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Strong coupling between electronic and mechanical degrees of freedom is a basic requirement for the op-

eration of any nanoelectromechanical device. In this Review we consider such devices and in particular in-

vestigate the properties of small tunnel-junction nanostructures that contain a movable element in the form

of a suspended nanowire. In these systems, electrical currents and charge can be concentrated to small spa-

tial volumes resulting in strong coupling between the mechanics and the charge transport. As a result, a vari-

ety of mesoscopic phenomena appear, which can be used for the transduction of electrical currents into

mechanical operation. Here we will in particular consider nanoelectromechanical dynamics far from equi-

librium and the effect of quantum coherence in both the electronic and mechanical degrees of freedom in the

context of both normal and superconducting nanostructures.

PACS: 73.23.–b Electronic transport in mesoscopic system;
74.50.+r Tunneling phenom; point contacts, Josephson effects;
73.63.Nm Quantum wires;
85.85.+j Micro- and nanoelectromechanical systems.

Keywords: Nanoelectromechanical systems, electromechanical shuttling, NEM coupling, quantum coher-
ence, nonequilibrium dynamics, superconducting weak links.
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1. Introduction

One of the main goals of contemporary nanophysics is

to attain the means for controlled operation of mechanical

devices on the nanometer length scale. The required cou-

pling between electronic and mechanical degrees of free-

dom can be dramatically enlarged in conducting nano-

electromechanical systems (NEMS) where electrical

currents and accumulated charge can be concentrated to

small spatial volumes. Of particular interest in this Re-

view are small tunnel structures that incorporate a mov-

able element in the form of a suspended nanowire. This is

because here, as we shall demonstrate below, one is able

to harvest a host of mesoscopic phenomena for the pur-

pose of transduction of electrical currents into nano-

mechanical operations.

One example of a nanoelectromechanical (NEM) de-

vice is the nanoelectromechanical single-electron tunnel-

ing (NEM-SET) transistor. Such a device may be built by

self-assembly, employing mechanically soft organic mol-

ecules anchored at metal electrodes while attached to a

small conducting «Coulomb dot» or «single-electron

box» [1,2]. In this way mechanical displacements of the

dot with respect to the conducting leads are possible (see

also Ref. 3). Other approaches to building NEM-SET de-

vices involve the use of a flexible nanopillar placed be-

tween a source and drain electrode [4] and placing a metal

«dot» on the tip of an externally driven cantilever [5].

Generally, in NEM-SET devices the transport of electrons

is due to a combination of single-electron tunneling

events (between either the source or the drain lead and the

dot) and the mechanical transportation of charge through

the motion of the dot.

Mechanical vibrations can be coupled to the electron

transport both via uncompensated charge (electrostatic

coupling) and currents (magnetomotive coupling). An

electrostatic coupling can be realized in devices where a

nanomechanical resonator is used as a movable gate elect-

rode [6–8]. In such nanoelectromechanical devices, where

the movable part is effectively «zero-dimensional», one

has found that the electromechanical coupling can — un-

der certain conditions — have much more dramatic results

than simply vibron assisted tunneling, which follows from

a straightforward application of perturbation theory. In

particular, it has been shown that an electrostatic coupling

of mechanical and electronic degrees of freedom can in-

duce an electromechanical instability, resulting in self-sus-

tained temporal oscillations in both the mechanical and

electronic characteristics of the system. This instability is

behind the new «shuttle» mechanism for mechanically pro-

moted single-electron mesoscopic charge transport that

was proposed in Ref. 9. A number of the consequences of

mechanically assisted «shuttle» transport have been inves-

tigated for normal, superconducting and magnetic

NEM-SET devices (see, e.g., the reviews Refs. 10 and 11).

Other frequently studied nanoelectromechanical sys-

tems are «one-dimensional» in the sense that they incor-

porate a suspended nanowire as a (possibly) vibrating

current carrying element. In this case there are many more

relevant mechanical degrees of freedom than in the rigid

«zero-dimensional» quantum-dot-type NEM devices. In

the latter type of device it is sufficient to take the cen-

ter-of-mass-motion of the movable element into account,

while in the former also flexural and other types of wire

vibrations, as well as intrinsic phonon modes, can couple

to the electrons [12–14]. The effect of the various vibra-

tion modes on electron transport can be investigated ei-

ther through the driven resonator method, where a down-

mixing technique is used for detection [15,16], or through

scanning tunneling spectroscopy methods, detecting

phonon-assisted channels for the inelastic tunneling of

electrons [17–19].

A number of novel nanoelectromechanical phenomena

become possible as a result of the elongation of the mov-

able NEM-SET element. The present authors have, e.g.,

recently been involved in studies of the interplay in such

devices between quantum coherence in both electronic

and vibrational degrees of freedom. Other investigations

have been related to non-equilibrium transport issues re-

sulting from electromechanical instabilities that drive the

system far away from equilibrium. This work will be re-

viewed in the present paper, where the following topics

will be discussed.

1. Multi-mode shuttle structures. The nanoelectro-

mechanics of nanowire-based («one-dimensional»)

NEM-SET devices have to deal with the multimode flexu-

ral vibrations of the suspended wire, and their effect on

charge transport. The relevant theoretical framework will

be reviewed, and in particular we will show how a strong

nonlinear coupling between different modes leads to a

«self organization» effect in multimode shuttle structures.

2. Interplay between quantum coherent mechanical vi-

brations and coherent electron transport. Quantum co-

herence is expected to play a significant role in the nano-

mechanics of sufficiently long suspended carbon

nanowires, since the amplitude of their zero-point oscilla-

tions is comparatively large. The entanglement between

quantum coherent electrons and quantum coherent me-

chanical vibrations, induced by an external magnetic

field, will be shown to qualitatively modify the NEM-as-

sisted electron transport in this case. This phenomenon

suggests that measuring the magnetoresistance may be a

way of testing quantum coherence in mechanical nano-

vibrations.

3. Nanoelectromechanics of a superconducting weak

nanowire-link. A current passing through a suspended

wire of nanometer-sized cross-section in the presence of a

transverse magnetic field, gives rise to a strong nano-

electromechanical coupling via both the Lorentz force
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and the electromotive force. We show that this coupling

qualitatively changes the electrodynamics of a suspended

nanowire serving as a superconducting weak link. The

possibility to resonantly pump energy into nanowire vib-

rations by means of an ac Josephson current is explored.

The paper is organized as follows. In Section 2 we in-

troduce the reader to the important concepts of this Re-

view and in particular focus on the effects of charge con-

centration in nanoelectromechanical tunneling structures.

These ideas are expanded upon further in Section 2.1 and

2.2 where the conditions for the single- and multimode

shuttle instability respectively are derived. We conclude

this part of the Review by demonstrating how self-selec-

tivity between the vibrational modes of the considered

suspended nanowire device can be achieved, Section 2.3

and 2.4. In Section 3 we instead consider the effects of

current variations coupled to an externally applied mag-

netic field and analyze the subsequent electron-vibron in-

teraction for the case of normal, Section 3.1, and

superconducting, Section 3.2, electrodes.

2. Electromechanical coupling in tunneling

nanostructures with charge concentration

Electron transport in tunneling nanostructures can be

strongly affected by the accumulation of charge in small

parts of the devices. The increase in electrostatic energy

corresponding to such charge accumulation can easily ex-

ceed typical thermal energies and energies available from

the voltage source, resulting in «Coulomb blockade» of

electron tunneling [20]. The Coulomb forces associated

with the uncompensated electric charge can furthermore,

under the right conditions, be large enough to induce sig-

nificant mechanical deformation of the movable parts of

nanomechanical devices. The «electromechanical insta-

bility» or «shuttle instability» of the NEM-SET device

considered in Refs. 9–11 is a remarkable example of this

phenomenon. In this system electromechanical coupling

is achieved due to the accumulation of charge on a mov-

able metal island («dot») and mechanical «shuttle» trans-

port of single electrons can be achieved as a result of an

electromechanical instability if a sufficiently large bias

voltage is applied.

In the following sections we will explore the possibility

to utilize the flexural vibrations of a suspended nanowire

to transport electric charge. Such mechanically assisted

transport can be attained if the electric charge injection is

focused into the movable part of the device. This can be ac-

complished through the use of a scanning tunnel micro-

scope (STM) which locally injects current into the vibrat-

ing suspended nanowire as shown in Fig. 1,a.

An experimental realization of this device has been

studied by LeRoy et al. [19] and details on the fabrication

of the device can be found in Ref. 22. In this work, the res-

onator consists of a single-wall carbon nanotube (CNT)

suspended over a trench such that a segment of the tube is

free to move in response to external forces. Since the

shuttle (in)stability analysis presented here does not cru-

cially depend on the material of which the movable part

is made, we will in the following consider a generic

oscillating nanowire.

In order to fully describe the mechanics of the nano-

wire, the complete set of its flexural vibrational modes

should be taken into account. It will be shown later that,

under certain conditions, this adds some new features to

the ordinary picture of nanomechanical shuttling in

«point-like» movable islands. However, the conditions

for the electromechanical instability to occur are not cru-

cially affected by the multimode nature of flexural vibra-

tions, hence we will start the analysis of the shuttle insta-

bility considering only a single vibrational mode.

2.1. Single-mode instability

The device shown in Fig. 1,a models the nanowire as a

beam of length l with clamped ends. Let the undeformed

wire extend along the z-axis, while its cross-section lies

in the xy-plane. If the wire is deformed from its static con-

figuration by a bending force perpendicular to the z-axis,

it will start to oscillate in the xz-plane. Such flexural vi-

brations of CNTs have been detected in devices similar to

the one analyzed here [12,15,16,18,19,23,24].

