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Abstract. We have used electrically detected spin-dependent paramagnetic resonance to 
investigate the non-equilibrium conductivity in a silicon diode. In order to create 
paramagnetic centers, we used diode with a polished surface (that includes p-n junction). 
The dependence of relative changes in the amplitude of a signal under resonance 
conditions and the total value of current through the diode were investigated. We have 
found the presence of inversion channel on the surface of p-n junction and proposed the 
model of the influence of spin resonance on the channel conductivity. The upper value of 
the time constant inherent to the spin-dependent process was determined as 

approximately s10 6 . The influence of the spin-dependent process on the charge state in 
inversion channel has been discussed.
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Non-equilibrium conductivity can depend on the spin 
orientation of free carriers and charges in localized states 
in the bandgap. Various experiments reported about 
spin-dependent scattering [1], spin-dependent 
recombination [2-4], spin-dependent hopping 
conductivity [5]. Generally, the spin dependence of 
current was observed via its changes under the 
conditions of spin resonance. The theory of the spin-
dependent non-equilibrium conductivity under spin 
resonance conditions was developed in [6].

The first report of a spin-dependent recombination 
in mechanically treated silicon was presented in [2]. 
More appropriate object for spin-dependent 
recombination in silicon is a diode with mechanically 
treated surface, which includes p-n junction (Fig. 1).

A detailed juxtaposition of experimental data and 
the theory of spin-dependent recombination (SDR) is 
difficult, which is caused by the following reasons.

Up to now, in all works devoted to SDR 
investigations the change of non-equilibrium 
conductivity Δσs under spin resonance was always 
compared with the total conductivity σ; in this paper we 

operate with current since 
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current IΣ consists of spin-dependent (Is) and spin-
independent (Ins) parts: IΣ = Is + Ins. As a rule, Is << Ins, so
an error can reach a value higher than one order. 

Moreover, the dependence of 
I
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 on temperature or 

applied voltage may not represent the real process in 
samples (in the case of using IΣ instead of Is as 

denominator in 
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. Therefore, the information about

the total spin-dependent current (that should be used as 
denominator) is a question of principle importance.

In this work, we present the attempt to estimate
(being based on experimental data) the value of Is and to 
ascertain its mechanism in a silicon diode D-242 with 
polished surface of p-n junction.

In silicon power diodes, the reverse current is 
defined by generation-recombination mechanism 
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1
~I . After mechanical treatment

on the surface of diode, new channels of carrier 
transportation are created, including the spin-dependent 
one, IΣ = I0 + Is + Ins , where I0 is the current of unpolished 
sample; Ins and Is are spin-independent current and spin-
dependent current, respectively (the latter appears after 
mechanical treatment of the diode). Each of these currents 
is inversely proportional to τ; so it is possible to assume 
that determining the value of correspondent time constants 
τ0 , τns , τs would lead to the possibility to define the ratio 
ΔIs /I in a more accurate way.
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Fig. 1. Diode with polished sides.

In Fig. 1 the schematic image of diode is shown. 
Two sides are polished with diamond pasta with the 
granular size of 3 to 5 μm. The experimental current-
voltage characteristics of the diode before and after 
polishing are shown in Fig. 2. Before polishing, the 
reverse current-voltage characteristic was in a good 
correlation with the corresponding formulae for 
generation-recombination mechanism of current (Fig. 2, 
curve 4):

   1kTeUe
τ

end
=Uj , (1)

where n is the equilibrium concentration of carriers, d –
width of space charge region, τ – time constant. 

We have obtained the lifetime value for minority 
carriers τ in the diode gained from the transient 

characteristic [7]: it is about s10 5 . After polishing, the 
reverse current increased significantly. Also, after 
polishing the spin-dependent current in the diode was 
observed under spin resonance conditions (and wasn’t 
observed before polishing).

Fig. 2. Current-voltage characteristics (CVC) for the diodes: 
1 – polished and 2 – untreated.

