitons,
respectively, yis the probability of electron-hole asso-
ciation into exciton in QW, pis in fact the concentration
of excess electron-hole pairs. Eqgs. (23) are valid only for
the case of uniform excitation. We also suppose that the
times of electron (hole) relaxation in the conduction (va-
lence) bands are much smaller than 7, and 7,.

Under steady-state conditions the integral intensity
of the exciton luminescence in QW is expressed as

J =n, /(t.c), while the internal quantum efficiency as
n=J/(odly). For a concentration of e-h pairs substan-

tially exceeding the concentration of equilibrium carri-
ers, the following formula for 1 can be obtained:

2 2 ®

T T n T
n= X X - |+4=X +

Txr Tp Tyl ooed Tr

1-2
n*

T
L (24)
Tp 7 Ipocd

In Fig. 6 the dependencies of internal quantum effi-
ciency of the exciton luminescence on QW thickness are
shown. They have been obtained using following param-
eters: nonradiative recombination exciton lifetime
T =100
time of excitons Ti)r =1073s, carriers recombination life
time 7, =107 s, absorption coefficient & = 104 cm™,
intensity of the exciting light I, = 108 cm 257! | tempera-
ture 7= 300 K. The total reduced exciton lifetime 7, is
determined b rec1proca1 law relation 1/7, =1/ nr +
+1/ Tb’ + W, W where W is expressed by (20)

Values of 11fet1mes T and 7" used in our calcula-
tions are those reported for bulk silicon. In general, they
can be functions of nanostructure thickness too (like
w2%). Background lifetime 72" for exciton radiative
recombination with phonon participation seems to rise
in NSs compared to its bulk value due to phonon spec-
trum quantization and corresponding decrease of exciton
scattering. With this lifetime fixed we underestimate the
quantum efficiency, but really in the case of Si-SiOy
nanostructures it should not be an important factor due
to expected large szr values in comparison with sub-
stantially decreased exciton radiative recombination life-
times. Situation with nonradiative recombination rates
is more complex due to existence of different channels for
nonradiative recombination. The rate of nonradiative
multi-phonon recombination seems to decrease with NS
thickness for the already outlined reason, but even more
important in this case is a relative decrease in NSs of a
number of bulk centers of recombination (in extremely
narrow NSs with 4 — 0 such centers can be absent at
all). However, instead of bulk centers a new “surface”
channel of nonradiative recombination should come into
force. The last channel can be suppressed by compensa-
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s, background radiative recombination life-
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Fig. 6. Thickness dependencies of the internal quantum effi-
ciency of the exciton luminescence in Si-SiO, quantum wires.
Intensity of laser excitation Iy, = 108 cm2 s, Curves: I -
x=0.252-x=0.75 3-x=1.00, 4-x=1.25,5-x=1.50,
6-x=1.757-x=2.00.

tion of dangling bonds at the interface. In the case of
silicon it can be done by hydrogen or oxigen passivation.
One more channel contributing to the nonradiative re-
combination dependence on NS width is associated with
the Auger process, but it becomes important at higher
intensities of laser excitation.

The above speculations justify to some extent the ap-
proximation of structure-independent rates of back-
ground and nonradiative recombination. With all recom-
bination rates being structure-dependent the exciton lu-
minescence characteristics, of course, will deviate from
those calculated in the present work, but due to the fact
that radiative recombination rates in indirect gap NSs
with d < 3 nm approach those of direct gap materials the
changes most likely will reduce to a smoothening of pe-
culiarities in the calculated dependencies.

An oscillating character of these dependencies is dic-
tated by oscillations in the matrix element (18) due to the
interference of the electron and hole wave functions within
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region of their transversal localization. The overall in-
crease of quantum efficiency with QW thickness decrease
occurs due to lifting a restriction on electron transitions
from X-valley states of conduction band into I'-valley
states of valence band. Such radiative transitions become
possible due to a substantial increase of the probability
of exciton pulse transfer directly to quantum structure as
a whole at sufficiently small thicknesses d (< 3 nm). In
the case of Si-SiOy quantum wires with composition pa-
rameter lower than x ~ 1 quantum efficiency achieves
maximal values at d ~ 1.5-1.7 nm and then falls at
smaller d. This effect is directly associated with a de-
crease in effective barrier height.