The deformation of the nanotube profile along the

z-direction can be described by the displacement field

u z t( , ), which, according to linear elasticity theory

[14,25] obeys the following equation of motion,
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Fig. 1. (Color online) Sketch of the system considered (a) and

the equivalent circuit (b). Mechanical deviation of the wire

away from the static configuration is described by the «dis-

placement field» u z t( , ). An STM tip is put over the point z0

along the suspended nanowire axis and the electron tunneling

rate �1 0 1 0 1 0
1( ( )) [ ( ( )) ( ( ))]u z R u z C u z� � between the STM tip

and the nanowire depends on the deflection of the midpoint of

the nanowire. The tunneling rate �2 2 2
1� �[ ]R C between the

nanowire and the electrodes is, however, constant. Adapted

with permission from [21], L.M. Jonsson et al., Nano Lett. 5,

1165 (2005). � 2005, American Chemical Society.
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Here, E is the Young’s modulus of the nanowire, I is

the cross-sectional area moment of inertia, � is the linear

mass density, S is the cross-section area and f is the force

per unit length acting on the nanowire. The boundary con-

ditions for the doubly-clamped beam are u t( , )0 �
� �u l t( , ) 0 and � � � � � �u/ z t u/ z l t( , ) ( , )0 0.

The displacement field and the force per unit length in

Eq. (1) can be expanded in the complete set of normal

modes� j z( ) obtained by diagonalization of the hermitian

operator d /dz4 4 with the above boundary conditions. The

result is

u z t x t zj

j

j( , ) ( ) ( )�	 � (2a)

f z t f x t x t t zj

j

j( , ) ( ( ), ( ), , ) ( ) ,�	 1 2 � � (2b)

where x tj ( ) and f x t x t tj ( ( ), ( ), , )1 2 � are time-dependent

amplitudes. Note that we write the amplitudes for the force

as f x t x t tj ( ( ), ( ), , )1 2 � instead of just f tj ( ) to stress that,

in the system considered, the force at any time t depends

also on the displacement of the wire, i.e. on the normal

mode amplitudes x tj ( ). Inserting the expressions (2) for

u z t( , ) and f z t( , ) into the equation of motion (1) for the

beam, one finds that the beam dynamics is equivalent to

that of a set of coupled harmonic oscillators x j with fre-

quencies 
 j , affected by forces f x x tj ( , , , )1 2 � . In gen-

eral, the unperturbed modal oscillation frequencies are

given by 
 j jc /l� ( )2 ( ) /EI/ S� 1 2, where the coefficients

c j � 22 4 61 7 120 9 199 9 298 6. , . , . , . , . , � are obtained by solv-

ing the equation cos cosc cj jh �1, see Ref. 25 for

details.

The normal mode eigenfunctions { ( )}� j z are well ap-

proximated by {sin ( )j z/l� } and can be classified accord-

ing to their symmetry properties as either «even» or

«odd» under the spatial inversion operation z z� � with

respect to the midpoint of the nanotube. The modes la-

beled 1 3 2 1, , , ,� �j � turn out to be even, while the

modes 2 4 2, , , ,� �j are odd. For the moment we assume

that the STM tip is put over the midpoint of the nanowire

( z l/0 2� ). This assumption enables us to neglect the cou-

pling between the STM and the odd modes. Furthermore,

only the fundamental bending mode is taken into account,

for which �1 2 1( / )l  (if the normal modes � j z( ) are nor-

malized to 1). The displacement of the nanowire then re-

duces to the amplitude of the first mode (for the rest of

this section indicated as x t( ) instead of x t1( )). Finally, a

dc bias voltage V is applied between the STM and the

electrodes enabling electrons to tunnel from the STM tip

to the nanowire and then from the nanowire to the

electrodes.

From the point of view of the charge transport the sys-

tem can be modeled as two tunnel junctions in series. The

junction between the STM tip and the nanowire, labeled

«1» in Fig. 1,b, is characterized by a capacitance C x1( )

and a resistance R x1( ), both of which depend on the de-

flection of the tube. This dependence is assumed to be of

the form R x L x / R x/1 0( ) exp[ ( ) ] exp( ) � � � �� � , where �
— the tunneling length — is a parameter used to charac-

terize the tunnel barrier. If the wire oscillates, its separa-

tion from the STM tip changes in time, hence so does the

tunneling probability. The interface between the

nanowire and the metal electrodes is also assumed to be a

tunnel junction (rather than an ohmic contact). It is la-

beled «2» in Fig. 1,b and is characterized by two con-

stants, the capacitance C 2 and the resistance R2.

When an electron tunnels onto the nanowire, a certain

time � q is needed in order to redistribute the charge on it.

This time can, however, always be assumed to be shorter

than the other characteristic times in the system. These

are

– �1, the time needed for electrons to tunnel from the

STM tip to the nanowire;

– � 2, the time needed for electrons to tunnel from the

nanowire to the electrodes;

– T , the period of nanowire oscillations.

Assuming that � q can be neglected allows us to treat

the wire as a metal island with a well-defined excess

charge q and an electrostatic potential�. When the wire is

charged by electrons tunneling from the STM tip, it is af-

fected by a capacitive force Fcap whose intensity depends

on the voltage drop between the STM tip and the wire.

The question is now under what circumstances a shut-

tle instability can be expected to occur in the system, a

problem that was initially addressed by Jonsson et al.

[21]. Here, we remind the reader that the shuttle instabil-

ity requires that the static equilibrium state of the wire is

unstable with respect to the formation of a new dynamical

stationary state characterized by finite-amplitude oscilla-

tions, so-called limit cycle oscillations [26], around the

static configuration.

To answer the above posed question, let us consider the

case where the nanowire is only slightly perturbed from its

stationary configuration and let free to oscillate. The only

thing that can then happen, given that the bias voltage V is

not too large, is that it performs some damped oscillations

and returns to its initial configuration. In general a broad

variety of microscopic mechanisms contribute to such

damping of oscillations in nano-resonators. Some of them,

e.g., thermoelastic damping [27], are related to internal

features of the resonator while others, e.g., losses due to

the clamping [28] and to air friction [29], depend on its in-

teraction with the environment. For the moment we assume

that in the system considered all dissipative effects can be

taken into account through a phenomenological viscous
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damping term � ��x (the effects of other types of damping

will be considered in Section 2.4).

If the wire is instead perturbed further and allowed to

perform larger mechanical vibrations the situation is

somewhat altered. In this scenario the wire can be very

close to the STM tip (u � �), in which case we have that

R R1 2�� , i.e. � �1 2�� . Under these conditions tunneling

from the STM tip is very likely and the electrostatic po-

tential � of the wire is approximately the same as that of

the STM tip. On the other hand, if the wire is instead far

from the STM tip ( )u � � , the opposite is true and � ap-

proaches the potential of the electrodes. Now, if the wire

oscillates with frequency 
, the parameters 
� 
�1 2,

have some finite values which implies that at any moment

� has no time to adjust itself to the equilibrium value de-

termined by the wire's position. As a result it also depends

on the wire's position and velocity at earlier times. In

other words, there is a correlation between the wire's ve-

locity and the electrostatic force. This in turn implies that

the force performs some work on the wire, � � ��xFcap 0,

where � �� is the time average over one period.

According to the ordinary shuttle theory, if the work

done by the electrostatic force overcomes the work done

by the dissipative forces, the electromechanical instabil-

ity occurs. In order to check these qualitative consider-

ations, the evolution of the system has been modeled in

Ref. 21 using the following equations of motion for the

position of the wire's midpoint, x, and the excess charge,

q, on it

mx x kx
F C V q

x

L

F�� �
( )

� � �
�

��

�
�

�

�
�

�� 0 2
2

2

1

cap (3a)

� ( )
( )

( )
( )

( )

( )
q

V
G x

C x

C x
G x q

G x

C x
� �

�

�
��

�

�
�� ��

�

2 �
�

�

�
. (3b)

In Eq. (3), C x C x C x� ( ) ( ) ( )� �1 2 is the sum of and

C x C x C x� � �( ) ( ) ( )1 2 is the difference between the

junction capacitances, while G x /R x /R� ( ) ( )� �1 11 2 is

the sum of and G x /R x /R� � �( ) ( )1 11 2 is the difference

between the junction conductances. Due to the short dis-

tance between STM tip and nanowire, surface forces

might also be significant. However, their relevance com-

pared to the elasto-mechanical forces can always be re-

duced by a suitable choice of length and thickness of the

wire [21]. The excess charge on the tube, q, is treated as a

continuous variable, an approximation which is justified

if the tunneling times �1, � 2 are much smaller than the pe-

riod of oscillation and the temperature is not too low.

In order to perform a stability analysis of (3), one can

linearize the two equations around the stationary solution

( x 0, q0). From this analysis it is found that if the dissi-

pation coefficient exceeds a certain threshold value,

� �� thr for a fixed bias voltageV , the stationary solution is

a stable fixed point. Therefore, any trajectory that starts

close to this solution will ultimately fall into this point.

However, if instead the dissipation coefficient is smaller

than the threshold value, � �� thr , any small initial devia-

tion from ( x 0, q0) grows in time and the system manifests

a «shuttle-like» instability. The conditions for this instabil-

ity can be reformulated as1 1/Q /Q� thr , where Q is the qual-

ity factor of the oscillator. This is an experimentally acces-

sible parameter that expresses the robustness of the

oscillations against all possible sources of dissipation,

hence it can be measured independently on the specific

model used to describe dissipation in the system. For the

case considered here, the Q-factor can be expressed as

Q m /� 
 �. Values of Q between 10 and 10 3 have been re-

ported for carbon nanotube-based nano-resonators [15] and

of the order of 10 5 for SiC nanowire-based oscillators [30].