Fig. 3. Typical spectrum of EDMR.

The method of measuring the changes in
conductivity of minority carriers under spin resonance is
well known and presented, for example, in [2]. The 
typical curve of ΔIs(H) is shown in Fig. 3. The maximum 

of ΔIs /IΣ was about 610 .
In Fig. 4 the dependence of ΔIs on the modulation 

frequency of the UHF at reverse voltage 15 V is shown. 
In theory, the time constant of spin-dependent current τs

can be determined ([8]) from this dependence using the
formula 
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where ΔI0 is the amplitude at low frequencies. But in our 
case, the value of τs cannot be determined because of 
hardware limitations. It is clear from Fig. 4 that the time 

constant of spin-dependent current τs is less than s10 6 .
All the aforementioned is the evidence of the 

following assumption: both the increase of the reverse 
current (due to polishing) and appearance of the spin-
dependent current are results not only of creation of 
additional generation-recombination pairs, but also of 
the creation of a new conductivity channel in subsurface 
layers.

It is known from literature data [9, 10] that 
mechanical treatment of the surface of silicon leads to 
creation of an inversion layer. The increasing value of 
reverse current, the absence of CVC saturation for the 
polished diode (Fig. 2), the sign of changes in the 
reverse current under spin resonance (increasing) and 

minimum value of 610 s – all these aspects allow to 

assert that the inversion layer of conductivity is created
in our case.

It is clear that for voltages higher than ≈15 V the 
reverse current is determined mainly by conductivity of 
the inversion channel that typically has ohmic 
characteristics. For voltages lower than ≈15 V, the 
generation-recombination mechanism is the main one in 
transporting carriers through the p-n junction.

Assuming this model of the reverse current, it is 
possible to assert that the increase of the reverse current 
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Fig. 4. Experimental data for the dependence of ΔIs on the 
frequency of UHF modulation. 

Fig. 5. Dependence of ΔIs /IΣ on the voltage.

under spin resonance conditions can be related with
increasing the space charge of paramagnetic centres at
the surface. The result of this – increase of the bending 
of energetic bands and growth of conductivity – was 
observed in our experiments. The dependence of ΔIs /IΣ

on U (Fig. 5) confirms this model. As an additional 
evidence for the proposed model, considered can be the 
fact of decreasing the effect’s value under illumination 
of the diode polished side with strongly absorbed light.

The proposed mechanism of spin-dependent current 
in the silicon diode with p-n junction with polished sides 
(that includes p-n junction) is the main one in our case. 
But this fact does not except involving the well known 
spin-dependent generation-recombination mechanism.
The value of Is still remains unclear, but on the base of the 
obtained experimental results we offer the new model of 
spin-dependent current in diode, which matches 
qualitatively with experimental data.

References

1. G. Toth, Collision dependent du spin entre electrons 
de conduction et impurete’s paramagnetiques dans 
les metaux et semiconductors: Effects sup les 
proprietes de transport. – The Doctorat Etat Es-
Sciences Physiques, Paris, 1972, p.109.

2. D. Lepin, Spin-dependent recombination in silicon
// Phys. Rev. B 6(2), p. 436-444 (1972).

3. L.S. Mima, V.I. Strikha, O.V. Tretyak // Fizika 
tekhnika poluprov. 14, p. 1328 (1980), in Russian.

4. L.S. Mima, O.V. Tretyak, Spin-dependent 
recombination in semiconductors // Fizika tekhnika 
poluprov. 15(9), p. 1729-1732 (1981), in Russian.

5. V.V. Ilchenko, O.V. Tretyak, Charge transport and 
spin-dependent recombination in polycrystalline 
silicon // Vestnik Kievskogo universiteta, ser. fizika,
1983, p. 24 (in Russian).

