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1. Introduction and problem formulation

The use of luminescence method (measurement of the lu-
minescence band peak position 4v,,) is very convenient
way for determination of the chemical composition of
ternary II-VI compound semiconductors Cd;_,Zn,Te.
That is why, the aim of many works was to obtain the
dependencies of the peak position of different lumines-
cence bands in Cd;_,Zn,Te as a function of their compo-
sition x, which could enable to find x values from the Av,,
measurements. So, in [1-3] this dependence was found at
T=4.2 K for the luminescence band caused by annihila-
tion of excitons X bound with shallow neutral acceptors
AV (i.e. by exciton - impurity complexes 4°X). The dis-
cussed dependence /1v,,,(x) (the emission is induced by an-
nihilation of excitons) was determined at 7= 12 [4] and
77 K [5], too. But in these works the type of excitons that
give rise to the investigated emission was not determined.
Besides that, the 300 K %v,,(x) dependence for the intrin-
sic luminescence band is known [4]. Naturally, in princi-
ple, the 300 K 4v,,, vs. x changes for band-to-band recom-
bination could also be found from the registered depend-
encies of the Cd;_,Zn,Te bandgap E, on x at 7= 300 K
(see [6-9]) [hv,, = E, + (1/12)k T for the intrinsic emission
band at room temperature (k is the Boltzmann constant
and T'is the absolute temperature), see Appendix 1]. But
contrary to the expected, it does not correlate with iv,,
known for band-to-band transitions at 300 K against
zinc concentration variations for Cd;_,Zn,Te ternary
alloys (see Appendix 2). Obviously, determination of

Cd;_xZn,Te composition from the peak position of the
intrinsic emission band is also possible at low tempera-
tures (7=4.2 K) as the dependence of the energy gap for
the pointed compound on x for the above-mentioned tem-
perature is known [1,7,8,10,11] (hv,, = E, for band-to-
band transitions at liquid helium temperature, see Ap-
pendix 1). In principle, the x-value could also be found
from the compositional variations of the 2 K peak posi-
tion of the free exciton-induced emission band [10].

But usage of the known 12 and 77 K dependencies of
the peak position of exciton emission bands at different x
for determination of Cd_,Zn,Te composition is not suffi-
ciently reliable, as in [4,5] the exciton type that induces
the studied emission was not established. Besides that,
evidently, the v, measurement at 7= 12 K is inconven-
ient, and the /v,,(x) dependence at T=77 K was obtained
only in a narrow region of x — values (0 < x <0.2). Obvi-
ously, rather complex are measurements of the 2 K free
exciton-induced emission intensities. Also, problems ex-
ist when one uses the measurement of 300 and 4.2 K peak
positions of the intrinsic emission band to find the x val-
ues. Firstly, 300 K shape of the near-band-edge spectrum
is only partially caused by band-to-band recombination,
with some contribution from the free exciton transitions
and their phonon replicas [12]. So, it is rather difficult to
separate the intrinsic emission band from the near-band-
edge luminescence spectrum; the latter substantially low-
ers the accuracy of determination of Cd;_,Zn,Te compo-
sition from the peak position of the intrinsic luminescence
band at 300 K [12,13] (see Appendix 2). Secondly, the
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Fig. 1. Typical 4.2 K excitonic luminescence spectra of Cd;_,Zn,Te
with x = 0.1 (1), 0.54 (2) and 0.84 (3). hv,, (4°X) = 1.652 (1),
1.908 (2) and 2.202 eV (3).

intensity of the 4.2 K intrinsic emission is rather low due
to existence of effective channels for non-radiative re-
combination of excess electrons and holes in Cd;_,Zn,Te
(effectively, the intrinsic luminescence band is absent in
the 4.2 K near-band-edge spectrum of Cd;_Zn,Te, see,
for example [13-18]).

