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The nonstationary dynamics of topological solitons (dislocations, domain walls, fluxons) and their

bound states in one-dimensional systems with high dispersion are investigated. Dynamical features of a

moving kink emitting radiation and breathers are studied analytically. Conditions of the breather excitation

and its dynamical properties are specified. Processes of soliton complex formation are studied analytically

and numerically in relation to the strength of the dispersion, soliton velocity, and distance between solitons.

It is shown that moving bound soliton complexes with internal structure can be stabilized by an external

force in a dissipative medium then their velocities depend in a step-like manner on a driving strength.
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1. Introduction

The soliton concept in applied science was formulated

35 years ago in the prominent review by Scott, Chu, and

McLaughlin [1]. Since the soliton search developed into

both well-established mathematical and physical theo-

ries. They cover a wide range of problems beginning from

complete integrability of nonlinear equations [2,3] up to

applications of the soliton concept for explanation of non-

linear phenomena in various fields of condensed matter

physics [4–7]. Topological defects and inhomogeneties

such as dislocations in crystals, domain walls and vortices

in magnets, quanta of magnetic flux (fluxons) in long

Josephson junctions, are a few examples of traditional

physical objects which are described in terms of solitons

in solid state physics.

Two pioneer works by Kosevich and Kovalev [8,9],

devoted to nonlinear dynamics of one-dimensional crys-

tals, initiated two novel directions in soliton investiga-

tions. In Ref. 8 the physical meaning of a self-localized

excitation was introduced for the first time. In the long

wave limit such an oscillating solitary wave corresponds

to the breather which is interpreted as the soliton–anti-

soliton bound state. The authors proposed a regular

asymptotic procedure to construct the self-localized

oscillation [8,10]. In the short-wave limit Kosevich and

Kovalev predicted the existence of a self-localized oscilla-

tion with a frequency above the upper edge of a linear exci-

tation spectrum. Later a high localization limit of these

high-frequency soliton states were studied and they called

the intrinsic localized modes or discrete breathers which

became a new concept in nonlinear lattice theory [11,12].

In the work [9], which concerned crowdion dynamics

in an one-dimensional anharmonic crystal, Kosevich and

Kovalev established, for the first time to our knowledge,

existence of supersonic and radiationless motion of topo-

logical solitons in a highly dispersive nonlinear medium.

The equations deduced in the work [9] generalize the

Boussinesq equation for the case of the sine–Gordon (SG)

and � 4-models:

u u u u u u F utt xx x x xx xxxx� � � � � �( ) ( )� � � 0, (1)

where the external force equals to either F u u( ) sin� , or

F u u u( ) � �3 , respectively. The equation (1) with the

sine force and � � 0

u u u u u utt xx x xx xxxx� � � � �� �2 0sin (2)

is known nowadays as the Kosevich–Kovalev equation

[13,14]. For the special choice of parameter � �� 3 2/ ,
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Kosevich and Kovalev found an exact solution describing

the 2�-kink moving with an arbitrary velocity [9]. One

year later an integrable version of the equation was pro-

posed by Konno, Kameyama, and Sanuki [15]:

u u u u u uxt xx x xx xxxx� � � � �
3

2
02� � sin , (3)

and this fact could explain formally the existence of the

exact kink solution in Eq.(2). However significance of the

fact of radiationless motion of topological solitons in

highly dispersive media was realized after many years. In

1984 Peyrard and Kruskal showed numerically the exis-

tence of a stable moving 4�-soliton in the highly discrete

SG model [16]:
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sin , (4)

where d is discreteness parameter. They tried to explain

the formation of the bound state of two identical kinks by

exploiting the fact of the presence of the Peierls potential

in the lattice model. However, in work [17] it has been

found that the radiationless motion of such a soliton com-

plex can be described explicitly by the exact 4�-soliton

solution in the framework of the dispersive SG equation

with a fourth spatial derivative, i.e. Eq. (2) with � � 0:

u u u utt xx xxxx� � � �� sin 0 (5)

which is obtained as the long-wave limit of the Eq. (4).

Almost simultaneously the topological bound soliton

states were found numerically in the continuous nonlocal

SG model describing long Josephson junctions [18].

