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1. Introduction

Disordered ferroelectrics (ferroelectric ceramics, solid
solutions of ferroelectric and non-ferroelectric compo-
nents, composites, ferroelectrics doped with non-isovalent
impurities, relaxors, etc.) are the materials with diffuse
phase transition and sometimes the hysteresis loops chang-
ing caused by chemical composition fluctuations [1].
These peculiarities are the main difference between dis-
ordered ferroelectrics (DF) and ordered polar materials.

For example, the polarization in relaxors manifests
the pronounce relaxation behavior, i.e. the temperature
of dielectric response maximum depends on the frequency
of applied electric field: this maximum shifts to the higher
temperatures under the applied field frequency increas-
ing in accordance with Vogel-Fulcheris law. But the di-
electric permittivity value is more than 103, which is com-
mon for ordered ferroelectrics. Also the polarization
behavior is non-ergodic in relaxors.

The great variety of models has been proposed for the
explanation of DF physical properties. The first model
taking into account relaxors heterogeneous chemical
composition has been introduced by Smolensky et al. [2].
In this model the disorder in the system of B-site cations
(for the composition of A(B’B”)O; type with the perovskite
structure) leads to the local phase transition temperature
distribution, as a sequence phase transition becomes dif-
fuse. In the ref. [3] the model of the hetero-phase fluctua-
tions being the generalization of the previous model is
proposed. The existence of microscopic regions (Kénzig

regions) with the gaussian distribution of chemical com-
position is the main assumption of this model. This is
shown to lead to the broadening of the dielectric and elec-
tromechanical response of the system.

In the models proposed in refs. [4-8] relaxor ferroelect-
rics are considered as superparaelectrics, the phase tran-
sition diffusing is the result of the system mesoscopic non-
homogeneity (distribution of the polar regions sizes and
the phase transition temperatures). Dielectric relaxation
appears in this model due to the thermal activation of the
polarization reorientation between the equivalent direc-
tions. In the ref. [6] DF is considered as an ideal super-
paraelectrics, i.e. an ensemble of independent polarized
regions, each of them behaves as the ferroelectric of
Landau-Ginzburg-Devonshire (LGD) type. Relaxor-like
behaviour of the dielectric response is obtained in the
framework of the models taking into account the distri-
bution of the polar region sizes. As the model of relaxors
with one transition temperature and the polar region size
distribution these models correctly describe (numerically,
not analytically) the shift of the temperature of dielectric
response maximum with the frequency of external field.

In ref. [8] the mean field theory has been used for the
description of the diffuse phase transition in the ferro-
electrics with mesoscopic non-homogeneity. DF is treated
as a multitude of polar nano-sized clusters in non-polar
matrix. Clusters are described in the framework of the
non-homogeneous phenomenological LGD theory, de-
polarization field, which can exist in the clusters, is ne-
glected.
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In ref. [9], [10] the model of relaxors’ dielectric prop-
erties based on the existence of polar clusters distributed
in highly polarized lattice has been proposed. The ob-
tained numerical results have been compared with ex-
perimental data. The random field theory for relaxors is
presented in ref. [11]. The significance of consideration
of charge carriers’ localization at donor levels has been
demonstrated in ref. [12].

Despite all the variety of existing models, none of them
could give both: the simple qualitative explanation and
analytical description of polarization switching phenom-
ena and dielectric anomalies in DF. The main goal of
our paper is to propose the rather general model of im-
movable charged clusters, which describes adequately the
aforementioned DF properties and admits relatively sim-
ple analytical calculations. Taking into account that all
the variety of DF chemical properties do not effect sig-
nificantly on the qualitative behavior of their electro-
physical properties, we try to involve the minimum number
of hypothesis in our model. First of all we have not use
the detailed description of the chemical nature, concen-
tration and sizes’ distribution of randomly situated im-
movable charged defects, which are the sources of mov-
able charge carriers, inner electric field and induction
fluctuations. That is why the main result of paper is modi-
fied LGD-equation (called analogical with modified
Landau-Devonshire approach, evolved in Schmidt’s pa-
pers [13]; see also comments in ref. [14]) can be applied
to the bulk ferroelectric materials with improper conduc-
tivity and movable charge fluctuations near the impurity
centers.