Therefore, the measurements of 4.2 K peak position
of the luminescence band arising due to annihilation of
exciton-impurity complexes A°X (Fig. 1) are so widely
spread in determining Cd;_,Zn,Te chemical composi-
tion (see, for example [19-21]) {some attention was paid
to determining Cd;_cZn, Te compositional uniformity by
mapping the room-temperature peak position of the in-
trinsic emission band (see, for example, [13,22,23] and
references therein)}. The corresponding 4v,,(4°X) vs. x
calibration dependencies at T=4.2 K[the 4.2 K compo-
sitional dependencies of 4v,,(4°X)] are analytically de-
scribed by the following expressions:

hv,, = (1.590+0.322x +0.463x%) eV )
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for Cd_xZn,Te films {see Fig. 2 and Appendix 3.1 about
the accuracy of the x-measurement using Eq. (1)} [1], and

hv,, =(1.590+0.445x+0.339x2) eV )
for Cdy_4Zn,Te crystals [see Fig. 3 and Appendix 3.2
about the form of the calibration dependence (2) and the
accuracy of the x-measurements using Eq. (2)][2,3]. But,
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Fig. 2. Dependence of the peak position of the luminescence band,
induced by annihilation of bound excitons 4°X in Cd, .Zn,Te
films as a function of their composition x at 7= 4.2 K. The solid line
is constructed accordingly to Eq. (1). For convenience experi-
mental Av,, vs. x points are also shown (see the text).
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Fig. 3. Dependence of the peak position of the luminescence band,
induced by annihilation of bound excitons 4°X in Cd_.,Zn,Te
crystals as a function of their composition x at 7= 4.2 K. The
curve is drawn accordingly to the relation (2).
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when finding the cadmium zinc telluride composition,
insufficient attention was paid to the correctness of the x —
determination by the considered luminescence method.
The pointed refers to the following.

In the low-temperature (7=4.2 K) excitonic lumi-
nescence spectrum of Cd;_yZn, Te, one could observe not
only the examined emission band [its peak position
hv,(A°X)=1.590eV at x = 0and 2.375eV at x = 1], but
also other emission bands (Fig. 1) [13-18]. One of them
is caused by annihilation of excitons bound with shallow
neutral donors D [i.e. by exciton-impurity complexes
DX, the peak position of the corresponding emission
band iv,,(D°X)=1.594eV at x =0and 2.3785eV atx =
1] (see, for example [13-18] and Fig. 1). Another one
arises from recombination of free excitons X [the emis-
sion band peak position /v,,(X) = 1.596 eV at x = 0 and
2.381 eV at x = 1] (see, for example [13-18] and Fig. 1).
Evidently, the simple identification of the emission band
with Av,, = hv,,(4°X) is possible if in the excitonic lumi-
nescence spectrum the emission bands caused by annihi-
lation of bound (4°X, D°X) and free (X) excitons are
observed as for them /1v,,(4°X) < hv,,(D°X) < hv,,(X) (see
Fig. 1, Table 1 and references [13-20,24]). But if in the
spectrum not all pointed excitonic emission bands are
observed, then the identificationof the emission band in-
duced by annihilation of bound excitons A°X at x > 0in
it meets some difficulties. Really, if the excitonic lumi-
nescence spectrum consists of two emission bands, then,
obviously, the identification of 4°X luminescence band
is possible only if besides the dependence /1v;,(4°X) = ¢(x)
other dependencies such as /1v,,(D°X) = ¢(x) or hv,,(X)=
¢o(x) are known. But in the literature dependencies
hv,,(D°X) and hv,,(X) as functions of x are absent (only
fragmentary data of some authors about /v,,(DX) and
hv,,(X) at several x-values exist, see Table 1 and Fig. 4).
If the excitonic emission spectrum consists only of the
single luminescence band (see, for example [19, 21, 23]
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Fig. 4. Plots of the 4.2 K peak positions of luminescence bands,
induced by annihilation of free X (1) and bound DX (2) excitons
in Cd;_4Zn,Te versus Zn concentration [Av,,(X) and hv,,(D°X)
values are taken from the Table 1].

and Fig. 1), then the identification of the emission band
induced by annihilation of bound excitons 4°X obviously
is not possible, even if the dependencies Av,,(4°X),
hv,,(D°X) and hv,,(X) vs. x are known. Undoubtedly, this
fact essentially complicates application of the lumines-
cence method for determination of Cd_yZn,Te composi-
tion.