These facts of existence of the multikink bound states in

discrete and continuous systems were generalized as a

universal phenomenon and led to the concept of the

soliton complexes formed by strongly interacting kinks in

highly dispersive media [19–21]. Physically such

two-kinks states correspond, e.g., to a moving defect con-

sisting of two neighboring dislocation half-planes, or to a

narrow 360� magnetic domain wall, which arises even in

the absence of magnetic field, or to a bound pair of

fluxons in a long Joshephson junction.

There are some approaches to explain mechanisms of

formation of the bound soliton states. The internal struc-

ture of the soliton complexes can be studied in detail in

models that lead to piecewise linear equations with strong

dispersion [20–22]. In this case the stationary states can

be constructed as a superposition of two quasi-solitons

possessing spatial periodic tails as asymptotics which

cancel each other exactly for the composed complex by

imposing some interference condition. Noting that these

bound solitons occur in resonance with the linear spec-

trum waves they called embedded solitons [23,24]. The

effect of the dispersion can be extracted already from the

dispersion relations of corresponding linearized equa-

tions [25,26]. However a principal circumstance for a

complex arising appears to be the influence of the strong

dispersion as a factor leading to complication of internal

structure of solitons beginning from a kink level [27]. A

taking into account of the interaction of such flexible

kinks allows to describe quantitatively conditions of a

soliton complex formation [19,21,28].

A picture of the soliton complex formation becomes

much more diverse when one considers internal dynamics

of kinks, nonstationary motion of complexes, the condi-

tions of their formation and stability depending on differ-

ent physical factors including the influence of dissipative

and external forces [29–31]. The present paper is devoted

to investigation of this circle of tasks concentrating on a

single kink propagation and especially on the bound

soliton states of both types, soliton complexes and breath-

ers, covering essentially nonlinear dynamics of the

strongly dispersive SG model.

The paper is organized as follows. Section 2 intro-

duces regularized dispersive equations and some their dy-

namical properties. Section 3 addresses the nonstationary

dynamics of a single 2�-kink in all the range of the disper-

sive parameter. Section 4 devoted to analysis of the com-

plex formation and its stability conditions. Section 5

deals with the breather dynamics. Section 6 addresses the

influence of dissipation and external forces on stabiliza-

tion of the soliton complexes with an internal structures.

Last section summarized obtained results.

2. The regularized dispersive SG equations

To investigate analytically and numerically the

nonstationary dynamics of kinks and their bound states

we use the regularized dispersive SG equation with a

fourth-order spatio-temporal derivative [19–21]:

u u u utt xx xxtt� � � �� sin 0 (6)

where � is a dispersive parameter. This equation has ad-

vantage in comparison with Eq. (5) because it does not

contain an artificial instability of states u � 0 2 4, ,� ��

with respect to a short-wave excitation. An idea of the

regularization of dispersive equations belongs to Bous-

sinesq who first proposed to use a mixed spatio-temporal

derivative instead of the fourth spatial derivative for the

shallow-water waves equations [4]. Such a replacement

was justified in the lattice theory by Rosenau [32] for

models with nonlinear interactions between atoms. The

Boussinesq’s idea was applied to the SG and double SG

equations with higher dispersion in Refs. [19–21]. At

present this approach is actively being used for analytical

description of discreteness effects [33–35]. With respect

to original discrete models an accuracy of this replace-

ment can be easy to estimate. In the long-wave limit

( )d �� 1 after introducing a coordinate x n/d� the second
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difference is replaced as u u u u un n n xx xxxx� �� � 
 �1 1 2 � ,

where � �1 12 2/ d . If one expresses a second derivative

from Eq. (5) as u u u uxx tt xxxx� � �� sin and inserts it in

the fourth derivative and keeps terms which are linear

with respect to�, one obtains the equation:

u u u u utt xx xxtt xx� � � � �sin (sin )� � 0. (7)

Hence to approximate Eq. (5) by Eq. (6) one needs to take

into account the term with ��(sin )u xx . It would be ex-

pected that a form of static kinks would be different for all

the Eqs. (4)–(7), depending on a value of �. Curiously,

it appears that Eq. (5) does not possess a static 2�-kink

solution satisfying boundary conditions u( )�� � 0 and

u( )� � 2� at all [21]. At the same time exact static kink

and moving complex solutions exist simultaneously in

Eq. (6). Therefore a lot of problems of kink and complex

dynamics can be solved analytically in the framework of this

equation. In particular the spectral problem for linear excita-

tions of the static kink has been solved completely [14,29].