2. The model of static charged clusters

The proposed model admits the continuous transforma-
tion from the ordered LGD ferroelectric to DF and then
to the completely disordered material under increasing
the concentration of charged clusters.

If the hypothetical "pure", i.e. free of defects, sample
(matrix) can be regarded as uniaxial ferroelectric, let us
suppose that uniform external field E((¢) is applied
along z-axis. If the matrix is perovskite, we assume that
among three possible directions, the spontaneous polari-
zation direction coincides with the external field one
applied along one of the polar axes. This assumption is
based on the following experimental fact [4]. Under cool-
ing and further heating in zero-field (i.e. Ey(¢) =0 the
perovskite structure remains cubic or pseudo-cubic. Un-
der cooling in the external field and further heating in
zero-field the system behaves as ordered "uniaxial"
ferroelectric, besides the spontaneous polarization di-
rection is determined by the field one.

The static, i.e. immovable, defects (e.g. non-isovalent
impurity) with fluctuating concentration are embedded
to the matrix. We assume that even under the absence of
proper conductivity impurity centers or clusters charge
with charge density p, and so cause the rather high im-
proper conductivity. That is why fluctuations dp, un-
doubtedly are the source of movable space-charge fluc-
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tuations Jp inner field 6E and induction 6D ones. The
sample as a whole is electro-neutral. Evidently the local
symmetry reduces near the defects, and the transverse
components of electric field and induction as well as non-
homogeneous mechanical stresses must be taken into ac-
count. But the consideration of non-homogeneous me-
chanical stresses significantly complicates the problem,
we hope that the system behavior would not change quali-
tatively under the influence of non-homogeneous me-
chanical stresses. The sample is regarded as linear di-
electric in transverse x, y-directions and as nonlinear po-
lar material in longitudinal z-direction.

3. General equations

Maxwell’s equations for the electric induction D, field E
and equation of continuity have the form:
divD=4np, rotE=0, g—p+divj=0. (1)

t
They have to be supplemented by the equations of state:

DJ_ =€J_EJ_, DZ =DS+€Z(D)EZ

@
j= Z(:umme_ngrad pm)’ p= me T Ps-

Here €, and ¢ are the longitudinal and transversal com-
ponents of dielectric permittivity, p,,, i,, and k,,, are the
m-th kind movable charge volume density, mobility and
diffusion coefficient respectively, p,(r)is charge volume
density of static defects. Also we suppose the transversal
components of dielectric permittivity independent on the
electric induction, i.e. the sample is treated as linear di-
electric in this direction, but induction nonlinearly de-
pends on the electric field in the longitudinal direction.
Dynamical equation of state for the induction z-com-
ponent D, = D can be obtained from the minimum of the

Gibbs potential G(D) with respect to the Landau-
Khalatnikov mechanism:

0
v G(D)=—Fa—D,
avD ot
oY (3a)
G(D):J “p2 B 7[00 pE b
J12 4 2| or

Here I" > 0 is the kinetic coefficient, @ = o (T — T*), T'is
the absolute temperature, 7" is the Curie temperature of
the hypothetical pure (free of defects) sample, f > 0, y> 0.
Hereinafter symbol dy designates the variational de-
rivative.

Note that the term DE is equal to the energy of free

carriers W = J po@ dr. The Landau—Ginzburg-Devon-
v

shire equation determining the dependence of the induc-
tion on the electric field is follows from (3a), (3b).

2 d
Fa—D+aD+BD3—ya—D:EZ+ 14
at or2

e, E2dr. (3b
aVD{[LLr (3b)
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Equations (1), (2) can be rewritten as:

iD=4ﬂfp—SLdl.VLEJ_,
oz

div Z(Aumme_ngrad pm)+ (4a)

m=e,h

1 0
EE(DCZ +8LEL) =0.

Here e, is the unit vector directed along z-axis.