In Fig. 7 thickness dependencies of the integral inten-
sity of exciton luminescence in QWs are shown for the
intensity of laser excitation I, =10'8cm2s"!. All nota-
tions in this figure are the same as in Fig. 6. In compari-
son with quantum efficiency dependencies an additional
shift of maximum luminescence intensities to the region
of larger QW diameters is observed.
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Exciton luminescence intensity, 10'“photons/(cm?-s)

Wire diameter d,nm

Fig. 7. Thickness dependencies of the integral intensity of the
exciton luminescence in Si-SiO, quantum wires. Intensity of laser
excitation 7y = 1018 cm 257!, Curves: / —x =0.25, 2—x =0.75,
3-x=100,4-x=125 5-x=150,6-x=1.75 7-x=2.00.
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Finally, it is of interest to calculate the exciton PL spec-
tra and to compare them with the experimental data for
porousssilicon. In real systems contributions from QWs with
different thicknesses d should be taken into account. Distri-
bution of QWs in porous silicon can be described b;/ the
function 9F (d) =1/(cd+27t)exp[—(Ind —Indy)> /25> 10d
[15]. To account for possible apparatus function influ-
ence and scattering effects (by lattice vibrations, inter-
face imperfections, etc.) the energy conserving delta func-
tion in (19) has been replaced by Lorenz function
F/(27t[(E—hco)2 +1? /4]). Converting calculated
E(d,x) dependencies for Si-SiO, QWs into d(E, x) depend-
encies and averaging final result over possible param-
eters x in the oxidized layers around QWs in porous sili-
con the spectral density of the exciton PL per unit QW
can be expressed as

a_1= h . J(E,x)alnd(E,x)x
00 ¢ o (21)° oFE

(Ind(E,x)—Ind,)?

xexp| —

_(x—xo)2 r

OE. (25)
202 |(hwo-E)?+T%/4

In Fig. 8 the calculated PL spectra are compared with
experimental ones [16] measured in different samples of
porous silicon. From the fitting of PL spectra the distri-
bution of quantum wires over their thickness and oxidi-
zation parameter x can be found (e.g., thickness distri-

1.0¢ {
3 Y
< 0.8f ’E
£ & 2
L
2 06l & !
- o
—
~
0.4}
1 2 38 4
Diameter, nm
0.2
:hhl‘h rY =

08 1.0 12 14 16 18 20 22
Energy, eV

Fig. 8. Calculated (solid) and experimental ([16], dashed) PL
spectra of porous silicon. Corresponding QW thickness distribu-
tions are shown in the insert. Fitting parameters for the curves:
1-(dy=37nm,0=1.16,x9=2, 0,=0.25); 2 - (dy=2.8 nm, 0 =
=1.16, xo = 1.65, 0, = 0.25); 3 — (dy = 2.1 nm, o = 1.14, xo = 1.58,
0,=0.2); 4 (dy=1.8nm, 0= 1.12, xo = 1.44, 0, = 0.1).
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butions corresponding to different PL spectra are shown
in the insert). Calculating all PL spectra we used the fixed
value ~25 meV of the damping parameter /" (this value
corresponds approximately to the room-temperature
value of k7). Other parameters of fitting are given in
figure.

5. Conclusions

It has been shown for Si-SiO, quantum wires that in the
case of high barriers realized at x ~ 2 the intensity of
exciton luminescence rises substantially with NS thick-
ness decrease. In NS with d ~ 2 nm or smaller the inter-
nal quantum efficiency of exciton luminescence can
achieve almost 100 % even at room temperatures. For
lower barrier heights the situation is more complex. For
x <1 the quantum efficiency of the exciton luminescence
achieves maximal values in QWs with d ~ 1.5 nm and
drops in narrower QWs. It is shown that confinement and
dielectric enhancement effects in NSs with finite barriers
are responsible for large exciton binding energies al-
though these energies are lower than in the case of infi-
nitely high barriers. An analogous effect of finite barri-
ers is demonstrated for the total energy of exciton transi-
tion in QW structures. It is shown, that experimental PL
spectra of porous silicon can be sufficiently well described
considering an ensemble of quantum wires with different
thickness and oxidization parameters of the adjacent
SiO, layers. Using our approach, QW distribution func-
tions can be determined from the fitting between experi-
mental and theoretical spectra.
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