In what follows, we will analyze the physical funda-
mentals of the x-determination in Cd;_,Zn,Te by study-
ing the low temperature (7= 4.2 K) peak position of the
emission band induced by annihilation of bound exciton —
shallow neutral acceptor complexes.

Table 1. Peak positions of luminescence lines induced by annihilation of bound(4°X, DX) and free (X) excitons in Cd;_,Zn, Te of

different compositions at 7= 4.2 K.

X hv,(4°X), eV hv,(D°X), eV hv,(X),eV References
(n=1)

0 1.590 1.594 1.596 [25-28]

0.04 1.616 1.621 1.624 [15]

0.04 1.6167 1.6204 1.6247 [14]

0.065 1.616 [10]

0.1 1.632 1.642 1.644 [16]

0.1 1.652 1.662 1.6635 [13]

0.2 1.65 [23]

0.35 1.85 [23]

1 2.375 [1,2,27]

1 2.3692 2.3785 2.381 [14]
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2. Analysis of the method

We will consider semiconductors at low ( 7< 4.2 K)
temperatures [no thermally stimulated processes are ob-
served in them, their conductivity is determined by uni-
formly distributed photoelectrons (concentration én) and
photoholes (concentration dp)]. Let them contain shal-
low acceptors A (their concentration N4, the hole and
electron capture coefficients are c,, and cSA, accord-
ingly), and shallow donors D (their concentration Np,
the hole and electron capture coefficients are c?,D and

cip )- A part of acceptors and donors could be in a neu-
tral state (their concentrations N 40 and N 0) A small

number of neutral acceptors 4° and neutral donors D?
could bind free excitons (their concentration ny, the prob-
ability of direct annihilation ay), forming exciton-impu-
rity complexes 4°X and D°X ( binding coefficients are

b,o, and b o, binding probabilities b ,0x NV 40 and
bpox
the excitonic emission bands [induced by annihilation of
bound excitons AOX(IA()X ), DOX(IDO
excitons X(Zy)] will be given by the following relations
{when writing Eqs (3) and (4), we assumed that the exciton

annihilation proceeds mainly with the photon emission
[25,26]}:

A0
N Do). Evidently, for a discussed case intensities of

X) and free

Loy =bo Nonx, Lo, =bo Noony, (3)
Ix =oxny, 4
where
¢padp
NAO =p—ONA s
€ padp +cppln
5
N c;,LDﬁn N )
0 = D>
b c:er5n+ch5p
bx dpon
ny = (6)
Ox +b,0 N ,o0+b0, N o

[here by is the binding coefficient of a hole-electron pair
into a free exciton; the relations (5) and (6) are valid at
L>0].

As one could see from Eqs (3) and (4), the relation
between intensities of the excitonic emission bands could
be presented in the following form:

1.1 o

A0x Apox Ix =b oy N o b Npo mox (™

When analyzing Eq. (7) one must take into account the
follow?ng things: 1) The b O and bDo
equal,ie. b O szo

¥ values are nearly

| atanyx,aswas found from the theo-
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retical relation b o_/ bDOX: (I AOX/I DOX)N DO/N A0 [see
pOx’ NDO and NAO
values (NDO =~ Npand NAO = N 4, see below). 2) In com-
pound semiconductors (as in elementary ones [25]) the
; - 0 + 0

inequalities ¢, 0p >>c,,n and c,pdn >>cppdp are
fulfilled; then, as follows from Eq. (5), N A0 = N4 and
N DO~ Np. In this case [see Eq. (7)], the emission band in-
duced by annihilation of bound excitons 4°X dominates in
A()X>>]D0X7 IX)) lfa
firstly, N ,>>Np, (then bAOXNAO >> bD(,XN
ondly, the free excitons disappear mainly due to their

A%x
Eq. (3)] using the experimental / A(,X/ I

the excitonic luminescence spectrum (1

D(,), and , sec-

binding by shallow acceptors [then bA(,X 07
+ bDOX o= b AOXN 4070, and, consequently, ny =
=byoponl b O A°’ see Eq. (6); this is confirmed by the
fulfillment of the relation Iy << ]A0X+ID0X = IAoX].