In Fig. 2 we show the threshold dissipation coefficient

� thr as a function of the parameters R0, R2 (for a fixed

bias voltageV ). From the shape of � thr we can extract sev-

eral bits of information about the physical conditions un-

der which the shuttle instability occurs. First of all, a neg-

ative or zero value for � thr means that no instability can be

established. As explained above, some retardation effect

(present for any finite value of 
�1 and 
� 2) is necessary

in order for the instability to occur, as the net work of the

electrostatic force over one period of oscillation would

otherwise be zero. The smaller the size of the retardation

the more difficult it is to make the system unstable. This is

also confirmed in Fig. 2, where � thr approaches zero for

small values of the resistances R0 and R2 (implying 
�1,


� 2 0� ). On the other hand, it is clear that if the tun-

neling of electrons becomes rare due to large junction

resistances, the nanowire is too weakly affected by the

electrostatic force to make the instability occur. This ob-

servation is consistent with the behavior of � thr in Fig. 2,
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tained when the two junction resistances are of the same order
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where � thr � 0 in the limit of large resistances. Thus, we

learn from studying Fig. 2 that the optimal condition to

achieve the shuttle instability is to have the junction

resistances very close to each other, R R0 2 . This implies


� 
�1 2 1  , i.e. quite substantial retardation effect.

Having Q-factors between 10 and 1000 and a bias voltage

of the order of 1 V, it seems possible to switch on the in-

stability for a large set of parameters R0, R2. In the experi-

ment performed by LeRoy et al. the junction resistances

are quite different (R R0 2�� ) [22] which makes the elec-

tromechanical instability unlikely. For very asymmetric

junctions, the electrostatic potential of the wire at any

time is mainly determined by the strength of the coupling

to the lowest resistance.

The physical condition for the occurrence of the shut-

tle instability can also be expressed in terms of the bias

voltage, V , instead of the dissipation coefficient, �. Natu-

rally this is an experimentally more meaningful quantity,

as the amount of dissipation in the system is difficult to

evaluate through only a single parameter, while the bias

voltage can be externally controlled

The evolution of the amplitude of oscillation as a func-

tion of the applied bias voltage (for a fixed �, i.e. fixed

quality factor Q) is showed in Fig. 3,a. From this image,

the presence of a threshold voltage above which the insta-

bility is established is clearly visible. The corresponding

I V� and dI dV V/ � characteristics have also been calcu-

lated according to the numerical solution of the equations

of motion and are shown in Fig. 3,b, where the insets refer

to the different ways in which the transition to the new

equilibrium state may occur. This transition depends on

the bias voltage and the parameters of the system, and can

be classified as either smooth («soft» excitation) or

step-like («hard» excitation) [31]. These plots provide in-

dications of what is expected to be found in an experimen-

tal investigation of the shuttle instability in suspended

nano-resonators.

2.2. Multimode shuttling of single electrons

We now generalize the analysis of the system to include

the full multimode description of its mechanical degrees of

freedom. The formal similarity between the standard shut-

tle model and the approach used here allows us to include

also Coulomb blockade phenomena, electronic level

quantization and quantum description of the dynamics.

In order to make the system sketched in Fig. 1,a equiv-

alent to a single electron transistor device we will now

consider a different bias voltage for the two electrodes.

The left electrode is assumed to be at potential �V / 2,

while the right is capacitively connected such that it

forms a gate electrode with potential Vg . No tunneling is

allowed between the nanowire and the right electrode as

in a standard SET device. The analysis of this model was

first presented by Jonsson et al. [32].

Considering that the nanowire has a finite length, the

set of single-particle states available for electrons tunnel-

ing on it is quantized. We assume that these states are

equally spaced in energy by the amount  . Under these

conditions, two regimes can be distinguished according to

the size of  compared to the other characteristic energies

of the system (i.e. eV and k TB ). There is a «continuum»

regime, defined by eV k TB, ��  , where quantization is

not important, and a «discrete» regime, defined by

eV k TB, ��  , where the electronic states on the tube are

so far apart in energy that only one of them falls within the

window set by the bias voltage. Under the latter conditions,

only one state is involved in the electronic charge trans-

port. As compared to the previous section, we now de-

scribe the tunneling junctions through the tunneling rates

�1 and �2, where the subscripts «1» and «2» refer respec-

tively to the junction between the STM tip and the wire and

to the junction between the wire and the left electrode. The
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Fig. 3. (a) Amplitude of nanowire oscillations as a function of

the bias voltage. The solid line shows a «soft» development of

the instability, while the dotted line corresponds to a «hard»

transition. (b) I V� curves for the same «soft» (left) and «hard»

(right) transitions. Insets show corresponding dI/dV V� curves.

Reprinted with permission from [21], L.M. Jonsson et al., Nano

Lett. 5, 1165 (2005). � 2005, American Chemical Society.



tunneling rate �2 is assumed to be constant, while the rate

�1 depends on the tube displacement. What differs the

«continuum» and «single-level» regimes is that the tunnel-

ing rate is voltage-dependent for the former, whereas this is

not the case for the latter. Furthermore, we assume that the

temperature is low enough that «backward» tunneling pro-

cesses (onto the STM tip) are not allowed and charging of

the tube with more than one electron is prevented by Cou-

lomb blockade (k T e / CB � 2 2 , where C is the capacitance

of the nanowire).

In order to study the motion of the system it is conve-

nient to give a quantitative definition of the electrome-

chanical coupling of the different mechanical modes. Let

us consider the wire initially at rest in its static equilib-

rium, with no extra charge on it and let L be the distance

from the STM tip. As soon as the bias voltage is switched

on and an electron tunnels onto the wire the electrostatic

field produced by the STM exerts an attractive force on it.

The nanowire moves from its static equilibrium with the

corresponding displacement, !u 0, being given by the equa-

tion of motion derived from linear elasticity theory, Eq. (1)

!
�



u

e

m

zj

jj

0
0

2

2
1

�
�
	� ( )

. (4)

Here, the sum is extended to all modes whose shape pro-

file is antisymmetric with respect to the wire midpoint

( , , , )j �1 3 5 � . For larger absolute values of !u 0 and

smaller separations between the nanowire and the STM

tip the probability of tunneling increases appreciably. The

characteristic length that provides a natural reference for

all the other lengths in the system is the tunneling length

�. Therefore, the ratio between the displacement due to

the electrostatic force and the tunneling length ! � "u /0 � ,

provides an estimate of how much the motion of the wire

is affected by the tunneling of charge. The ratio between

each term in the sum in (4) and� can thus be interpreted as

the electromechanical coupling for each mode. The elec-

tromechanical coupling strength " is the same parameter

that defines the ratio between the electrostatic force and

the elastic force in the theory of the ordinary shuttle [9].

Since the shape profiles of the normal modes { ( )}� j z are

oscillating functions of the coordinate z whose wavelength

decreases with increasing mode index j, the coupling of the

higher modes to the STM tip is weaker than to the lower

modes. Therefore, a valid approximation is to take into ac-

count only a limited number K of flexural modes. In the

quantum description developed in Ref. 32, the electrome-

chanical coupling for the jth mode is defined as

el / d /j j j j j� �
 � �� , where l /mj j� � 
 and � j are re-

spectively the zero-point amplitude and the effective tunnel-

ing length for the jth mode. The electromechanical coupling

can be defined and evaluated also for other types of mechan-

ical modes, as shown in several works, Refs. 15,18,19,23.

The dynamics of this system can be described through

a generalized master equation for the two reduced density

matrices that describe the neutral state of the nanowire,

�0, and the state with one extra electron, �1 (higher charge

states are not allowed because of the Coulomb blockade),

�

�
� � � � �

�
� � �0

0 2 1 1 1
1

2t
i H Vosc[ � , ] ( � , )� � x

� �	� � � �
2

0 0( [� ,{� , }] [ � , [ � , ]])i x x x

n

n n n n ; (5a)

�

�
� � � � �

�
� �1

1 1 0 1
t

i H V V[ � ( � ), ] ( � , ) ( � , )osc x d x x� �

� � �	�2 1 1 1
2

�
�

� � �( [� ,{� , }] [ � , [ � , ]]) .i x x x

n

n n n n (5b)

In Eq. (5), �Hosc is the quantum mechanical Hamiltonian

of the vibrational modes of the wire that, as in the classi-

cal treatment, form a set of noninteracting harmonic oscil-

lators,

�
� �

H
x

n

n

n n
osc � �

�

�

�
�

�

�

�
�	�
 #

�
1

2 2

2 2
, (6)

where # 
 
n n /� 1 and { �� n} are the momenta conjugated

to the mode amplitudes { �x n}. The charging effects and

the electromechanical coupling between the nanowire

and the STM tip enter into the description of the system

through the term

� ( ) � � � � � ,
†

H E V c c
U

n n xg

k

k k j

j

jtube � � �	 	2

2
1�
 " (7)

with E Vg( ) being the single electron energies, � [� ]
†

c c
k k are

creation [annihilation] operators of single electron states

labeled by the momentum k,U is the electrostatic energy of

the nanowire and " j is the electromechanical coupling for

the jth mode. Dissipative effects are here assumed to be

relatively weak and are characterized by a frequency-inde-

pendent dissipation rate coefficient � («Ohmic damping»).

From Eq. (5), average displacements, momenta and

probabilities can be found from the reduced density ma-

trices and their respective equation of motion can be de-

rived. These equations can be linearized around the sta-

tionary solution and the behavior of the solution can be

investigated in order to check the onset of the instability.

In the weak electromechanical coupling regime this anal-

ysis can be carried out analytically and an expression for

the threshold dissipation can be found. The results ob-

tained indicate that the different modes can be treated in-

dependently from each other, as is shown in Fig. 4,a. The

strong electromechanical coupling regime must however

by analyzed numerically. The consequences of the transi-

tion from the weak to the strong coupling are shown in
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Fig. 4,b and 4,c where the threshold dissipations for the

first and third modes are plotted as functions of the coeffi-

cient of the tunneling rate � �0 1 0� �( )x . These curves

demonstrate the possibility, in the strong coupling re-

gime, to excite a certain mode m without also making all

the modes n m� unstable, something that is unavoidable

in the weak regime. The parameter �0 is experimentally

controllable as it is determined by the distance between

the STM tip and the nanowire in its static equilibrium

configuration ( )x � 0 . This distance can be measured and

controlled with sufficient accuracy to make realistic

devices.