Thus Eq. (6) has an exact static kink solution for arbitrary�,

which coincides with a kink of the usual SG equation:

u x x2 4�( ) exp( )� arctan . (8)

The kink solution of Eq. (7) can be find in an implicit

form using the first integral:

du

dx

u/

u
u/�

�
�

2 2

1
1 22sin( )

cos
cos ( )

�
� . (9)

It appears that even when the discreteness parameter d �1

and hence � �1 12/ , the static kink solutions for the dis-

crete equation (4) and continuous Eqs. (6) and (7) differ

very slightly (see Fig.1). This justifies the use Eq.(6) in-

stead Eqs. (5) and (7) to explain qualitatively a majority

of effects which are inherent in the discrete model (4) but

in reality arise due to the higher-order dispersion.

The equation (6) can be derived from the Lagrangian:

L u u u u dxt x xt� � � � ��
1

2
2 12 2 2[ ( cos )]� . (10)

Using the expression (10) it is easy to find the first

integrals, total energy and momentum:

E u u u u dxt xt x� � � � ��
1

2
2 12 2 2[ ( cos )]� , (11)

P u u u dxx t xxt� �

��

�

� ( )� . (12)

Note that first two terms in the Eq. (11) give the kinetic

energy therefore the higher-order dispersion in the regu-

larized equations contributes to the kinetic energy

whereas in the case of Eq. (5) it produces an additional

contribution to the potential energy [21].

Spectrum of linear excitations for Eq. (6) can be found

exactly for both cases of a homogenous ground state and

in the presence of the static kink (8) [14,29]. The disper-

sion relation for continuous waves takes the form:

� �( ) ( ) ( )k k / k� � �1 12 2 . (13)

This spectrum has the peculiarity of being bounded in fre-

quency not only from below but also from above. This

property makes it similar to the spectrum of the initial dis-

crete model (4). Moreover, it simply coincides with the

spectrum of the SG model with a nonlocal interaction

[18]. In the case of a kink there exists a discrete spectrum

of internal modes of oscillations [29], the number of

which becomes infinite when � � 1 while the continuous

spectrum degenerates to one frequency �0 1� .

At last it is remarkable that Eqs. (5) and (6) have exact

solutions describing a moving 4�-soliton complexes. For

Eq. (6) the moving bound state of strongly coupled kinks

has a form:

u x t
x V t

l
4

0

0

8�( , ) exp�
��

�
��

�

�
��

�

�
�

�

�
�arctan . (14)

The velocityV0 of such a complex, its effective width l0 and

its energy E0 are specified functions of the parameter�:

V0 1
3 3

( )�
� �

� � � , l V0 0
2 1 43� ( ) /� ,

E l
l

0 0
1 032

9
� �

�

�
�

�

�
�� . (15)

In next two sections we discuss dynamical properties

of a single kink and specify conditions of the soliton com-

plex formation.
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Fig. 1. Comparing static kink profiles for a discrete equation

(4) and Eqs. (6) and (7) for d �1 (� =1/12). Continuous solu-

tions are undistiguishable.



3. Dynamics of a kink in the dispersive SG model

Internal oscillations of the static kink of the regular-

ized Eq. (6) have been studied theoretically and main fea-

tures of its nonstationary motion have been revealed

numerically [14,29–31]. Here we present analytical ap-

proaches to the kink dynamics. One of them consists in

application of a perturbation theory for the case of a weak

dispersion (small�). In this limit dynamical properties of

a kink would be expected to be similar to those in the

usual SG equation. The latter has a moving kink u z2�( )

obtained from the expression (8) by the Lorentz transfor-

mation of coordinates: z x Vt / V� � �( ) 1 2 . Therefore

one can seek a solution of Eq. (6) in the form:

u x t u z u z( , ) ( ) ( , )� �2 1� 
 (16)

where 
 � � �( )t Vx / V1 2 and a small addition function

u1 to the kink form obeys the linearized equation:

	

	
�

�

�
�
�

�

�
�
�

� � � �
�

�
�

�

�
� �

2

2 1 1 1 2 11
2





L u u u

z
uzz

cosh

� �� �( ( ) )u z u xxtt2 1 . (17)

In the first approximation one has to neglect the term

u1 in the right-hand side of Eq. (17). Then it is easy to find

a partial solution of the equation:

�u z
z

z

z

z
( )

sinh

cosh cosh
� �

�

�
�

�

�
�� 3

2
, �

�
�

�

V

V

2

2 21( )
. (18)

A g e n e r a l s o l u t i o n c a n b e w r i t t e n a s u z1( , )
 �
� ��u z v z( ) ( , )
 where v z t( , ) is a solution of a homoge-

neous part of Eq. (17) (without the right-hand side). This

solve a evolution problem of the SG kink in the dispersive

system for the case of small �. Really suppose that at the

initial moment u z u z( , ) ( )0 2� � and u z1 0 0
 ( , ) � . It means

that v z u z( , ) ( )0 � �� and v z
 ( , )0 0� . Owing to the knowl-

edge of eigenfunctions of operator L, one can solve com-

pletely the initial problem for the function v z t( , ):

v z t

k

k kz z k kz( , ) cos( )(cos tanh sin )�
�

� �  

��

�

��
�



8

1

1

1
2

2

 � ��

�
�

�

�
�

1

2

2 2
1 9 2

cosh

tanh
�

� �

k

k k k dk. (19)

This addition to the kink form describes decaying oscilla-

tions of the effective kink width which correspond to the

SG quasimode. The addition to the stationary reverse

kink width ! 
( ) is easily found from Eq. (19):

"! 
 
 �
�

( ) ( , )� �
�

�
 �

��

�

�u z
k

k
z z1 0

2

28

1

1

 
�

� ��

�
�

�

�
�

cos( )

cosh

tanh
1

2

2 2
1 9

2
2k

k
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�
� � (20)

and its temporal behavior (Fig. 2) repeats entirely the

kink velocity modulation found numerically [29]. The

power spectrum of the oscillation reveals Rice’s fre-

quency value � �R /� 2 3 [36].

Thus the perturbation theory predicts that the initial

SG kink has to evolve into a steady moving profile

u z u z u zK ( ) ( ) ( )� �2� � . However it is known [21] that

the equation for stationary waves

u u uzz zzzz� � �� sin 0, (21)

does not possess an exact solution for a moving 2�-kink al-

though one can find formally first terms in asymptotic se-

ries for such a solution, which coincide with Eq. (18). The

paradox is solved by noting that the solution u zK ( ) can be

expressed as superposition of two �-kinks in a form

u z z iK ( ) exp� ��

�
�

�

�
� �

�

�
�

�

�
� �2 1

2
3arctan

�
�

� ��

�
�

�

�
� �

�

�
�

�

�
�2 1

2
3arctan exp

�
�z i (22)

which prompts the ansatz for an adiabatic approach to the

2�-kink dynamics. The nonstationary evolution of the

kink at small� reduces to decaying collective oscillations

of the effective kink width and velocity with a consequent

growth of a kink steepness and a slow energy loss due to

the radiation emission. With increasing the dispersive

parameter the notable oscillating kink tail appears and this

phenomenon can be described by the following ansatz:

u z t u z a z k z vtKr K( , ) ( ) [ tanh( )]sin( ( ))� � � �1 0 , (23)
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Fig. 2. Decaying oscillations of the reverse effective kink

width during motion in the case of small �.



where the second term corresponds to radiation on the

wake of the kink. We have carried out a numerical model-

ing of the dynamics of kinks and soliton complexes (de-

tails of the numerical scheme can be found in Ref. 31).

Results of the simulations for small � are in a good rela-

tion with expression (22) and (23) and confirm entirely

theoretical predictions. For large enough parameter� and

the initial velocity V in a moving kink emits the breather as

shown in Fig. 3.