Evidently, the pointed inequality N4 >> Np could be
fulfilled not only in a low resistivity p-type Cd;_Zn, Te
(the specific resistivity p < 10° Ohm-cm at 7= 300 K, its
dark conductivity is determined by ionization of shallow
acceptors), but in a high resistivity p- and n-type cad-
mium zinc telluride too (p = 10*-10'© Ohm-cm at
T = 300 K), if its dark conductivity is determined by ioni-
zation of partly compensated deep donors (then their con-
centration Np > N,— Np > 0)[undoubtedly, if the dark
conductivity of Cdy_xZn,Te is determined by ionization
of partly compensated deep acceptors (it is possible, if
their concentration N 4 > Np— N4 > 0), then in this case
the concentration of shallow acceptors is less then the
concentration of shallow donors]. Evidently, for a dis-
cussed case in the excitonic luminescence spectrum (in-
dependently of the number of emission bands in it) the
luminescence band induced by annihilation of bound
excitons 4°X dominates. The intensity of the 4°X emis-
sion band is equal to a generation rate of free excitons

bydpon(l 0, =bxdpdn), as in a discussed case the latter

are mainly transformed into bound exciton-shallow neu-
tral acceptor complexes A°X.

3. Conclusions

Therefore, application of the luminescence method for
determination of Cd;_yZn,Te chemical composition (from
the measurements of the 7= 4.2 K peak position of the
emission band caused by annihilation of bound excitons
A%X) is possible in two cases. The first one — in an
excitonic part of Cdy_,Zn,Te luminescence spectrum the
emission bands induced by annihilation of bound 4°X,,
DYX and free excitons X are observed. Then, obviously in
Cd;_Zn,Te of any type (p-, n-) and value of dark con-
ductivity, one can clearly identify the luminescence band
induced by annihilation of bound excitons 4°X. The sec-
ond one —if in a ternary compound Cd;_,Zn, Te, at first,
the relation N4 >> Np, is fulfilled (low resistivity p-type
Cd_xZn,Te and high resistivity p- or n- type Cd;_Zn,Te
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with partly compensated deep donors), and, secondly,
radiative annihilation of free excitons is an ineffective
(as compared with the processes of their binding by shal-
low acceptors and donors) channel of their disappear-
ance. Then, in the excitonic part of Cd;_Zn,Te lumines-
cence spectrum at 4.2 K, an intense 4°X emission band is
observed.

Appendix

1. Peak position hv,, and half-width w of the
intrinsic emission band

Let us consider non-degenerated weakly excited direct-
gap semiconductors (in them the kinetic energy of most
electrons and holes € < k7). In this case, the peak posi-
tion of the intrinsic emission band /v, and its half-width
w are given by the following relations (evidently, the ma-
jority of recombining electrons and holes emit photons
with the energy hv< E, + kT ,i.e. hv— E, <kT):
w=0.7kT, (AD)
if the Coulombic interaction between electrons and holes
is strong enough, i.e. the free exciton binding energy €5
(eg=10meV for CdTe and ZnTe[2, 10, 23, 27]), exceeds
substantially the average kinetic energy of electrons and
holes (g >> kT, then, evidently, g >> hv - E, in the
actual region of the intrinsic emission ) {see Eq. (1.14) in
[29]}, and

hvy, = Eq + %kT, w=18kT, (A2)
if interaction between electrons and holes is practically
absent, i.e. the exciton binding energy is much smaller
than the average kinetic energy of recombining electrons
and holes (eg << kT, then, obviously, eg << hv - E,in
tne actual region of the intrinsic emission ) {see Eq.(1.14)
in [29] and also references [12, 30]}.

Therefore, contrary to the stated in [29], Eq. (A1)
should be used only at low temperatures (k7 << gz, then
a strong interaction of electron-hole pairs exists), and
Eq. (A2) is applicable at high temperatures (k7 >> €3,
then non-interacting electrons and holes are involved in
recombination transitions).