A natural issue that needs to be clarified is what hap-

pens to the system once the instability develops. From the

theory of the ordinary shuttle it is known that the ampli-

tude of the oscillations should increase and then saturate

to a value determined by the parameters of the device, the

system reaches a limit cycle. In order to check the exis-

tence of the limit cycle for the system considered here,

linearization of the equations of motion is not sufficient

and the full nonlinearity due to the exponential form of

the left tunneling rate must be taken into account. This is-

sue has been investigated in Ref. 32 for the case of weak

coupling and a single unstable mode. The existence of the

limit cycle can be proved using the Wigner representation

of the density operator, following the approach developed

in Ref. 33. The advantage of this approach is that it makes

the crossover between the tunneling and shuttling re-

gimes more transparent, as discussed in Ref. 34. From

this analysis it is found that until the electromechanical
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Fig. 4. (Color online) Threshold dissipation for the first (�thr,1) and

third (�thr,3) transverse mode as a function of �0. Going from top

to bottom the electromechanical coupling is increased from the

weak to the strong regime, d /1 1� � (a), d /1 1�  (b) and d /1 1� ��
(c). When the electromechanical coupling is large the interaction

between different modes is no longer negligible, which introduces

a qualitatively new feature compared to the weak electromechani-

cal regime. As can be seen, some values of �0 allow for mode n to

be excited and mode m to be suppressed even though n m� , i.e.

� �thr, thr,n m� . Reprinted with permission from [32], L.M. Jonsson

et al., New J. Phys. 9, 90 (2007). � 2007, Deutsche Physikalische

Gesellschaft.
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Fig. 5. (Color online) I V� -characteristics for the device of

Fig. 1,a in the weak coupling regime. For small voltages, the

current is constant and depends only on the tunneling through

the double static junction I e� � � �0 2 / . Above the threshold

voltage the current also depends on the vibration amplitude.

Here the electromechanical instability occurs through the

«hard» transition, characterized by the displayed hysteresis in

the I V� -curve. Reprinted with permission from [32], L.M.

Jonsson et al., New J. Phys. 9, 90 (2007). � 2007, Deutsche

Physikalische Gesellschaft.



instability develops, the system behaves basically like a

series of two tunneling junctions, hence the only expected

contribution to the current comes from tunneling. How-

ever, once the instability sets in and the system reaches its

limit cycle (characterized by steady amplitude oscilla-

tions) the current is drastically modified. In Fig. 5 the cur-

rent is plotted as a function of the electrostatic energy eV

for the case of a single mode and «hard» instability transi-

tion. As can be seen in this image the characteristics of the

«hard» transition are clearly visible in the sudden in-

crease in the amplitude (and hence current) when the bias

voltage exceeds the threshold value. Another distinctive

feature of this process (that is absent for the case of «soft»

transition) is hysteresis. Sweeping the voltage down from

a value above the threshold, the current does not

correspond to the values found before the onset of the

instability.

2.3. Multistability and self-organization of

multimode shuttle vibrations

The consequences of the electromechanical instability

on the whole set of flexural modes (not only on the lowest

frequency mode) has been investigated by Jonsson et al.

[35], following a classical approach. Starting from linear

elasticity theory, the equations of motion for the ampli-

tudes of the transverse normal modes were found to be

(the STM tip is still supposed to be at l / 2 so only even

modes with respect to the midpoint of the tube are

included),

�� �x x x q /mn n n n� � �� 
2
� . (8)

Here, the force term that acts on the wire depends on the

average excess charge, q, on it and the effective electric

field � produced by the applied bias voltage between the

STM tip and the electrodes. The dissipation is modeled by

a linear viscous force term �m x n�� . Since the damping co-

efficient � is assumed to be constant, every mode is

damped in the same way.

An important parameter for the system under consider-

ation is the ratio between the typical mechanical vibration

frequency
 and the characteristic rate of electron tunnel-

ing �. In the following we assume that tunneling events

occur frequently compared to the period of oscillations,

i.e.
�� �. Even though this is far from being the optimal

condition for the instability to occur, as discussed in Sec-

tion 2.1, it allows us to write down a simple kinetic equa-

tion for the time evolution of the probability of having

one extra charge on the wire (see below). This choice will

result in more experimentally demanding conditions to

achieve the instability (i.e. higher Q-factors) with respect

to those previously discussed in Section 2.1. A more

general approach will be followed in Section 2.4.

As was done in Ref. 32, we here assume that the tem-

perature, the bias voltage and electrostatic charging en-

ergy of the nanowire are such that backward tunneling

processes are forbidden and no more than one extra elect-

ron is allowed on the nanowire at any given time. Let us

indicate with p t1( ) and p t0( ) respectively the probability

to find one and zero electron on the nanowire at time t.

Then, the average excess charge at time t can be expressed

as q t ep t( ) ( )� 1 . The variation of p t1( ) in time is given by

the difference between the probability of tunneling from

the STM tip to the nanowire when the latter is neutral and

the probability of tunneling from the nanowire to the elec-

trodes when there is already one extra electron on it. We

also have that the probabilities for the allowed charge

states must sum up to 1 ( p p1 0 1� � , higher charge states

are prevented by the Coulomb blockade). Exploiting this

fact, we can write down the rate equation for p t p t( ) ( )� 1

in the form,

� ( ) ( ) ( ) ( )p t u p t u� � �� �0 1 0 , (9)

w h e r e � � �( ) ( )u u0 1 0 2� � w i t h u x zn n n0 0� � � ( ) ~

 � n nx , while � �1 0( ) exp ( / )x x� � � is the rate of elect-

ron tunneling across the STM-nanowire junction, so that

the typical rate of electron tunneling is � � �� �0 2. The

solution of Eq. (9) can be written as a series expansion in

the parameter 
1 / � which is assumed small.

Equations (8) and (9) describe the coupled nano-

electromechanical dynamics of the nanowire-based

NEM-SET device. Since strong bias voltages are not allo-

wed if the excess charge on the wire must be limited to

one electron, it is reasonable to consider the limit of weak

electromechanical coupling. In this regime the displace-

ment of the nanowire due to a single excess charge is

small on the scale of the tunneling length. Then, as shown

in Ref. 32, the onset of the shuttle instability occurs inde-

pendently for each vibrational mode and if 
�� � the

instability is «soft» [31].

In order to analyze the evolution of the system after the

instability occurs, it is not sufficient to linearize the equa-

tions of motion (8) and (9) around the stationary configu-

ration as the linear force term in the right hand side of

these equations simply tells if the instability can develop

or not. Therefore, it is necessary to take into account at

least some nonlinear terms. Since within the regime of

weak electromechanical coupling the amplitude at which

the nanowire oscillates is expected to be small compared

to the tunneling length, it is possible to expand the tunnel-

ing rate �1 0( )u for small u 0 / � and keep contribution up

to the third order. Another approximation, that is physi-

cally motivated in the weak coupling regime, is the use of

the Ansatz x t A t t tn n n n( ) ( ) sin ( ( ))� �� 
 $ , where the

amplitudes A tn ( ) and phases $ n t( ) are slowly varying

functions on the time scale defined by the period of oscil-

lations. This difference in characteristic time scales al-

lows us to use the Ansatz into Eq. (8) and time-average

over the period of the first mode, which has the longest
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oscillation period. In this time interval the amplitudes and

phases for the different modes can be considered constant

and be replaced by their average values. Furthermore, the

time variation of the phases is assumed to be negligible

with respect to the eigenfrequencies of the nanowire,

�$ 
n n�� , which means that only the amplitudes An are

taken into account in the description of the system. The

resulting equation of motion for the averaged amplitudes

are,

A A A An n n n n m

m n

.
,� � �

�

�

�
��

�

�

�
��

�
	% ! 2 22 (10)

where ! n and% n are defined from the following combina-

tions of parameters
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To first order in 
n / � the expressions for ! n and % n do

not depend on the mode index n, as the product 
n nd2 is

independent on n, hence one can replace ! !n � and

% %n � .

The behavior of the solution of Eq. (10) can be explicitly

visualized for the case of two modes n m, (the generalization

to more modes is straightforward). The corresponding sta-

tionary points of the two nonlinear coupled equations can be

found analytically and their stability can be determined

through the evaluation of the Jacobian matrix [26]. As the

dynamical behavior of the system depends on the sign of the

parameter ! we identify, from Eq. (10), that if ! � 0 the only

stationary point is the origin, corresponding to the absence

of any oscillation. For this set of parameters the nanowire is

at rest in some static configuration determined only by the

constant tunneling rates �0 and �2. On the other hand, if

! � 0 the origin becomes unstable and three more stationary

points appear: a saddle point at (! !/ , /3 3) and two stable

points at ( ! ,0) and (0, !). These two new stable points

represent oscillating states with finite amplitude ! and fre-

quency 
n or 
m, respectively. Which of these two will be

reached by the system depends on the initial conditions as

shown in Fig. 6.

The conditions ! � 0 defines the onset of the shuttle in-

stability. From the solution of Eq. (10) with ! � 0 it is pos-

sible to find the expression for the threshold electric field

above which the ins t ab i l i t y s t a r t s to deve lop ,

�c m/e� 4��� . Further analysis of Eq. (10) indicates that

once the instability for a certain number of vibrational

modes is established, the system evolves in such a way

that only one of the unstable modes reaches the new sta-

tionary state, characterized by steady amplitude oscilla-

tions, i.e. the limit cycle. It is also found that the selection

of the surviving mode is determined by the initial condi-

tions as the mode which initially has the largest displace-

ment from the origin (that is from the static equilibrium

state) maintains its separation from the other modes and

evolves into the limit cycle. This can be understood as tra-

jectories in the amplitude space cannot cross, a result that

can be analytically generalized to an arbitrary number of

modes by studying the asymptotic behavior of the solu-

tions of Eq. (10) [35].

