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1. Introduction

In previous work, we investigated direct influence of 
inter-electron interaction on conductivity of n-silicon 
[1]. In contrast to crystals with one simple band, where 
the electron-electron scattering does not change the total 
momentum of carriers, in multivalley crystals the 
conductivity can be essentially influenced by mutual 
drag of carriers that belong to different partial bands or 
valleys (see Refs. [1, 2]). The analogous effect has to 
appear in semiconductors where band carriers occupy 
several subbands, and transitions between these 
subbands are sufficiently rare. If mobilities of carriers 
from separate subbands are appreciable, then values of 
separate drift flows are determined not only by external 
scattering system (phonons, impurities) but by mutual 
drag, too. In this case, the more quick flow is inhibited 
by the more slow flow, and the latter is accelerated by 
the former one. This drag changes the total conductivity 
of crystal.

Convenient objects to investigate this mutual drag 
are p-silicon and p-germanium. We consider here the 
two-band model for these crystals and for simplicity of 
calculations accept spherical band approximation. So, 
the dispersion law has the following simple form:

a
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k
mk 2/22)(       (a = 1 or 2). (1)

Here, am  are effective masses ( 1m  is the mass of 

light holes, and 2m  is the mass of heavy holes).

Previous calculations show that approximation of 
spherical bands introduces into the calculated 
conductivity some inaccuracy about several percents 
only. The considered mutual drag can change 
conductivity much more.

In the case 21 mm  , the concentration of light 

holes 1p  differs substantially from the concentration of 

heavy holes 2p  (see Ref. [3]). We have 
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One can see that the concentration of light holes is small 
and they cannot drag heavy holes noticeably. Therefore, 
heavy holes are not sensitive to the drag by light holes. 
We have a quite opposite situation for light holes. In 
spite of small number, their contribution to the total 
conductivity is quite comparable with contribution of 
heavy holes. Therefore, drag of light holes by heavy 
holes can influence essentially on the total conductivity.

2. Balance equations

Many years ago (see Ref. [3]), some special attempt was 
taken to consider influence of intervalley scattering on 
cyclotron resonance in silicon. Performing their 
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calculations, the authors of this article followed 
directions of Ref. [4] where additional scattering term 
for kinetic equation (in the form of tau-approximation) 
was proposed. It was not good idea, because collision 
integral for ee  -scattering principally cannot represent 
in the form containing some relaxation time (see 
Ref. [5]).

We use here a quite another approach that allows to 
involve into consideration interaction of band carriers 
with good reasons (see, for example, Refs. [6, 7]).

We begin consideration of the conductivity from 
the set of two balance equations obtained as a first 
momentum of quantum kinetic equations (see Refs 
[2, 7]):
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Here, E


 is the applied electric field; the resistant 
force related to an external scattering system is 
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We consider here interaction of holes with acoustic 
phonons and charged impurities disposed uniformly in 

space. In Eq. (3), the value )(a
k

f   is non-equilibrium 

distribution function for a-holes; the values qI


,
2

)( 

and qph


,
2

)(    are Fourier components of correlator of 

impurity and phonon scattering potentials. In our 
calculations, we use such forms (see Refs. [2, 7]):
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Here In  is the concentration of charged impurities, 

A  is the deformation potential constant. The form (5) 

corresponds to the approximation of quasi-elastic 
collisions.

The screening dielectric function for quasi-elastic 
collisions we take in the form

)/1(),( 22
0 qqq L 


, (6)

where L  is the dielectric constant of crystal lattice. For 

nondegenerate carriers 
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The Coulomb interaction between all holes is 
presented by the forces (a, b = 1, 2) 
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To calculate the drift velocities )(au


of electrons 
from a-group we accept the model of non-equilibrium 
distribution functions as Fermi functions with argument 

containing shift of velocity )/()( )(1)( kkv a
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Here, )())(( )(
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is the equilibrium

distribution function for a-carriers. The drift velocities 
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 are proportional to partial densities of 

currents )(aj


:
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The density of total current is
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Using the forms (9) and carrying out linearization 
of forces in Eqs. (2) over drift velocities, for spherical 
symmetry we obtain the following set of balance 
equations:
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Here, the coefficients )(a and ),( ba  are (see Refs 

[2, 7]):
)()()( aaa  ;  (13)
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In Eqs. (14)-(16), the imaginary part of dielectric 
function is presented by the expression
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For quasi-elastic collisions, we have the form (see 
Ref. [2])
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Here,   is the dimensionless Fermi-energy: 

TkBF / .

As a result, we have for non-degenerate holes:
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Therefore, )2,1()2,1(
21

)1,2( )/(  wpp . 

Farther, we use the designation  )2,1( . For 

germanium, w = 0.042; for silicon, w = 0.153 (see 
Ref. [8]). We also assume 21 pppnI  .

As a result, we have the following system for drift 
velocities of light and heavy holes:
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The case 0  corresponds to neglecting the

mutual drag of light and heavy holes. 