6. V.S. Lvov, L.S. Mima, O.V. Tretyak, Investigation 
of spin-dependent recombination in semiconductors
// Preprint, vol. 182, Institute of Automation and
Electrometry, Siberian Branch of Russian Academy 
of Sciences, Novosibirsk, Russia, 1982, p. 23 (in 
Russian).

7. I.M. Vikulin, V.I. Stafeyev, Physics of 
Semiconductor Devices. Radio i Svyaz Publ., 
Moscow, 1990, p. 40 (in Russian).

8. S.M. Ryvkin, Photoelectric Processes in 
Semiconductors. Gos. izd-vo fiz. mat. lit., Moscow, 
1963, p. 60 (in Russian).

9. V.V. Pasinkov, L.K. Chirkin, A.D. Shinkov,
Semiconductors Devices. Vysshaya Shkola Publ.,
Moscow, 1966, p. 122 (in Russian).

10. T.Ya. Gorbach, R.Yu. Holiney, I.M. Matiyuk et al.,
Electroreflectance spectroscopy and scanning 
electron microscopy study of microrelief silicon 
wafers with various surface pretreatments // 
Semiconductor Physics, Quantum Electronics & 
Optoelectronics 1(1), p. 66-70 (1998).



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010. V. 13, N 1. P. 95-97.



PACS 73.20.-r, 73.40.-c, 85.30.Kk

Spin-dependent current in silicon p-n junction diodes 

O.V. Tretyak, O.I. Kozonushchenko, K.V. Krivokhizha, A.S. Revenko

Taras Shevchenko Kyiv National University, Radiophysics Department, 


64, Volodymyrs’ka str., 01601 Kyiv, Ukraine

Abstract. We have used electrically detected spin-dependent paramagnetic resonance to investigate the non-equilibrium conductivity in a silicon diode. In order to create paramagnetic centers, we used diode with a polished surface (that includes p-n junction). The dependence of relative changes in the amplitude of a signal under resonance conditions and the total value of current through the diode were investigated. We have found the presence of inversion channel on the surface of p-n junction and proposed the model of the influence of spin resonance on the channel conductivity. The upper value of the time constant inherent to the spin-dependent process was determined as approximately 

[image: image1.wmf]s


10


6


-


. The influence of the spin-dependent process on the charge state in inversion channel has been discussed. 

Keywords: EDMR, ESR, polished surface, paramagnetic states, inversion layer.

Manuscript received 13.10.09; accepted for publication 22.10.09; published online 30.12.09.

Non-equilibrium conductivity can depend on the spin orientation of free carriers and charges in localized states in the bandgap. Various experiments reported about spin-dependent scattering [1], spin-dependent recombination [2-4], spin-dependent hopping conductivity [5]. Generally, the spin dependence of current was observed via its changes under the conditions of spin resonance. The theory of the spin-dependent non-equilibrium conductivity under spin resonance conditions was developed in [6].


The first report of a spin-dependent recombination in mechanically treated silicon was presented in [2]. More appropriate object for spin-dependent recombination in silicon is a diode with mechanically treated surface, which includes p-n junction (Fig. 1).


A detailed juxtaposition of experimental data and the theory of spin-dependent recombination (SDR) is difficult, which is caused by the following reasons.


Up to now, in all works devoted to SDR investigations the change of non-equilibrium conductivity Δσs under spin resonance was always compared with the total conductivity σ; in this paper we operate with current since 
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. The total current IΣ consists of spin-dependent (Is) and spin-independent (Ins) parts: IΣ = Is + Ins. As a rule, Is << Ins, so an error can reach a value higher than one order. Moreover, the dependence of 
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. Therefore, the information about the total spin-dependent current (that should be used as denominator) is a question of principle importance.


In this work, we present the attempt to estimate (being based on experimental data) the value of Is and to ascertain its mechanism in a silicon diode D-242 with polished surface of p-n junction.