Hereafter we suppose that the sample occupies the
region —¢ < z < £ and homogeneous external field E(¢) is
applied along z-axis. Boundary conditions depend on
the mechanism of the spontaneous induction screening.
If there is the thin non-ferroelectric layer with permit-
tivity €, the boundary conditions acquire the form:

D(z|=0) =€, Eg(t. E (|2 =0)=0, p(|z| =)= 0. (4b)

The latter condition from (4b) associates with the for-
mation of oppositely charged space-charge layers with
thickness ¢, near the non-ferroelectric layer (e.g. the
Shottky barrier [15]). Let us consider that the applied
field potential ¢ is independent on transverse coordi-
nates and is constant at z = +/. The sample is infinite and
external field is absent in the transverse directions. So
the inner field satisfies the conditions:

P(z=-0)-p(z=10)

14
i_JgEZ (r.0)dz = = = Ey(1), "
J'El(r,t)drL ~0.
Also we suppose that:
f@en=F@O)+8f (x,0), (52)
& (t.1) = 0.

- 1
() =V£f(r,t)dr =

Hereinafter f = {p, E,D, j, ...}and the dash desig-
nates the averaging over sample volume V .

It follows from (5a), (4c) that:
E,(r,t)=Ey(t)+6E (r,t), E, (r,t)=0E | (1,1), (5b)
i.e. E is the applied uniform field Ej(z). Notice that the
average values E, D are determined experimentally [15],
[16] most of the times. All the functions consist of the
regular part caused by screening and the random one
caused by fluctuations. Really, within the framework of
our model one can write:

p=p®)+op(r,t), p(r)=p,+dp,(r),
(6a)
Sp(r,1) = Z(Spm(r,t)+5ps(r).
m=e,h
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Here 8p,,(r,t) is movable space-charge density of m-th
kind, 8p,(r) is the fluctuation of random static defects
space-charge density, p, is the average space-charge
density of these defects. Further we limit ourselves by
considering the bulk sample (¢ >> /. >> r,. ) with quasi-
homogeneous distribution of dp,(r) . In this case aver-
aging (5a) over the sample volume is equivalent to the
statistical averaging. Then as it follows from (5), (6) that
auzto-correlation function of the statical fluctuations
py (r)is the positive constant independent on time.
Moreover, since the contribution to the integrals of the
functions &f " (r,t) from screening region is negligibly
small in the bulk sample, and df are the fast oscillating
functions in the remainder of the sample, one can con-
clude that:

6f2n+1(r’t) ~ 0’ 5]“2"(1*’1‘) ~ (6f2(r,t)) s

n=12..f={p,E, D}

Also we suppose that the correlation of the functions
of product is equal to zero if the total power of different &f
is an odd number.

Having substituted (5) in (4a) and averaged, one can
obtain the equations for the average quantities. Then "add-
ing and subtracting" in (4a) nonzero correlation func-
tions it is easy to obtain the equation for the fluctuations
correlations compatible with the equation for the aver-
age values. The obtained self-consistent system provides
the strong fulfillment of (4) and has the view:

(6b)

p=0= zﬁm=_ﬁs’ Pm =Pm+0 P
m=e,h
=50 +e, 22O (7a)
¢ “or 4m

[ROEDY™ 6ESp,, + eZEO(t)E).

Here j.(r) is the macroscopic conductivity current.
The absence of the space charge average density p fol-
lows from the sample electro-neutrality condition and
corresponds to the result [15]. Using (5), (7a) one can
obtain:

9 5p=4n D 80, +0p,(r) |~€ div S E

aZ m=e,h

div Z(um (5meoez +(/3m +5pm)6E)_ (7b)

m=e,h
1 0
~Kpgrad 8p,,)+——(e.6D+e,6E | )|=0.
4rc dt

Using (7b), the quantities dp,,, § E can be expressed
via the fluctuations of induction 6D .Therefore using the

relationship 8% OE Jz_ = 9 5Ei and the nonlinear LGD

206D

equation (3b) it is easy to obtain self-consistent system:
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Faa—D+(a+3/3(g)5+ﬁB3 = Ey(t)+
t

(7¢)
9
1% 2
+ OE1dr,
13, SDJ 4
\%4
raiam(msﬁﬁzjsmsﬁﬁ(&)z—592J+
t
82
+ﬁ5D3—ya—25D: (7d)
T

9 9
=6E, + Y _|6E2dr——Y—|6E2ar |.
L 8V5D‘-[ e 8V5D‘-[ s

The system of equations (7) is closed. It determines
the spatial-temporal evolution of the sample. In the case
of bulk sample (7) has to be supplemented by the initial
distributions of all variables.