2. A comparison of experimental and theoreti-
cal (obtained from the energy gap E, vs. x
variations) compositional dependences of the
intrinsic emission band peak position for

Cd; Zn,Te at 300 K

The known variations of Cd;_yZn,Te band gap E, at
300 K with composition are described by the following
relations (pay attention to a significant difference in E,
vs. x dependencies given below, but there is no obvious
basis for choosing one relation over another) [see Fig. 5]:
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Fig. 5. Plots of the 300 K band gap E, vs. x in Cd;_Zn,Te. / — the
data of [7] (see Eq. (A3)); 2 — the data of [9] (see Eq. (A4)). For
convenience, experimental E, vs. x points are also shown.

Eq, =(1.5045+0.631x + 0.128x2) eV (A3)
according to [7],
E,=(1.516 + 0.429x + 0.334x2) eV (A4)

according to [9] {note a wide spread in E, values at x = 0
[E; = 1.5045¢V,see Eq. (A3), E, = 1.516¢V, see Eq. (A4)];
other Eg valuesat x =0 (1.505-1.515¢V) could also be
found in the literature [12]}.

So, one expects that the theoretical dependence of the
peak position of the intrinsic emission band v, for lightly
doped weakly excited Cd;_Zn,Te at 300 K [evidently,
hv,, = E, + (1/2)kT, see Appendix 1] is given by the ex-
pression [see Eq. (A3) and Fig. 6] :

hv,, = (1.517 + 0.631x+0.128x% ) eV (A5)
or by the relation [see Eq. (A4) and Fig. 6]:
hv,, = (1.5285 + 0.429x+0.334x% ) eV. (A6)

Evidently, a presence of various 300 K Av,, vs. x de-
pendencies [see Eqs (AYS), (A6) and Fig. 6] casts doubt on
the use of Eqs (A5) and (A6) for determination of
Cd_,Zn,Te composition with the acceptable accuracy.

However, in an experiment substantially different to the
expected from Eqs (AS5) and (A6) hv,, vs. x dependence is
observed —the opinion of the authors [4] is that variations in
the 300 K peak position of the luminescence line induced
by band-to-band transitions, as Cd;_,Zn, Te composi-
tion is changed, are given by the following equation (see
Fig. 6):

hv,, =[(1.510+£0.005) + (0.606 £0.010)x +

A
+(0.139+0.010)x%] eV (A7)

{it was erroneously considered in [4] that hv, = E, at
300 K [one expects that hv, = E, + (1/2)kT at room
temperature, see Appendix 1]}.
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Fig. 6. Plots of the 300 K peak position of the luminescence band
caused by band-to-band transitions of free electrons and holes
hv,, in Cd|_Zn,Te versus Zn concentration. The 300 K /v, vs. x
dependencies are constructed accordingly to Eqs (AS) (I), (A6)
(2) and (A7) (3). For convenience, experimental Av,, vs. x points
are also shown. The experimental iv,, values are partially influ-
enced by free exciton annihilation (see the text).

Reasons for an appearance of differing theoretical
and experimental iv, vs.x dependencies [see Eqs (AS)—
(A7) and Fig. 6] are not understood up to date. One of
them may be as follows [it concerns Aiv,, vs. x dependen-
cies given by Eqgs (A5) and (A7), for which experimental
hv,, values are smaller than the theoretical ones at any x,
see Fig. 6, curves 1 and 3].

The authors of [4] considered that the near-band-edge
luminescence band arises at 300 K due to band-to-band
transitions of free electrons and holes. But it is now be-
lieved (see, for example [12, 13, 23]) that 300 K near-
band-edge luminescence of Cd;_Zn,Te (as that of GaAs,
see [30]), occurs not only due to free electron — free hole
recombination, but also due to free exciton annihilation.
The free exciton contribution is rather large, so the peak
position of the near-band-edge luminescence band at
300 K shifts significantly to the low energy region (for
example, to 4v,, = 1.50-1.504 eV at x = 0[12,31]). Obvi-
ously, the discussed free exciton contribution into near-
band-edge luminescence at 300 K should be taken into
account, if one wants to construct the reliable 300 K /v,
vs. x calibration dependencies for determining Zn con-
tentin Cd; Zn,Te.
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3. Analysis of available hv,,(A°X) vs. x de-
pendencies at 4.2 K