It is worth to remark that the symmetry between the

modes that characterizes Fig. 6 is actually broken if

higher order (in 
n / � and 
m / �) corrections to ! be-

come relevant or if the dissipation affects each mode in a

different way. Then each mode will have its own ! n and,

in general, the selection of the surviving mode may not

only depend on the size of the initial displacements from

the static equilibrium point.

In order to check the results obtained by the analysis of

Eq. (10), one can also compare them to the numerical so-

lution of the «full» equations of motion, Eq. (8). The com-

parison for a given choice of initial conditions is shown in

Fig. 7,a. Since the frequencies of the different modes are

not commensurable, i.e. they are not integer multiples of

the fundamental mode, the initial motion of the nanowire

is not characterized by a sharply defined periodicity as

can be seen in the lower left panel of Fig. 7,a. However,

when the system reaches the final stationary state and
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Fig. 6. (Color online) Stationary points when two modes (n and

m) are unstable. Two attractors, indicated by (o), corresponding

to a finite amplitude of one mode while the other mode is sup-

pressed are shown. The stationary point marked with (x) is a

repellor and the point indicated by (*) is a saddle point. The

thick lines are separatrices that trajectories cannot cross. The

separatrix A An m� ensures that if A An m( ) ( )0 0� , this inequality

hold for all times t. Reprinted with permission from [35], L.M.

Jonsson et al., New J. Phys. 9, 90 (2007). � 2007, Deutsche

Physikalische Gesellschaft.



only the mode n � 5 (which initially had the largest devia-

tion away from static equilibrium) has a non-zero ampli-

tude, its oscillations are clearly periodic with frequency


5. Similar figures with modes n �1 or 3 having finite

amplitudes can be obtained by changing the initial

conditions.

Note that the numerical analysis of Eq. (8) is not nec-

essarily limited by the requirement that the oscillation

amplitude be kept small with respect to the tunneling

length. Fig. 7,b, for instance, suggests that the selective

evolution promoted by the simultaneous instability of

many vibrational modes can characterize also the «large

amplitudes» regime.

2.4. Geometrical scanning of the flexural modes by

scanning tunnel microscope tip displacement

The theoretical study described in the previous section

suggests that the development of the shuttle instability in

an extended object, such as a suspended nanowire, in-

duces a selective evolution of its many mechanical de-

grees of freedom. It should be stressed however, that the

results presented in Ref. 35 provide more a theoretical

demonstration of this selectivity rather than an experi-

mental procedure to control it. The prime reason for this

is that the analysis involves the separate choice of initial

conditions for each vibrational mode, an operation that

cannot be performed experimentally. However, the device

considered can still be used to accurately detect the insta-

bility of the survivor mode, as the shuttling current is pro-

portional to the mechanical frequency once the system

reaches the stable limit cycle [9]. Thus, by measuring the

current, we are able to tell which vibrational mode has

become unstable.

Besides this, the question of finding a practical proce-

dure to select single vibrational modes through the shuttle

instability naturally arises. A possible way to do this was

suggested in Ref. 36, by generalizing some of the features

of the system considered in Refs. 21,32,35. In this work

the tip of the STM is specified in an arbitrary position z 0

along the nanowire axis and is no longer fixed above the

wire’s midpoint. Under these circumstances the coupling

" is affected by the shape profiles of the eigenmodes at

point z 0 (see Eq. (4)).

Reference 36 also considers the effects of dissipation

in the studied device to greater detail than what has been

presented in the previous sections. Damping of oscilla-

tions in solids can be caused by many different micros-

copic mechanisms and in general it is impossible to for-

mulate a theory that is able to describe all of them from

first principles with arbitrary accuracy. In most cases it is

even difficult to accurately determine which is the domi-

nant mechanism for dissipation. For example, certain

dissipative processes that can be neglected in bulk materi-

als can be enhanced in nano-devices due to the increased

surface-to-volume ratio [37]. To account for these consid-

erations Ref. 36 analyzes not only the usual «viscous»

damping term �� �u but also considers the Zener theory of

dissipation for the standard linear solid [38].

The Zener model provides a simple approach that goes a

step beyond the ordinary elasticity theory. According to

Hooke’s law, the stress and strain fields, i.e. the macros-

copic variables that characterize the mechanical state of a

solid, are connected by a simple proportionality relation,

such that any change in the former reflects itself instanta-

neously as a change in the latter and vice versa. In the

Zener theory, it is instead assumed that these quantities

need a finite relaxation time, �, and � " , respectively, to

reach their equilibrium value. This is a consequence of the
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Fig. 7. (Color online) Numerical solution of (8) and (9) for the

nanotube vibration amplitude as a function of time when three

modes (n �1 3 5, , ) are unstable (! � 0). (a) Weak electromechanical

regime. Comparison with the approximate result, Eq. (10), is

shown as dashed curves. The lower left panel shows the quasi-pe-

riodic oscillation of the nanotube center position just after the on-

set of the instability, while the lower right panel shows the regular

vibrations that appear after all but the n � 5 mode amplitudes have

been suppressed (see text). (b) Strong coupling regime. The large

amplitudes make an approximate analysis based on Eq. (10) in-

valid, but the phenomenon of selective excitation persists. Re-

printed with permission from [35], L.M. Jonsson et al., New J.

Phys. 9, 90 (2007). � 2007, Deutsche Physikalische Gesellschaft.



internal processes that dissipate energy during any modifi-

cation of the mechanical state of the solid. For the case of

periodic variations of the stress and strain with frequency


, the following nonlinear frequency-dependent expres-

sion for the Q-factor can be derived from the Zener theory,

QZ ( )
( )




�


�
�

�1 1 2

 
. (12)

Here, � � �" ,� and  � �E EU R is the difference bet-

ween the «unrelaxed» and «relaxed» values of the

Young’s modulus [38], in effect a measure of the degree

of non-elasticity of the body.

In Ref. 36 a classical description of the system de-

picted in Fig. 1,a was formulated where the tunneling

process that charges the nanowire and makes it sensitive

to the electrostatic force is a stochastic process. As such,

the normal mode amplitudes {x n} and conjugated mo-

menta {� n} are also stochastic variables and we define

probability densities for them when the nanowire is

charged P x x t1 1 1 2 2( , , , , , )� � � and when it is neutral

P x x t0 1 1 2 2( , , , , , )� � � . The evolution of these objects is

determined by a generalized Boltzmann equation where

the «collisional integral» is replaced by tunneling terms

following the approach used in Ref. [39],
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The behavior of the system is described by the dyna-

mical variables obtained by averaging the mode ampli-

tudes and conjugated momenta over P0 and P1:

� � � � � � � ��� � �0 1.

The possibility of having a shuttle instability in the

weak electromechanical coupling regime is investigated

by linearizing the equations of motion for the averaged

dynamical variables around the static equilibrium posi-

tion where the fundamental solutions have the form

� �  ��x ij j jexp( )
 ! . The condition for instability of

the static configuration of the jth mode can then be ex-

pressed as, Re [ ]! j � 0. For a given quality factor Q j (that

is, for a given amount of dissipation), the exponent ! j for

each mode can be plotted as a function of the two experi-

mentally accessible parameters: the tunneling rate �0 be-

tween the STM tip and the nanowire in the static configu-

ration and the position of the STM tip along the wire axis.

The result of this analysis is plotted in Fig. ��a for the case

of viscous dissipation (Q j j- 
 ) and in Fig. 8,b for the

case of internal dissipation. The two plots, Fig. 8,a and

8,b, do not show any qualitative difference. In both cases

one can distinguish sets of parameters (�0, z) for which

only one mode is unstable and sets for which two or more

modes are unstable. This fact suggests a general way to

express the condition for shuttle instability for other types

of mechanical degrees of freedom and dissipative pro-

cesses, Re [ ]! j � 0 , where the real part of ! j is given by,

!
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3. Magnetic-field induced

nanoelectromechanical coupling

In the previous sections we have shown that NEM-SET

shuttle structures can be used to significantly alter the elec-

tronic and mechanical characteristics of the discussed sys-

tem. In what follows, we will consider further the case of

suspended nanowire structures and show that these can
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Fig. 8. (Color online) (a) Regions of instability for dissipation

modeled by a viscous term �� �u. (b) Regions of instability for

internal dissipation given by the Zener model. The solid line

and the dots that define the threshold dissipation curves are ob-

tained respectively from the analytic and the numerical solu-

tion of the linearized equations of motion. In both plots the

filled areas define the values of z and �0 for which only a sin-

gle mode is unstable. Reprinted with permission from [36],

F. Santandrea.



also be made to mechanically oscillate through the intro-

duction of external magnetic fields. Due to the effective in-

duced electron-vibron coupling of these devices novel

physical phenomena are predicted as presented below.

Although suspended nanowires can be viewed as a

particular realization of a NEM-SET shuttle structure,

specific nanoelectromechanical operation is expected as a

result of strong elongation of the movable part of these

devices. This comes about as the very large aspect ratios

in these systems affect both the mechanics of the flexural

vibrations and the electrodynamics of the electronic cur-

rent flow. Elongation of a suspended wire, or alterna-

tively diminishing its cross-section, will make the wire

more flexible and hence more sensitive to external me-

chanical perturbations. This will in turn make quantum

effects more pronounced due to the larger amplitude of

the wire’s zero point flexural vibrations. Utilizing this,

new types of NEM coupling can be achieved through the

induced electron-vibron interaction caused by, e.g., exter-

nally applied magnetic fields. This coupling specifies the

Lorentz force acting on the wire, and for the case of mecha-

nically oscillating wires, also the electromotive force on

the electrons which counteracts the motion causing the vi-

brations. Since the flexibility of the wire increases with its

aspect ratio, and the Lorenz force is directly proportional

to the length of the wire, significant inductive NEM cou-

pling can be achieved as a result of strong electrical current

concentrations in wires of nanosized cross-section.