Equation (7c) is valid for the bulk materials and rep-
resents itself the LGD-equation (3) for average (measur-
able) induction D with coefficient a renormalized by fluc-
tuations (compare with modified susceptibility from [13]
x~lag:

og =a+3B8D (). ®)
4. Modified LGD-equation

Unfortunately we failed to find the exact solution of
nonlinear system (7b) and therefore to obtain the general
form of 6D from (7d). However in the case of rather high
movable charge concentrationm p, their mobility # and
smoothly varying applied field E(the characteristic time
of dp,,, 0E and 0D changing is the same order as
maxwellian time 7,, ~ 1/4mup which is much smaller
than E, period as well as Landau-Halatnikov relaxation
time F/ ‘a‘ . Thus (7b) can be solved in the adiabatic ap-
proximation, i.e. after neglecting the temporal deriva-
tives of 8E and 6D compare with [17]). So one can obtain
from (7a) and (7b) that:

D (Wnpm (G E+e Ey)-Kugraddp,)=]c (). (9a)

It follows from the definition (5a) — SE =0 and bound-
ary conditions (4b) that:

.;(t) :ezEO [%Z#ml’m}

Solving (9) as the transfer equation for the improper
conductor with developed n-type conductivity. In order
to avoid uncertainty:

Y pw=-ps+8n, dn=0, u<0, p,>0. (10a)

m=e,h

SQ0, 6(2), 2003

-1

(9b)

—__1
SE =e Ey(1) L MOn=p) k-2 )
én—p u Py
(10b)
9 5p=anp| P O g, Ka | mpi-2"
0z Ps  Ps u Ps

(10c)

The equation (10c) with respect to én can be linearized
and then solved in the quasi-neutral region of the sample,
where:

|6n/p;|<<1,
(11a)
6E = eZEO(t)(Z—n— ’i grad (5n)
Ps HPs
This solution has the form [18]:
5n(rJ_,z,t) = L d'fJ_KOQ I _?J_‘/)“J_ )X
12
Ls
(11b)

0z 41

Here r; =(x,y), A, = ’— 48l’i is the "transversal"
TP

screening length, S is the sample cross-section, K (r) is
the Macdonald function. Having used solution (11b) and
substituted (10b) into (7d), we obtain nonlinear integral-
differential equation for §D with proportional to 8p,
non-homogeneity. Assuming that movable free-carriers
can screen at least partially the charged clusters dp,,
one can conclude from (11) and (7b), (7d) that:

x(”D@’“) —6ps<a,z>).

8D ~ o 8D
—~ 2,185 ) aff~n(5ps),
z 4w
) (12)
5n~L|:86D—5pS:|, nlo]=0
dz 4w

Here 4, is characteristic "longitudinal” screening length,
71 is unknown nonlinear odd at §p operator-function,
which depends on time, applied field, temperature, coef-
ficients «, B, ¥ and other material constants, and Lis
operator linear under approximation (11a). In order to
obtain the approximate expressions for unknown in (7¢)
variables, let us make some simplifications. Using repre-
sentation (12) and solution (11) one estimates the neces-
sary correlation functions.
Using (10b), (11) and (6b) it is easy to derive that:

(13)

d
v J5EJ2_dr =0.
dy 6D 5

After integrating over parts allowing for (4)—(5) one
can obtain:
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32 3 Y —
8D— 6D = —(—51)) ~ Rl(éi pf)
2 or

or
— (14)

5Dian=—5ni&)~1e2 5p?