3.1. Cdy_yZn,Te films. The 4.2 K hv,,(4°X) vs. x cali-
bration Eq. (1) for Cd;_ZnTe films is the best quadratic
fit to the data going through the known experimental
points (see Fig. 2) [1]. But one can observe a rather sub-
stantial deflection of some experimental points from the
calibration curve [it is at maximum at low x—values
(x £0.2)] (see Fig. 2). It is scarcely probable that this
difference is caused by the accuracy of v,,,(4°X) and x—
measurements {usually the inaccuracy of the iv,,(4°X)
measurement do not exceed £0.5 meV and the x meas-
urement *1% [3]}. Besides that, the observed rather
strong deflection of experimental and theoretical /v,
points in the v, vs. x dependence at low x values (x < 0.2)
cannot be connected with the possible Cd;_4Zn,Te compo-
sitional non-uniformity Ax (usually Ax/x = 0.03-0.15,
see [13, 22, 23]), i.e. the latter gives only a small contri-
bution to the discussed non-coincidence of /v, experi-
mental and theoretical points, as in Cd;_,Zn,Te films of
low zinc concentrations (0.463x << 0.322,1i.e. x <<(.7)
an approximately linear relation between /v, and x holds—
hv,, = (1.590 +0.322x) eV [see Eq.(1)] (evidently, if a
strictly linear relation between 4v,, and x takes place,
i.e. hv,, =a+ bx, where a, b # ¢(x), then the semiconduc-
tor compositional non-uniformity brings no contribution
into the discussed non-coincidence of /v, experimental
and theoretical points). Undoubtedly, an essential con-
tribution of Cd;_yZn,Te compositional non-uniformity
into the deflection of /v, experimental and theoretical
points in the /v, vs. x dependence is possible only at high
x-values (x >0.3, then 0.332 = 0.463x) as in this case /1v,,
depends non-linearly on x [see Eq. (1)].

Most probably, the discussed deflection of experimen-
tal and theoretical points in the /v,,,(4°X) vs. x depend-
ence is associated with some poorly controllable proper-
ties of Cd;_4Zn,Te films, which influence the /v,,,(4°X)
value at a given x (for details, see subsection 3.2 below).
Obviously, the pointed leads to a definite inaccuracy in
obtained x-values by the examined luminescence method.
This inaccuracy is of the order of 220% for x = 0.03-0.1,
+5-10%for0.2>2x>0.1,2 - 5% for 0.5>x > 0.2 and 1-
2 % for 0.95 > x > 0.5 as follows from the detailed exa-
mination of Fig. 2 (when calculating inaccuracies at low
x-values, we did not take into account the experimental
point hv,,=1.71 eV at x=0.11).

3.2. Cdy_,Zn,Te crystals. In the literature, two essen-
tially different Av,,(4°X) vs. x dependencies at T=4.2 K
for Cdy_4Zn,Te mixed crystals could be found (there is no
obvious basis for preferring one dependence over an-
other). They are (note that a difference between them
exceeds considerably the inaccuracies of the 4v,, and x
measurements, see Fig. 7):
hv,, =(1.591 + 0.241x + 0.542x%) eV (A8)
according to [2] (see Fig. 7) [it is the best fit of experimen-
tal points], and
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Fig. 7. Plots of the 4.2 K peak position of the luminescence band,
induced by annihilation of bound excitons 4°X in Cd;_.Zn,Te
crystals against Zn concentration. (/) — the data of [2] (the solid
line is calculated from Eq. (A8)); (2) — the data of [3] (the solid
line is calculated from Eq. (A9)); (2°) — the corrected data of [3]
[the dashed line is calculated from Eq. (A10)]. For convenience,
experimental /v,, vs. x points are also shown (see the text).

hv,, = [1.589 + (0.65  0.01)x + (0.19£0.02)x2] eV (A9)

according to [3] (see Fig. 7).