In silicon power diodes, the reverse current is defined by generation-recombination mechanism 
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. After mechanical treatment on the surface of diode, new channels of carrier transportation are created, including the spin-dependent one, IΣ = I0 + Is + Ins , where I0 is the current of unpolished sample; Ins and Is are spin-independent current and spin-dependent current, respectively (the latter appears after mechanical treatment of the diode). Each of these currents is inversely proportional to τ; so it is possible to assume that determining the value of correspondent time constants τ0 , τns , τs would lead to the possibility to define the ratio ΔIs /I in a more accurate way.
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Fig. 1. Diode with polished sides.


In Fig. 1 the schematic image of diode is shown. Two sides are polished with diamond pasta with the granular size of 3 to 5 μm. The experimental current-voltage characteristics of the diode before and after polishing are shown in Fig. 2. Before polishing, the reverse current-voltage characteristic was in a good correlation with the corresponding formulae for generation-recombination mechanism of current (Fig. 2, curve 4):
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where n is the equilibrium concentration of carriers, d – width of space charge region, τ – time constant. 


We have obtained the lifetime value for minority carriers τ in the diode gained from the transient characteristic [7]: it is about 
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. After polishing, the reverse current increased significantly. Also, after polishing the spin-dependent current in the diode was observed under spin resonance conditions (and wasn’t observed before polishing).
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Fig. 2. Current-voltage characteristics (CVC) for the diodes: 1 – polished and 2 – untreated.
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Fig. 3. Typical spectrum of EDMR.


The method of measuring the changes in conductivity of minority carriers under spin resonance is well known and presented, for example, in [2]. The typical curve of ΔIs(H) is shown in Fig. 3. The maximum of ΔIs /IΣ was about 
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In Fig. 4 the dependence of ΔIs on the modulation frequency of the UHF at reverse voltage 15 V is shown. In theory, the time constant of spin-dependent current τs can be determined ([8]) from this dependence using the formula 
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where ΔI0 is the amplitude at low frequencies. But in our case, the value of τs cannot be determined because of hardware limitations. It is clear from Fig. 4 that the time constant of spin-dependent current τs is less than 
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All the aforementioned is the evidence of the following assumption: both the increase of the reverse current (due to polishing) and appearance of the spin-dependent current are results not only of creation of additional generation-recombination pairs, but also of the creation of a new conductivity channel in subsurface layers.


It is known from literature data [9, 10] that mechanical treatment of the surface of silicon leads to creation of an inversion layer. The increasing value of reverse current, the absence of CVC saturation for the polished diode (Fig. 2), the sign of changes in the reverse current under spin resonance (increasing) and minimum value of 
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 – all these aspects allow to assert that the inversion layer of conductivity is created in our case.


It is clear that for voltages higher than ≈15 V the reverse current is determined mainly by conductivity of the inversion channel that typically has ohmic characteristics. For voltages lower than ≈15 V, the generation-recombination mechanism is the main one in transporting carriers through the p-n junction.


Assuming this model of the reverse current, it is possible to assert that the increase of the reverse current under spin resonance conditions can be related with increasing the space charge of paramagnetic centres at the surface. The result of this – increase of the bending of energetic bands and growth of conductivity – was observed in our experiments. The dependence of ΔIs /IΣ on U (Fig. 5) confirms this model. As an additional evidence for the proposed model, considered can be the fact of decreasing the effect’s value under illumination of the diode polished side with strongly absorbed light.
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The proposed mechanism of spin-dependent current in the silicon diode with p-n junction with polished sides (that includes p-n junction) is the main one in our case. But this fact does not except involving the well known spin-dependent generation-recombination mechanism. The value of Is still remains unclear, but on the base of the obtained experimental results we offer the new model of spin-dependent current in diode, which matches qualitatively with experimental data.
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Fig. 4. Experimental data for the dependence of ΔIs on the frequency of UHF modulation. 
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Fig. 5. Dependence of ΔIs /IΣ on the voltage.
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