In comparison to the nanoelectromechanics considered

in the previous parts of this paper — where the tuning of

the NEM performance was achieved through the coupling

of an external electric field to the local charge concentra-

tion — we here show that similar results can be achieved if

external magnetic fields coupled to the electronic current

are instead used. The effects of this type of NEM coupling

on a suspended nanowire of length L and cross-section S,

carrying a current I in a transverse magnetic field H is de-

scribed through the induced deflection of the wire, x Hd ( ).

From standard e las t ic i ty theory one f inds tha t

x H Hj/S Ld ( ) ( )- % where %( ) /L E L� 4 with j the current

density and E the Young’s modulus of the wire. For sus-

pended nanowires of length L  1 .m we estimate that such

deflections can be as large as X Hd ( )  (0.1–1) nm, which

can crucially affect the electronic tunneling through such

mesoscopic NEM structures. Quantum coherence in the

flexural vibrations of the wire may, as such, affect the elec-

tronic transport in non-trivial ways if the area Lx 0 (x 0 is

the zero point amplitude of oscillation of the wire) avail-

able for penetration of the external magnetic field is com-

parable to the flux quantum. For the realistic case of a vi-

brating carbon nanotube, such quantum coherent

nanoelectromechanics can be achieved for magnetic fields

of the order of a few tens of tesla, corresponding to pres-

ent state of the art experimental achievements. In the fol-

lowing sections two examples of the above discussed in-

ductive nanoelectromechanics will be presented. The new

physics of entanglement of resonantly tunneling electrons

with nanowire quantum vibrations will be presented in the

Section 3.1, whereas the possibility to pump nano-

vibrations by a supercurrent flowing through a suspended

nanowire is discussed in Section 3.2.

3.1. Quantum-mechanically induced electronic

Aharonov–Bohm interference

Quantum fluctuation of the nanowire bending modes

is a feature which must be taken into account while con-

sidering the effects of quantum coherence in the vibration

dynamics of a suspended nanowire based tunneling de-

vice (see Fig. 9).

This implies that geometrical constraint for the elec-

trons, set by wire geometry, will no longer localize them

to the one-dimensional conducting wire, but will also im-

ply certain delocalization in the direction transverse to

the wire axis. Such change of the dimensionality opens up

the possibility for quantum interference effects in the elec-

tronic tunneling over the leads if an external magnetic field,

H, is applied. As a result, a finite magnetoconductance

of the 1D vibrating wire occurs as a manifestation of

nanomechanical quantum coherence effects [41].

The voltage-biased suspended nanowire structure

shown in Fig. 9 was first analyzed in Ref. 41 for the case

of nonresonant electronic transmission through the wire.

Considering the electronic Fermi level to be far from the

energy levels of the quantized longitudinal motion of the

electrons in the wire, the authors used perturbation theory

with respect to the tunnel barrier transmission, Teff , to cal-

culate the current and conductance through the system. To

second order in this expansion, the effective Hamiltonian

coupling the electrons in the two leads through the virtual

energy level of the wire can be shown to be of the form,

� � � � �
,

,

,
†

,
†H a a b bk

k

k k� � �	" 
,
,

, , �

� � �	exp( ( � �)) ( , ' ) � � .†

, '

,
†

, 'i b b T k k a a

k k

r k l k/ eff h.c . (16)

Here, electrons in the leads are described by the first term

while the fundamental mode of the flexural vibrations* is

described by its harmonic oscillator Hamiltonian (the

second term in Eq. (16)). The additional phase factor

exp[ ( � �)]†i b b/ � connected with the tunneling electrons
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(third term in (16)) describes the magnetic field dependent

phase which the electrons acquire between the two sequen-

tial tunneling events at the ends of the wire. The specifics

of this term for the problem considered is that the elec-

tronic phase is not a c-number, but an operator acting in the

quantum vibrational space.

As the effective coupling strength for the tunneling

electrons experiences quantum fluctuations so does the

number of different tunneling channels. Since these chan-

nels obey quantum nanomechanical dynamics, we obtain

a typical picture of entanglement between the quantum

nanomechanical and electronic degrees of freedom. The

outcome of this is that new polaronic states (referred to as

«swinging states» in Ref. 41) are formed in the wire as a

result of this entanglement, and charge transport can now

be viewed as electronic transmission through these inter-

mediate states. It is interesting to note that the strength of

such polaronic coupling is determined by magnetic flux

and can thus be tuned by the external magnetic field.

From the effective tunneling Hamiltonian, Eq. (16),

the electric current over the voltage-biased leads can eas-

ily be calculated. What is new in this analysis is that the

matrix elements corresponding to electronic tunneling are

now described through operators in the vibrational space

of the wire, something that needs to be considered when

tracing out the electronic and vibrational phase space.

The resulting expression for the current is presented in

Eq. (17)

I
G

e
P n n i b b n

nn

� � � � � 0
� ��

1 1

		0

0

2( ) | |exp[ ( � �)]| |†

�

�

0 � � � � �2 d" " " 
 " " 
[ ( )( ( )) ( )( ( ))]f f f fl r r l1 1�� �� .

(17)

Here, G0 is the zero field conductance, e is the electric

charge and the oscillating nanowire is assumed to be in

thermal equilibrium with the environment, described

through P n n( ) [ exp( )]exp( )� � � �1 # 
 # 
� � , the probabi-

lity of finding the oscillator in a quantum state n with

energy n�
 at a temperature T (# � �( )k TB
1 and 
 is the

frequency of oscillation of the nanowire). The electron-

vibron coupling is expressed through the coupling constant

/, which scales linearly with the magnetic field. Finally f l r,

are the Fermi functions for the left and right lead kept at

chemical potential . l r eV/, � 3 2 respectively with V the

bias voltage

The above expression represents contributions to the

current from a number of different inelastic tunneling

channels, � � 0, together with the elastic channel. Analyz-

ing Eq. (17) one finds that the destructive Aharo-

nov–Bohm interference to the elastic channel caused by

the quantum fluctuations in the magnetic flux (propor-

tional to the area enclosed by the vibrating quantum wire)

is compensated by the additional inelastic tunneling chan-

nels. These inelastic channels increase the electronic

transport through the system, and hence compensates the

effect of the quantum suppression in the elastic channel.

The influence of these two effects on the total transport

depends on the extent to which the inelastic channels are

permitted by the Pauli principle, which limits the elect-

ron-vibron energy transfer. The corresponding energy di-

agram for the different electronic tunneling channels is

presented in Fig. 10.

Neglecting the Fermi statistics of the electrons (high

temperature limit), the restrictions imposed by the sum-

mation over the possible inelastic tunneling channels in

Eq. (17) disappears, and the expression for the conduc-

tance exactly coincides with the transmission through the

non-vibrating wire (see Eq. (18)). In the low temperature

limit however, the result of the abovementioned quantum

mechanical suppression of the elastic channel and the

Pauli restrictions on some of the inelastic channels is the

appearance of a finite magnetoconductance. As a result,

the s t ronges t e ffec ts of the pred ic ted quantum

magnetoconductance occurs in the low voltage, low tem-

perature limit: �
�� eV k TB, . At higher energies, the

Pauli restrictions become less important, and these effect

only give corrections to the conductance as compared to

the non-vibrating wire. Mathematically the asymptotic

limits to the magnetoconductance are found as,
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Fig. 9. Schematic diagram of the system considered in Section

3.1. A transverse magnetic field, H , is applied to a suspended

1-dimensional model nanowire of length L. If the wire is biased

by a voltage V , it carries a current and the wire oscillates in re-

sponse to the induced Lorentz force. Quantum fluctuations in the

wire’s bending modes make the electrons propagate along an ef-

fectively two-dimensional wire. The magnetic field-induced re-

duction of electron propagation in the elastic channel can be

interpreted as an effect of destructive Aharonov-Bohm-type

quantum interference between different paths of the tunneling

electrons. Together with a blockade of some inelastic channels

due to Pauli-principle restrictions (see text and the caption to

Fig. 10) this leads to a finite magnetoresistance of the wire. Am-

plitude shown is greatly exaggerated. Reprinted with permission

from [40], G. Sonne.
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which can also be seen in Fig. 11,a. Similar results of

quantum mechanical effects on the conductance have

been reported for the case of ballistic electron transport

through a carbon nanotube encapsulating a single mov-

able fullerene scatterer [42] (see also Ref. 43 for a reso-

nant tunneling treatment of a similar system).

The effects of the quantum suppression of the low en-

ergy tunneling processes outlined above are only visible

in the low temperature, low bias voltage limit and are

hence hard to verify experimentally. If, however, the elec-

trical current is instead considered these effects are in-

deed visible also at higher temperatures and voltages.

This can be understood as the Pauli restrictions on the in-

elastic tunneling channels affect only the low energy elec-

trons (low bias voltage). Thus, the low voltage current is

reduced from the non-vibrating ohmic current, I G V� 0 ,

by an amount that is given by the extent to which the elas-

tic channel is suppressed (which in turn depends on the

magnetic field). As the bias voltage is increased the in-

elastic tunneling channels are opened and the current

increases accordingly. However, a further increase in

the bias voltage when the conditions eV k TB��
�
��
,

( ( ) /
� �
�
- / 
E/ 1 2 where E is the average energy of the os-

cillating nanowire) are fulfilled will not be affected by the

Pauli restrictions due to the large energy scales of the

electrons. As a result, these effects are displayed as a tem-

perature- and bias voltage-independent current deficit, as

compared to the non-vibrating wire, as recently reported

in Ref. 40,

lim
,eV k TB

I G V
e��

�
� � /�

�
�

�

�
�

� �

�






0

2 . (19)

The effect of the quadratic magnetic field dependence

on the current deficit can be experimentally observed by

extrapolating the high voltage asymptotes of the I V�
curves to the V � 0 limit (see Fig. 11,b). For realistic pa-

rameters, we estimate that these effects should be observ-

able for bias voltages V  30 .V and currents I  3 pA in

magnetic fields of H  20 T.