3. Mobility of holes

Solving the system (24), one obtains the following 
expressions for drift velocities of light and heavy holes:
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Thereof, one finds the dependences of drift
velocities on the drag coefficient . For relative values
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Let us introduce the total conductivity )(  and 

the hole mobility )( by using the following relations:
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4. Results of numerical calculations

In this work, our numerical calculations have been 
performed for non-degenerate holes. Fig. 1 shows areas 
substantially different in relation to degeneracy. 
Presented there separating lines correspond to the case 

0F .

To perform numerical calculations, we used the 
following values: 

eV2.4,Pa1066.1,12 112  AL s  for p-

silicon and 

eV9.1,Pa1026.1,16 112  AL s for p-

germanium.

Fig. 1. Areas of degenerate and nondegenerate holes.
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Fig. 2. Dependence of the relative drift velocity for light holes on temperature for Sip (a) and Gep (b). 

p = 312 cm10  (1); 314 cm10  (2); 316 cm10  (3); 318 cm10  (4).

Fig. 3. Dependence of the relative drift velocity for heavy holes on temperature for Sip (a) and Gep (b). p = 
312 cm10  (1); 314 cm10  (2); 316 cm10  (3); 318 cm10  (4).

Fig. 4. Dependence of the relative mobility on temperature for Sip (a) and Gep (b). p = 312 cm10  (1); 314 cm10  (2); 
316 cm10  (3); 318 cm10  (4). 

Fig. 5. Dependence of the relative mobility on the hole concentration for Sip (a) and Gep (b). T = 100 K (1), 
200 K (2), 300 K (3). 
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Figs. 2a, b show relation of light hole drift 
velocities calculated for dragged (there we have )(1 u ) 

and for undragged carriers (there we have )0(1u ). It is 

evident that mutual drag significantly diminishes (by 
several times) the drift velocity of light holes. 

Figs. 3a, b allow to visually compare the heavy hole 
drift velocities calculated for dragged and undragged 
carriers. One can see that drag by light holes increases the 
drift velocity of heavy holes only by few percents.

Figs. 4a, b and 5a, b demonstrate level of influence 
of mutual drag of light and heavy holes on the total 
conductivity of p-silicon and p-germanium. The main 
result of carried calculations is the absolute decrease of 
total conductivity due to mutual drag. It should point out 
the complicated dependences of the ratio )0(/)(   on 

temperature and on total concentration of holes.
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1. Introduction 

In previous work, we investigated direct influence of inter-electron interaction on conductivity of n-silicon [1]. In contrast to crystals with one simple band, where the electron-electron scattering does not change the total momentum of carriers, in multivalley crystals the conductivity can be essentially influenced by mutual drag of carriers that belong to different partial bands or valleys (see Refs. [1, 2]). The analogous effect has to appear in semiconductors where band carriers occupy several subbands, and transitions between these subbands are sufficiently rare. If mobilities of carriers from separate subbands are appreciable, then values of separate drift flows are determined not only by external scattering system (phonons, impurities) but by mutual drag, too. In this case, the more quick flow is inhibited by the more slow flow, and the latter is accelerated by the former one. This drag changes the total conductivity of crystal.


Convenient objects to investigate this mutual drag are p-silicon and p-germanium. We consider here the two-band model for these crystals and for simplicity of calculations accept spherical band approximation. So, the dispersion law has the following simple form:
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Previous calculations show that approximation of spherical bands introduces into the calculated conductivity some inaccuracy about several percents only. The considered mutual drag can change conductivity much more.
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6.55 for p-silicon. One can see that the concentration of light holes is small and they cannot drag heavy holes noticeably. Therefore, heavy holes are not sensitive to the drag by light holes. We have a quite opposite situation for light holes. In spite of small number, their contribution to the total conductivity is quite comparable with contribution of heavy holes. Therefore, drag of light holes by heavy holes can influence essentially on the total conductivity.

2. Balance equations 

Many years ago (see Ref. [3]), some special attempt was taken to consider influence of intervalley scattering on cyclotron resonance in silicon. Performing their calculations, the authors of this article followed directions of Ref. [4] where additional scattering term for kinetic equation (in the form of tau-approximation) was proposed. It was not good idea, because collision integral for 
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We use here a quite another approach that allows to involve into consideration interaction of band carriers with good reasons (see, for example, Refs. [6, 7]).


We begin consideration of the conductivity from the set of two balance equations obtained as a first momentum of quantum kinetic equations (see Refs [2, 7]):
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We consider here interaction of holes with acoustic phonons and charged impurities disposed uniformly in space. In Eq. (3), the value 
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Here 

[image: image20.wmf]I


n


 is the concentration of charged impurities, 

[image: image21.wmf]A


X


 is the deformation potential constant. The form (5) corresponds to the approximation of quasi-elastic collisions.