0z 0z
5D§n~AZR3(5p3}

d 1
sp—" JéEidr=0 (1)

ay 3D

Here b is average transverse size of charged clusters. Func-
tions R, depend on time, applied field Ey(¢) , tempera-
ture Tand other material constants. Note, that R, (0) =0
and their absolute values increase with dp; increasing.
One can estimate from (11a) that:

sE2 6 E2 - 22 Jb (16)
Actually (16) means, that transverse components of elec-
tric fields can be neglected after the averaging of equa-
tions, only if the average transverse size b of charged
clusters is much greater than the transverse screening
length 4, . .

The equation for average induction D () can be de-
rived from (13) and (7¢) as following:

F%Dt+(oc+3ﬁ&)2)D+ﬁD3=E0(t) (17a)

Multiplying (7d) on 6D and averaging, the equation for

the average square of the induction fluctuation 8D (1)
can be derived in the form:

N — —\2
gaiap% (a+3ﬁD2(t))6D2+ﬂ(5D2) =
t
a2 —
=y8D—— 8D +8DSE;
or?

(17b)

The right-hand side of the equation (17b) within the frame-
work of our approximations and estimations has the form:

B 2 -
—y(aSDJ +6DSE; = Rs(apf) (18)

Z

Function R, can be estimated from (11a), (12), (14)-(15)
in the terms of the functions R,, it depends on time, exter-
nal field E(¢) frequency and amplitude, temperature T
etc. It can be shown from the general relationship (7b)
and (10), that R, (0) =0 and its modulus increases with
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5p52 increase. It is evident, because Rj is the source of
the induction fluctuations in (17b) and these fluctuations
increase with the charge density fluctuation 5pS2 increas-
ing. The magnitude Rj is negative in the absence of the
electric field fluctuations 6E and increases with trans-
verse field 6EE increasing. In the case of rather signifi-
cant field fluctuations R, becomes positive.

Equations (17)-(18) compose the self-consistent sys-
tem. We would like to emphasize that in deriving the
equation (17a) we use only the formula (13), but do not
use the approximate estimations (14)—(15). That is why
the region where (17a) is valid is much wider than the one
for expression (18), which determines right-hand side of
the equation (17b).

Equation (17a) represents itself the modified LGD-
equation for bulk samples with developed induction fluc-
tuations (see [13] for comparison).

The system (17) has the following physical interpre-
tation. The state of the sample with charged defects can
be described by two order parameters. The long-range
order parameter D describes the ferroelectric ordering

in the system, and the local order parameter 8D? de-
scribes disordering caused by strong electric fields (in
comparison with matrix coercive field) arising near
charged non-homogeneities & pf . We will show that the
zero-field (i.e. Ey(¢) =0 phase transition into the state

D= 0, D% %0 takes place at the critical concentration

of non-homogeneities & ps2 i.e. the sample splits into the

polar regions with opposite induction orientation (actu-
ally Kénzig regions), and the system behaves as DF.

5. Dielectric hysteresis and permittivity

1) Let us underline the following properties of modi-
fied LGD-equation (17a).

The fact that the known applied external field
E stands in the right hand-side of (17a), is its main ad-
vantage in comparison with (3b), where the unknown field
E = Ey(t) + 6E(r,t) 1) stands in the right hand-side.

2) Under obtaining equation (17a) we did not assume
the smallness of induction fluctuations 6D This means,
that our results can describe the DF-materials adequately,
where the induction fluctuations are the same order or
more that its mean value. The modified LGD-equation
(17a) admits the continuous transformation from the or-

dered LGD ferroelectric (5D2(t) << |a|/3ﬁ) to the
(8D*(1) < ||/3 ) and then to the completely disordered
material (E(t) > ‘OC‘/?)ﬂ ) under increasing 5D72(t) .
Notice, that ‘(x R‘ < ‘(x‘ and o depends on time, thus
the dielectric hysteresis loop D(E,) becomes

Qa‘ llog ‘)3/2 times narrower and Qa‘ llog ‘)1/2 times

lower, also it could change its shape (e.g. transforms into
the double one) and acquire the non-stationary character
(see for details Fig. 1-4).
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Let us rewrite equations (17) allowing for (18) in
dimensionless variables.