The equation (A9) gives the /v,,(4°X) value at x = 1
(2.429 eV) substantially exceeding the known one for
ZnTe (2.375 eV), see, for example [1, 2, 14, 27]. So, a
correction must be inserted into Eq. (A9). The corrected
Eq. (A9)[it gives hv,,(4°X) = 2.375eV at x = 1]is of the
form (see Fig. 7):
hv,, = (1.589 + 0.65x + 0.136x%) eV. (A10)

The equation (2) given above shows the “averaged”
[according to Eqgs (A8) and (A10)] 4v,,(4°X) vs. x depend-
ence.

The pointed difference in the shapes of /1v,,,(4°X) vs. x
dependencies [see Eqs (A8) and (A9)] is not connected
with the possible different origin of dominating shallow
acceptors in crystals studied in [2,3]. Really, the peak
position of the 4°X emission band could only slightly
differ (by £1 meV) for shallow acceptors of different ori-
gin (see, for example [27, 28]). So, the discussed rather
large difference of 1v,,(4°X) values at fixed x essentially
exceeds the expected one for the CdTe + ZnTe system,
arising due to a different origin of shallow acceptors in it
(see Fig. 7). Most probably, the observed difference in
the shapes of 4v,,(4°X) vs. x dependencies for different
Cd;_4Zn,Te crystals [and also in cadmium zinc telluride
films and crystals, see Eqs (1) and (2)] is related to weakly
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Table 1A. Cdy_yZn,Te chemical composition as determined by
the X-ray microanalysis (x) and by the luminescence method
[using Eq. (2)] (x*).

hv,(4°X) x  References x*

at T=42K,eV
1.616 0.04 [15] 0.056%0.009
1.6167 0.04 [14] 0.058£0.009
1.632 0.1 [16] 0.088%0.015
1.652 0.1 [13] 0.127£0.022
1.642 0.12 0.108%+0.019
1.65 0.125 0.123£0.021

Note. The accuracy of x-measurements is not given in
[13-16].

controlled residual strains in them, arising mainly due to
a large lattice mismatch between CdTe (6.4810 A) and
ZnTe (6.1037 A) [21, 23]. A definite contribution to the
discussed difference of /v,,(4°X) vs. x curves could bring
disorder effects in Cdy_yZn,Te [9].

Evidently, application of “averaged” calibration
curves hv,,(A°X) = ¢(x) for Cd,_,Zn,Te crystals results in
a definite inaccuracy in obtained x values. This inaccu-
racy is shown in Fig. 3 and is of the order of +11-15% for
x =0.03-0.35, £5 - 10% for x = 0.35-0.75 and 3 — 4%
for x = 0.75-0.95. 1t significantly exceeds the inaccu-
racy occurring due to different types of shallow accep-
tors in Cd_4Zn,Te films and crystals (< 1%).

The reliability of the proposed /v,,(4°X) vs. x cali-
bration curve for determination of Cd;_Zn,Te crystal
composition is confirmed by a satisfactory correlation of
x-values found directly from the X-ray microanalysis as
well as using Eq. (2) (see Table 1A).

Note here that the residual strains in Cd_Zn,Te al-
loys will also result in different /2v,,(D°X) and Av,,(X) val-
ues at fixed x for cadmium zinc telluride compounds ob-
tained by various growth techniques (see Table 1 and
Fig. 4). As expected, the pointed difference considerably
exceeds that could be induced by shallow donors of dif-
ferent origin (£ 1 meV, see, for example [27, 28]).

A note added in a proof

After the acceptance of the paper to publication, the fol-
lowing important works on E, vs. x dependencies for
Cdi..Zn, Te became known to the authors: E, =
= hv(4°X) + 0.016 eV = ¢(x) at T=4.2 K [32] (a rela-
tion between the room temperature intrinsic luminescence
peak energy and 4A°X band position at 7= 4.2 K for
x <0.05is also given in [32]), and E,= ¢(x) at T=300 K
[33,34].
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