By exploiting the equilibrium distribution of the flex-

ural vibrations, P n( ) in Eq. (17), we have neglected the

nonequilibrium effects which can be stimulated in the

vibronic subspace due to the coupling to the current car-

rying electrons. This assumption is valid if the internal

relaxation of the vibronic subsystem is strong compared

to the excitation strength set by the electronic emission

of vibrons. If this is not the case, such electron-vibron

coupling cannot be ignored, even if the electronic tun-

neling is small. In order to account for the mutual elec-

tron-vibron dynamics, one should evaluate the evolution

of the density matrix operating on both the vibronic and

electronic subspaces, and, using this density matrix, cal-

culate the vibronic contribution to the current as well as

the electron-vibron contribution to the Lorentz force.

This analysis was recently performed in Ref. 40, where it

was shown that the stationary density matrix can be

found as a result of a balance between the electron as-

sisted emission and absorption of vibrons. The equation

Nonequilibrium and quantum coherent phenomena in the electromechanics of suspended nanowires

Fizika Nizkikh Temperatur, 2009, v. 35, Nos. 8/9 855

E

Source Drain

Fig. 10. Sketch of the different transmission channels available

for electrons tunneling through the oscillating nanowire of

Fig. 9. Electrons with energy " tunneling from the left (source)

to the right (drain) lead are transmitted in both elastic and in-

elastic tunneling channels (top image) with the corresponding

energy exchange, " 
� �� ; � �� 3 30 1 2, , , . Due to Pauli-princi-

ple restrictions, some of the inelastic channels are affected by

the electronic population in the drain lead (shaded region, lower

image), which together with a reduction of the tunneling rate in

the elastic channel � � 0 (see text and caption to Fig. 9) leads to

a finite magnetoresistance of the wire. The Pauli-principle re-

strictions are important only if " is close to the chemical poten-

tial in the drain lead. This is why the total current reduction sat-

urates and becomes independent of both temperature and bias

voltage for large enough bias voltage (see text).



for the stationary reduced density matrix, ��, of the

electron-vibron subspace takes the form,

i
H T J J J J

�
[ � , �] | | [( � � ) � �( � � )

† †
osc eff� � �� � � � �2

1 2 1 2

� � � �� �e e e ei x i x i x iJ J J J$ $ $ $� � � �� † � � †
( � � � � ) ( � � � � )1 1 2 2

� ]x . (20)

Here, �
,J 1 2 are operators that take into account the

electron-vibron coupling. Also, the average Lorentz

force (21a) and momentum (21b) on the wire can be

found by multiplying Eq. (20) with the deflection and

momentum operators and tracing out the nanowire’s de-

grees of freedom,

�

� �

x
x T J J J J

0
2

2
1 2 1 2

� � � � � �� | | (( � � ) � �( � � ))
† †

eff Tr (21a)

� � �� .p 0 (21b)

In Ref. 40 it was shown that although each inelastic elec-

tronic tunneling channel (see Eq. (17)) is significantly

renormalized by the non-equilibrium of the vibronic sub-

system, the total high voltage limit, eV k TB��
�

, ,��
 to

the current is still given by Eq. (19). Furthermore, any cor-

rections to this expression from the thermal environment

was shown to decay exponentially in this limit for all relax-

ation strengths in the vibronic subsystem.

3.2. Nanoelectromechanics of a superconducting sus-

pended-nanowire weak link

Superconducting ordering in the electronic subsystem

qualitatively changes the electromechanical coupling in

the suspended nanowire based NEM tunneling devices

considered so far. If the electronic subsystem of the leads

in Fig. 9 undergoes a superconducting phase transition a

new type of electronic coupling between the leads occurs.

This coupling allows for the possibility of coherent tun-

neling of a pair of electrons (a Cooper pair), forming a

superconducting condensate of electrons in each of the

two leads. As the process of Cooper pair tunneling is a

dissipationless ground state property of the superconduc-

tors, a finite dc current over the leads will be present even

at zero bias voltage (the dc Josephson effect). If instead a

finite dc bias is applied an alternating Josephson current

is set up over the leads, representing the tunneling re-

sponse of the junction to the bias, whose zero average

value guarantees that no electric power is absorbed from

the voltage source. The frequency of these current oscilla-

tions is set by the energy gained by a single Cooper pair

during its transition between the superconducting leads:

h eV8 � 2 (the ac Josephson effect).

If now the tunneling Cooper pairs are coupled to the

mechanical vibrations of the suspended nanowire, an

electromotive force is induced due to the presence of the

external magnetic field causing the vibrations*. The work

done by th is force on a tunnel ing Cooper pair

renormalizes the total energy gained by it and hence

changes the frequency of the Josephson oscillations. On
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Fig. 11. (Color online) (a) Magnetoconductance, G/G0, through

suspended SWNT system as a function of temperature

9 � k T/B �
and magnetic field H/H0. Reprinted with permission

from [41], R.I. Shekhter et al., Phys. Rev. Lett. 97, 156801

(2006). : 2006. American Physical Society. (b) Predicted offset

current as a function of bias voltage for two different tempera-

tures and two different vibrational frequencies. Note that the off-

set current (red line) does not extrapolate to the origin and scales

as the square of the magnetic field, / -2 2H . Data shown in arbi-

trary units. Reprinted with permission from [40], G. Sonne.

* The inductive coupling between flexural wire vibrations and the supercurrent flow in a SQUID loop was considered in

Refs. 54–56.



the other hand, the mechanical vibrations of the nanowire

are affected by the Lorentz force which oscillates in time

due to the ac variations of the Josephson current in the

wire. From these considerations a set of equations deter-

mining the Josephson frequency renormalization and the

mechanical motion of the wire were derived in Ref. 44.

These equations were found by considering the Andreev

level formation in the NEM-superconducting weak link in

the low tunnel barrier transparency limit (see also Appen-

dix A) and are fully consistent with the qualitative picture

describe above. Using the dimensionless coordinates Y , �

and ~� for the wire’s deflection coordinate, driving force

and phenomenological damping respectively these

equation are

�� ~ �Y Y Y� � �� � sin ( )� (22a)

�
~

�� � �V Y . (22b)

In (22),
~
V is the dimensionless applied bias voltage and

the driving force � - H 2. Equation (22) is thus the equa-

tion of motion for the deflection coordinate of the wire

which is driven by a force proportional to a term reminis-

cent of the ac Josephson current, - sin (
~

)Vt . Note how-

ever, that as the wire moves in the magnetic field it in-

duces an electromotive force proportional to the time rate

of change of the deflection coordinate, which counteracts

the motion causing the vibration. This term is given by the

second argument in Eq. (22b) (see Ref. 44 for details),

and is responsible for the characteristic resonant phen-

omena described below.

Numerical simulations of Eq. (22) shows that for small

driving forces (low magnetic fields) the system will

achieve resonant conditions only at the eigenfrequency of

the fundamental mode of the wire
~
V �1, see Fig. 12,a. For

larger driving forces however, also parametric excitations
~
V � 2 can be achieved, Fig. 12,b. Furthermore, the ampli-

tude of these modes is initially seen to be an increasing

function of the magnetic field strength, but eventually sat-

urates at some critical driving force �*, Fig. 13,a. To ex-

plain these phenomena the authors derived two stability

equations for the amplitude and phase of the vibrating

nanowire which well describe the onset and saturation of

finite vibrations at resonant conditions. These equations

also show that for the system considered there exists a

window of bistability in the vibrational amplitude around

the resonance peaks.

Being that the voltage source pumps energy into the

oscillating nanomechanical system, it can be shown by di-

rect integration of the equation of motion that at resonant

conditions a finite dc current, j dc , is set up over the sys-

tem. This comes about as the mechanical energy of the

nanowire is a constant of time at resonant conditions,

hence any pumping of the system at these conditions will

lead to an energy transfer through it, proportional to the

real damping coefficient �. As such, the resonant dc cur-

rent can be shown to scale as,

j
Y t

L H V
dc -

� �� �( ) 2

2 2
, (23)

where time-average rate of change of the deflection coor-

dinate, � ��( )Y t 2 , behaves phenomenologically equivalent

to the deflection coordinate. As such, it was shown that

the system considered should exhibit both negative and

positive magnetoresistance as the current is first an increas-

ing function of the magnetic field (increasing vibrational

amplitude) but falls off as j H
dc

- �2 once the driving force

reaches the critical value �* which indicates the onset of the

bistability in the vibrational amplitude (see inset Fig. 13,a).

Also, it was shown that the bistability region around

the resonance peaks can be utilized to directly probe the

underlying quantum mechanics of the system. As was
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ducting suspended nanotube as a function of driving voltage,
~
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clearly showing the onset of the parametric resonance at higher

driving force, �. Reprinted with permission from [44], G. Sonne

et al., Phys. Rev. B78, 144501 (2008). : 2008, American Physi-
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mentioned above, close to resonance conditions the sys-

tem exhibits a mechanical bistability, i.e. two dynami-

cally stable solutions of oscillation can be found for the

same bias voltage but with different vibrational ampli-

tudes. Which of the two stability point the system will

correspond to will in general depend on initial conditions,

however, by applying finite voltage pulses in time one can

move the system between the two. Consider for example

the situation shown in Fig. 13,b where the system is ini-

tially found at the stable point 1, corresponding to the

lower vibrational amplitude (lower current) and the bias

voltage is slightly off the parametric resonance. Applying

two voltage pulses in time, (i) and (ii), will move the sys-

tem along the phase space trajectory of the stability point

defining it. As the region of bistability is only found

within a small window of bias voltage around the reso-

nance peaks, pulse (i) will in this example force the

system into the second stability point, which will return

the system to the higher stability point, 2, on the

up-sweep. As the dc current scales directly with the vibra-

tional amplitude we thus predict that this pulse will result

in a measurable current difference to pulse (ii) which will

return the system to the initial stability point. Considering

realistic experemental parameters it was predicted that

the measurable current difference (1 2� )  5 nA should

be experimentally observable for magnetic fields

H  20 mT and bias voltages V  5 .V.