ai D,, (7)+ (sign(a)+ 3A(7))D,, (7) + D (1) = E,, (1),
T

(19a)

ai%+ (sign(oc) +3D2 (1))A(1) +A(1)=R,  (19b)
T

D,,(0)=D,,5. A0)=A,. (19c)

Here D,,(t)=D(t)/D;, A(T)=5D_2(t)/DS2, E,(1)=

Eo)/(e|D,), R =R, ec| D2), D, (1) = Jlu)] /B,

w=10.01
R =0.05

w=10.01 —

R=0.2 —

a)=or (T—T*) , sign(0) = 1. In the case of periodic
applied field E,,(T) = E,sin(wt), w=al/|o].

Let us study the stability of system’s (19) zero-field
stationary solutions. In the case function R can be re-
garded time-independent constant. The stability of the
stationary points can be determined from the behavior of
small deviations from the ones. Obviously that the exist-
ence and stability of stationary solutions (19) depend on
parameter R values. The frequency dispersion of dielec-
tric permittivity €(®) can be found after linearizing of
(19) near the stationary points for the small periodic ap-
plied field. The stability of stationary points (Dyand D,,,),
dispersion of dielectric permittivity £(w) and the shape

-1 0 1
[T ' I —
w=0.01 1 ////

~
// 2 3
L p i
/ l
/ |
| | | i
| l !
|
|
4 I ’
i ' / I-R=0 ]
| ! 3 R-oa4
3 // 3-R=24 1
5 /l// 4-R=2
- 1
— —
_1/ 1 1 1]
-2 0 2

Em

Fig. 1. The quasi-static dependence of dimensionless induction on dimensionless field (hysteresis loops) for constant frequency
w=0.01 and temperature at different R values marked by figures near solid curves. The dashed curve corresponds to the "classic"
loop in the ordered ferroelectrics (R = 0) at the same frequency value.
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of hysteresis loops D,,(E},) for different intervals of pa-
rameter R are discussed below. For hysteresis loops in-
vestigation we suppose that o <0 and R is independent
both on time and applied electric field.

. >0, R<0. Stationary states at A, > 0 are absent.

2. oo>0, R>0. One steady stationary state D,,,= 0,

—1+J1+4R . . .
A = — is present. The Debye dispersion law
1

o(T)|(3A, +1)-iTw

N

is valid: e(w) =

1 .
3. a<0, ——< R<0. Stationary states at A;> 0 are
absent. This is the region of determined chaos.

1
4. a<0, —Z<R<O. The steady state D,,; = 0,

1+J1+4R
2

Ay = corresponds to the local minimum

of G(D) nonphysical steady states at A;< 0 correspond to
the global minimum of G(D). Because of this fact the
static hysteresis loops (i.e. obtained at infinitely small
rate of the applied field changing) at A, > 0 are absent.

Em

Fig. 2. The quasi-static dependence of dimensionless induction on dimensionless field (hysteresis loops) for the value R = 0.1 and

temperature at different frequency w values marked by figures near solid curves. The dashed curve corresponds to the "classic" loop

in the ordered ferroelectric (R = 0) at the same frequency value.

244

500, 6(2), 2003



A.N. Morozovska et al.: Dielectric response of disordered ferroelectrics with ...

[
/////—_]
1 w= //// / ’_
_ /
s / |
/ y |
L / i
/ /
/ / /
£ /
op—4 ]
/
. /]
/
/
b
-
1k /// i
| —
l’//l/ ! ! | L
-1 0 1

Em

Fig. 3. The quasi-static dependence of dimensionless induction on dimensionless field (hysteresis loops) for the value R = 0.5 and

temperature at different frequency w values marked by figures near solid curves. The dashed curve corresponds to the "classic" loop

in the ordered ferroelectrics (R = 0) at the same frequency value.