The screening dielectric function for quasi-elastic collisions we take in the form




[image: image22.wmf])


/


1


(


)


,


(


2


2


0


q


q


q


L


+


e


=


w


e


r


,



(6) 


where 

[image: image23.wmf]L


e


 is the dielectric constant of crystal lattice. For nondegenerate carriers 




[image: image24.wmf]T


k


p


p


e


q


B


L


e


+


p


=


)


(


4


2


1


2


2


0


.



(7)

The Coulomb interaction between all holes is presented by the forces (a, b = 1, 2) 



[image: image25.wmf];


)


,


'


,


(


)


,


0


(


)


(


1


'


4


2


)


(


)


(


)


(


)


(


4


3


3


3


6


4


)


,


(


ò


ò


ò


U


=


w


e


e


+


e


-


e


-


e


d


´


´


p


=


¢


-


¢


¢


-


q


k


k


q


q


q


d


k


d


k


d


k


p


e


F


ab


b


q


k


b


k


a


q


k


a


k


a


b


a


r


r


r


r


r


r


r


r


h


r


r


r


r


r


r


r






[image: image26.wmf].


)


1


(


)


1


(


)


1


(


)


1


(


)


,


'


,


(


)


(


'


)


(


'


)


(


)


(


)


(


'


)


(


'


)


(


)


(


b


k


b


q


k


a


q


k


a


k


b


q


k


b


k


a


k


a


q


k


ab


f


f


f


f


f


f


f


f


q


k


k


Y


r


r


r


r


r


r


r


r


r


r


r


r


r


r


r


-


-


-


-


-


-


=


-


-


-


-


       
(8)

To calculate the drift velocities 
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Here, 
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The density of total current is
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Using the forms (9) and carrying out linearization of forces in Eqs. (2) over drift velocities, for spherical symmetry we obtain the following set of balance equations:
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Here, the coefficients 
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In Eqs. (14)-(16), the imaginary part of dielectric function is presented by the expression
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For quasi-elastic collisions, we have the form (see Ref. [2])
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Here, 
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 is the dimensionless Fermi-energy: 
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As a result, we have for non-degenerate holes:
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where



[image: image54.wmf].


29


.


3


sinh


2


2


ò


¥


¥


-


»


=


g


w


dw


w


         
(22)


Note that 




[image: image55.wmf])


,


(


)


,


(


a


b


b


b


a


a


p


p


x


=


x


. 
(23)


Therefore, 
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As a result, we have the following system for drift velocities of light and heavy holes:
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The case 
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 corresponds to neglecting the mutual drag of light and heavy holes. 


3. Mobility of holes


Solving the system (24), one obtains the following expressions for drift velocities of light and heavy holes:
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Thereof, one finds the dependences of drift velocities on the drag coefficient
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Let us introduce the total conductivity 
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4. Results of numerical calculations


In this work, our numerical calculations have been performed for non-degenerate holes. Fig. 1 shows areas substantially different in relation to degeneracy. Presented there separating lines correspond to the case 
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To perform numerical calculations, we used the following values: 
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Fig. 1. Areas of degenerate and nondegenerate holes.
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Figs. 2a, b show relation of light hole drift velocities calculated for dragged (there we have 
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) and for undragged carriers (there we have 

[image: image75.wmf])


0


(


1


u


). It is evident that mutual drag significantly diminishes (by several times) the drift velocity of light holes. 


Figs. 3a, b allow to visually compare the heavy hole drift velocities calculated for dragged and undragged carriers. One can see that drag by light holes increases the drift velocity of heavy holes only by few percents.


Figs. 4a, b and 5a, b demonstrate level of influence of mutual drag of light and heavy holes on the total conductivity of p-silicon and p-germanium. The main result of carried calculations is the absolute decrease of total conductivity due to mutual drag. It should point out the complicated dependences of the ratio 
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 on temperature and on total concentration of holes.
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Fig. 2. Dependence of the relative drift velocity for light holes on temperature for � EMBED Equation.3  ���(a) and � EMBED Equation.3  ���(b). p = � EMBED Equation.3  ���(1); � EMBED Equation.3  ���(2); � EMBED Equation.3  ���(3); � EMBED Equation.3  ���(4).





�


Fig. 3. Dependence of the relative drift velocity for heavy holes on temperature for � EMBED Equation.3  ���(a) and � EMBED Equation.3  ���(b). p = � EMBED Equation.3  ���(1); � EMBED Equation.3  ���(2); � EMBED Equation.3  ���(3); � EMBED Equation.3  ���(4).





�


Fig. 4. Dependence of the relative mobility on temperature for � EMBED Equation.3  ���(a) and � EMBED Equation.3  ���(b). p = � EMBED Equation.3  ���(1); � EMBED Equation.3  ���(2); � EMBED Equation.3  ���(3); � EMBED Equation.3  ���(4). 





�


Fig. 5. Dependence of the relative mobility on the hole concentration for � EMBED Equation.3  ���(a) and � EMBED Equation.3  ���(b). T = 100 K (1), 200 K (2), 300 K (3). 
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