4. Conclusions

Coupling between electrical and mechanical degrees

of freedom is the basic mechanism behind the functional-

ity of any nanoelectromechanical system. Such coupling

can be achieved in many different ways. In this Review

we have focused on the effects of varying the spatial con-

centration of the electronic charge or current in systems

incorporating suspended nanowires as the mechanical el-

ement. These structures are particularly interesting to

study as they can be used as efficient electromechanical

transducers that serve simultaneously as electric weak

links for the tunneling electrons and as nanomechanical

resonators. This allows one to use the mutual coupling be-

tween the electric current oscillations in time and the me-

chanical vibrations to achieve a highly nonlinear electro-

mechanical coupling if strong driving voltages or

magnetic fields are applied. The resulting self-supported

nanoelectromechanical dynamics can be maintained

through the development of an electromechanical insta-

bility, caused either by the shuttle phenomenon (for sys-

tems with varying charge concentration) or through reso-

nant pumping of nanovibrations by the electric current

flow (in systems with strong current concentration).

In many of the systems considered in this Review,

quantum coherence is an essential feature of the discussed

nanoelectromechanical operations. For example, it has

been shown that quantum effects in the electronic subsys-

tem, such as coherent electron transmission through a

double barrier structure, can be coupled to the quantum

coherence of the mechanical flexural vibrations (Section

3.1). The resulting electromechanical entanglement es-

tablishes «swinging» polaronic states for the tunneling

electrons, which allows the quantum vibrations to be in-

vestigated by interferometry. Also, it has been shown that

the existence of more than one mode of nanomechanical

bending of the suspended nanowire, a direct consequence

of the spatial extension of the mechanically vibrating ele-

ment, makes the operation of the NEM device even richer.

As an example we mention the multimode shuttle instabil-

ity discussed in Section 2.4 where it was shown that by

applying a «local» external probe in the form of current
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Fig. 13. (Color online) (a) Time-averaged vibrational ampli-

tude as a function of driving force for the second resonance

peak,
~
V � 2, clearly showing the saturation of the vibrational

amplitude at �*  0 005. . Inset shows corresponding

dimensionless dc current as a function of the magnetic field.

(b) Predicted current bistability and hysteresis for two voltage

pulses close to the parametric resonance. As shown, applying

either a positive or negative voltage pulse in time can shift the

system between the two stability points (1 and 2) which are

separated by a finite current difference. Reprinted with permis-

sion from [44], G. Sonne et al., Phys. Rev. B78, 144501

(2008). : 2008, American Physical Society.



injection from an STM tip the «global» mechanical prop-

erties of the system as a whole can be altered. In particu-

lar, the competition between the different mechanical

modes of vibrations will lead to a self-organization of the

shuttle vibrations of the suspended nanowire.

Experimental realization of the phenomena discussed in

this Review is an experimentally challenging task. Although

NEM-structures based on suspended nanowires have been

manufactured by a number of labs [13,14,16–19,22,45–48],

the need for strong external magnetic fields and applied

voltages offers a real experimental challenge. Another ob-

stacle to experimental realization of these systems is damp-

ing of the nanomechanical vibrations. If, for example, the

mechanical damping is too large, then the voltage threshold

required for the onset of the electromechanical instability

may well exceed the thermal limit, set by Joule heating of

the system, and the system might burn [49]. However, for

the NEM systems considered here typical experimental pa-

rameters such as quality factors of the order Q 1000 and

bias voltages of order 1 V the suggested multimode shut-

tling and superconducting pumping of nanovibrations

should be experimentally observable. The effects of the in-

terferometry of the quantum nanovibrations discussed here

do nevertheless demand the presently best achievable ex-

perimental conditions.

In this Review we have discussed the coupling of

mesoscopic electrons to nanomechanical radio frequency

vibrations. It is interesting to compare this to how mesos-

copic electrons couple to external electromagnetic fields

of much higher frequencies. Such coupling has been been

shown to result in a number of interesting non-equilib-

rium mesoscopic phenomena in both normal [50,51] and

superconducting [52,53] mesoscopic structures if the mi-

crowave photon energy is comparable to the electronic

energy-level spacing. The much lower mechanical fre-

quencies of NEMS devices, on the other hand, can easily

be tuned to match the smaller electronic energy scales that

characterize the widths (due to tunneling) of electronic

energy levels, the applied bias voltage, or the frequency

of Rabi oscillations in the population of energy levels.

The fact that electrons in mesoscopic systems can couple

to oscillations corresponding to such very different en-

ergy scales, makes it tempting to speculate that mesos-

copic electrons might be used for making microwave-me-

chanical transducers by simultaneously coupling them to

both electromagnetic and nanomechanical degrees of

freedom. If such an electron-mediated microwave-me-

chanical coupling is possible in principle, one may wish

to consider quantum coherence effects in structures

where both electromagnetic, mechanical and electronic

degrees of freedom have been quantum mechanically en-

tangled. The extent to which such speculations are

realistic is an open question which we leave for future

research in the exciting field of nanoelectromechanics to

answer.

Acknowledgments

This work was supported in parts by the Swedish VR

and SSF, by the Faculty of Science at the University of

Gothenburg through its «Nanoparticle» Research Plat-

form and by the Korean WCU program funded by MEST

through KOSEF (R31-2008-000-10057-0).

Appendix A: Derivation of the expression for the

force on the pumped nanomechanical system

Consider the Hamiltonian, ��, for the electronic sub-

system of the pumped Josephson vibrations of the sus-

pended nanotube, Eq. (1) in Ref. 44,

� � ( ) ( � � ) � ( )†
� � �� �2 dx x x; ; 0 ,

�
( , )

( ) ,�0

2 2

2
� �

�
�

��

�
�

�

�
� �

�

�m x

ieHu x t
U xz z z, , ,

� ( ) [ cos ( ) ( ) sin ( )]�  � / � /x t x tx y, ,sgn . (A1)

In (A1), � †; [ �;] are two-component Nambu spinors, , i

are the Pauli matrices in Nambu space and the deflection

of the tube is given by u x t u x a t( , ) ( ) ( )� , where u x( ) is

the dimensionless, normalized profile of the fundamental

bending mode and a t( ) determines the amplitude of vib-

ration. The potential U x( ) describes the barrier between

the nanotube and the bulk superconducting electrodes

where the gap parameter is   9( ) ( | | )x x L� �0 2 and

/ �( )t eVt/2 � is the phase difference across the junction.

As indicated in Ref. 44 a gauge transform, e HeiS iS� �
� � with

� ( ' , ) '/S eH u x t xz

x

� 2,

0

d �, shifts the dependence of the vec-

tor potential induced by the nanotube deflections from the

kinetic part of the Hamiltonian to the phase differences

over the leads,

/ � �/ � 2( ) ( ) ( ) ( ) ( )

/

t t t a t eH u x x/

L

� 4

0

2

d � .

Consider now an eigenstate of the system, | ( )< t �, such

that

| ( ) exp ( ) (| ( ) | ~( )< < <t i E t t / t t

t

� � � = =
&

'

(
(

)

*

+
+

� � �2 0

0

0d � )

where | ( )< 0 t � is the ground state of the system corres-

ponding to energy E t0( ) and | ~( )< t � is some state orthogo-
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nal to the ground state. To be able to evaluate the force on

the system with respect to the ground state one needs to

show that | ~( )< t � is small, which can be done by expanding

it in a complete set of eigenstates of the Hamiltonian,

| ~( ) ( )| ( )< <t A t tn

n

n� � �	 . Inserting this form into the

Schrodinger equation and multiplying from the left with

the state | ( )< t �, one finds that the amplitudes A tn ( ) can be

expressed as,

A t
i t t

E t E t
n

n t

n

( )
( )| ( )

( ) ( )
�

� � �

�

� < < 0

0

. (A2)

To evaluate this further one needs to find an expression

for the term in the nominator of Eq. (A2) which can be

done by considering the time derivative of the eigenstate

solution � | ( ) | ( )� < <0 0 0t E t� � � and evaluating the matrix

elements of this equation with | ( )< n t �. Performing this

analysis, Eq. (A2) can be expressed as,

A t
i t t

E t E t
n

n t

n

( )
( )|( � ) ( )

( ( ) ( ))
� �

� � �

�

� < <� 0

0
2

. (A3)

As the only time-dependence of the transformed

Hamiltonian is found in the phase difference over the leads

we identify that the nominator of this expression is propor-

tional to the bias voltage, � -t eV�� , whereas the denomi-

nator is the spacing of the energy levels in the systems,

-  0. For the system considered eV ��  0, hence one can

safely evaluate the expression for the force with respect to

the fixed-phase ground state | ( )< 0 t �.
The force on the wire is then found by evaluating the

expectation value of the force operator � � /F a- � ��

which can easily be shown to be F F� � � �< <0 0| � |

� �� �E a / a0[ ( )]� , where E0( )� is the ground state energy

as given in Ref. [44]. Similarly the Josephson current

can be shown to be j e E /� � �( / ) ( )2 0� � � and we recover

the total expression for the force on the oscillating wire

as given in Eq. (22).
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