1
50<0,0<R< 3 . Together with thesteady state D,,,;= 0,

A _1+J1+4R
s =
2

1-J1-8R .
A = —s The latter state ordered partially at

there exists another one D,%,S =1-3A,,

R >0 and completely at R = 0 corresponds to the global
minimum of G(D) In this case dielectric response of the
system &(w) reveals the non-Debye behaviour with addi-
tional dependence on the external field frequency and
temperature:

SQO0, 6(2), 2003

g(w) =
~ 2eu)|(2-7A,) - iTw
8|a(T)|2(1—3AS)(1—SAS)—2i|a(T)|(3—10AS)Fa)—F2a)2

This is the region of the partially ordered ferroelectrics.
The static hysteresis loops are similar to the "classic" one
(i.e. R =0 at), but the refinement appears and becomes
more narrow with R increasing (see Fig. la, b). The
refinement disappears with frequency increasing, and the
loop shape almost coincides with the classical one (see
Fig. 2).
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1
6. <0, gSR.One steady state D, = 0, A, =

S
1++1+4R
2

. The Debye dispersion Law is valid:

1
|lo«(1)| (32, —1)-iTw

consisted of polar regions with opposite polarization ori-

e(w) = . This is the region of DF

increasing, but they are much narrower than the classi-
cal loop and acquires the relaxational character (see
Fig. 3, 4).

The dependence of steady order parameters and static
susceptibility over temperature (see Fig. 5) can be ob-
tained from the aforementioned speculations, i.e.:

D) 29(1*—1— 8R(0) Jx
T

Dy (0)

entation. The static hysteresis loops are similar to the > (20a)
double "pseudo-antiferroelectric" [19] ones (see Fig. 1c, d). y 5(T 1+ 3T “1] —8r0)
Double loops transforms into single ones under frequency 8l 7* s\l 7*
' I ' ' | ! ' | . . T .
R=1 -7 [ R= Pl
1 w=ou A/ | - w=03 e / [ -
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Fig. 4. The quasi-static dependence of dimensionless induction on dimensionless field (hysteresis loops) for the value R =1 and

temperature at different frequency w values marked by figures near solid curves. The dashed curve corresponds to the "classic" loop

in the ordered ferroelectrics (R = 0) at the same frequency value.
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\/6Dz—(T): [T

0| —-1-
D (0) T

2
l(1—1)—l (1—1) —8R(0) +
8\ 7" 3V 7*

+9(‘/8R(O) —l*+1)><
T

2
1 L—l +l 1—1 +4R(0).
2\ 7* 2\ 7F
Here O(x) isstep-function. It is clear from the Fig. 5 that

long-range order parameter D reduces when tempera-
ture increases and sharply becomes zero at some critical

point determined by R(T 0) i.e. by R, (Sp 5 ) The

SR(0) }x

(20b)

local order parameter monotonlcally increases

when temperature increases up to the critical point, where
in it sharply increases and then monotonically decreases
and tends to zero at T — o= . The static susceptibility (see
inset in the Fig. 5) diverges when approaching the criti-
cal point from low temperatures ("sharp" maximum), then
it abruptly decreases to finite value and under farther
temperature increasing demonstrates the "wide" maxi-
mum. Both maximums coincide at cal point from low
temperatures ("sharp” maximum), then it abruptly de-

/
ela(0)]
w

BiD, (0),\aiD* D, (0),

|
|
1

0 1 2
TIT*

Fig. 5. The dependence of dimensionless spontaneous induction
(thin solid curve) and local induction (thick solid curve) on
temperature for the value R(0) = 0.02. The dashed curve corre-
sponds to the spontaneous induction of the ordered ferroelectrics
(R =0). The static permittivity dependence on temperature is
depicted in the inset.
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creases to finite value and under farther temperature in-
creasing demonstrates the "wide" maximum. Both maxi-
mums coincide at R(0) — 0 and the distance between
them is the longer the bigger is R(0), until "sharp" maxi-
mum disappears at R(0) =1/8.

Thus, the dielectric response of the system has anoma-
lies not only when the long-range order parameter D
originates, as in the ordered ferroelectrics, but also when

the local order parameter 8D? increases. Similar co-

existence of the dielectric permittivity anomalies is ob-
served by the authors of ref. [20] in the Pbj gLaj [ TiO3
ceramics. Position of the narrow low temperature peak
of the permittivity is found independent on the frequency,
but the high temperature one is essentially shifted with
the external field frequency. This gives basis to authors
of ref. [20] to connect the aforementioned anomalies with
the phase transitions from ordered ferroelectric state to
the relaxor state and from relaxor state to paraelectric
phase respectively. Phase transition of the relaxor mate-
rial to the ordered state (in the absence of the external
polarizing field) is a intrinsic feature of many relaxor
ferroelectrics (see e.g. [21] and ref. therein) and can mani-
fest itself as an abrupt curve break of the permittivity
dependence on temperature. The distinctive peculiarity
of this anomaly is its position independence on the fre-
quency.

Dicussion

1. Double pseudo-antiferroelectric loops [19] are ob-
servable in some cases in the ferroelectric materials. For
example, "refined" loops arise as a result of the normal
ferroelectric loops distortions by the internal charged non-
homogeneities, leading to the electric field fluctuations
(e.g. BaTiOj and (Pb,Ca)TiO3 ceramics). Also «refined»
and pseudo-antiferroelectric hysteresis loops exist in the
plumbum zirconate-titanate ceramics doped with La [1],
namely in Pby_ La,Zr,Ti; (O3 at x =0.35,y =0.08, 0.084
and x=0.3,y=0.076,0.079, which is regarded as relaxor
material. Double loops can be observable in ferroelectric
ceramics samples if applied field is perpendicular to the
initial polarization direction (e.g. Pb(Ti,Zr)O5 [19]),
which can be explained as the pinning of domain walls
by internal mechanical stresses and charged defects.

2. We would like to underline, that static hysteresis
loops are theoretical abstraction. For real DF even the
lowest possible frequency of the applied field can be much
higher than the inverse eigen relaxation time of F/|a| ,
and so it is too high for static loop observation. Let us

remind that I", o are coefficients for hypothetical pure
sample they can be treated as fitting parameters. There-
fore, when applying our model to real hysteresis loops in
relaxors, the narrow "dynamic" loops would be compared
with the experiment rather than double «static» ones.

. 1 . i
3. Notice, that at 0 < R < — the static susceptibility

of partly disordered ferroelectri:
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1—,/1—8R
A =—— @D

(1-3.5A,)

e(0)= ;
2lou(T)|(1-3A,)(1-8A,)

is higher than the one in the ordered sample (R =0 ), and
diverges at R — 1/8 ("sharp" maximum). Within the
framework of our model both the non-homogeneous con-
centration of charged defects (8p ; # 0) and the improper
conductivity caused by it (dn # 0 ) do provide the afore-
mentioned anomalies of dielectric response. The fre-
quency dispersion of dielectric susceptibility temperature
maximum can be derived if the dependence of R over ap-
plied field is known. This problem is in progress now.

4. In the case when the mean transversal size of the
charged non-homogeneities is comparable or less than
the transverse screening length: » < A, , it is necessary to
take into account the transverse components of electric
field. In particular, only after taking into consideration
all the components of electric fields caused by charged
nano- and micro- inclusions, the critical fluctuations of

their concentration 5p3 and real sizes of polar regions

arisen around them can be estimated correctly. The struc-
ture of these fields is much closer to the vanishing at great
distances radial fields of points charges, which are able
to repolarize only micro-regions, than to the non-vanish-
ing uniform longitudinal fields of charged plains, which
posses infinite energy and can repolarize macro-regions.
Neglecting of the transverse fields could lead to the sig-

nificantly over-estimated critical values of 5p52 ,1.e. at

R < 0 ordered state is unstable.

5. We can conclude, that modified LGD-equation (17)
describes adequately the disordering (namely polariza-
tion switching phenomena and some dielectric proper-
ties), caused by charged clusters in such bulk ferroelectric
materials with improper conductivity as BaTiOj3,
(Pb,Ca)TiOj5 ceramics and relaxor PLZT-ceramics.
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