4. Kinks interaction and formation of soliton

complexes

An analytical approach to the description of the

soliton-complex formation in dispersive equations was

proposed in [21,29]. It is based on the use of the collective

variable ansatz which is constructed by taking into ac-

count the translational and internal degrees of freedom of

a soliton as well as interactions between solitons and

solitons with radiation. Now using results of previous

section we can specify the form of ansatz:

u x t u R u R f twb K K b( , ) ( ) ( ) ( , )( tanh( ))� � � � � �# # # #1 .

(24)

Here first two terms are kinks superposition and the last

term describes a small-amplitude breather f tb ( , )# �
� � � �a t k /sin( ( )) cosh( ( ))$ # # % # #0 0 or radiation emit-

ting. It turns out that the condition of the complex forma-

tion of the closely sited solitons can be found from the en-

ergy expression of the pair of strongly interacting solitons

without taking into account the breather or radiation

[19,21,28]. Now we use this approximation for the de-

scription of the regularized SG system. So we suppose

that the complex dynamics can be considered in the

framework of the soliton ansatz

u x t R Rkk ( , ) (exp( )) (exp( )))� � � �4 4arctan arctan# # (25)

which is prompted by the form of a generalization of the

exact solution in Eq. (14). Here # !� �( ( ))x X t and X t( ),

!( )t , and R t( ) are functions of time. Functions !( )t and

X t( ) describe the changing of the effective width of

solitons and their translational motion, respectively. The

function corresponds to the changing separation between

solitons, which is defined obviously as L R/� 2 !. Let the

distance between solitons be small. Inserting the ansatz

into Eqs. (11) and (12), we find the effective Lagrangian for

two interacting solitons in the strongly dispersive medium:

L R RRt t
t� � �
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(26)

Analysis of Eq. (26) shows that the soliton complex is sta-

ble for high values of its velocity and a small distance be-

tween composite kinks due to the effective kinks attrac-

tion. For value of velocity much larger than the velocity

of stationary motion the complex also dissociates in the

manner shown in Fig. 4.
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Fig. 4. Decay of a soliton complex for � = 1, Vin = 0.9 and

t1 = 500. The first kink moves with a constant velocity V1= 0.152.

Behind the second kink are breather modes. The inset shows

the spatial modulation of the field between kinks on an ex-

panded scale.
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Fig. 3. A fast kink evolution with generating a breather on its

wake for � �1 6/ and Vin � 0.86.



5. Breather properties in the regularized dispersive

SG equation

The form of static breather can be found analytically as

an asymptotic series using the Kosevich–Kovalev scheme

of construction of the self-oscillation solution [8]:

u x t A x t B x t C x t( , ) ( ) sin ( ) sin ( ) sin .� � � �� � �3 5 �

(27)

For a main harmonics with a frequency�which is close to

the linear spectrum lower edge, i.e. for % �� � --1 12 ,

one obtains the following effective equation:

" ". . . �. . .tt xx xxtt� � � � �
1

8
0

2
. (28)

Here a complex function .( , )x t determines the solution

u x t x t( , ) Re( ( , ))� . in the first approximation with re-

spect to the small parameter %. Seeking the solution of

Eq. (28) in the form . �� f x i t( ) exp( ) we derive the non-

linear ordinary equation:

( ) ( )1 1
1

8
02 2 3� � � � ��� �f f fxx , (29)

which gives a coordinate dependence of the harmonic am-

plitude as a usual soliton profile:

f
x

�
4%
!cosh

, !
�

��

2
2

2

1

1
�

�

�
. (30)

However one can see a new feature of the breather,

which consists in vanishing the effective width depend-

ence on the amplitude% in the limit � � 1. In fact it ap-

pears that in this case the amplitude of breather is not al-

ready a constant but a slowly time-oscillating function.

This results in the main frequency splitting and a complex

breather behavior showing in Fig. 5. Such a behavior is

similar to dynamical properties of breathers in discrete ant

nonlocal SG models [37,38]. At last have we found that a

single breather motion is accompanied by a small breather

bursting process and emitting radiation as shown in Fig. 6.

As one has seen in previous sections the excitation of

breather modes plays a crucial role in the kink and soliton

complex dynamics in the case of a strong dispersion.

6. Stabilization of soliton complexes by driving forces

in dissipative media

Finally, we have investigated the influence of external

forces and dissipation on the dynamics of soliton com-

plexes. For this purpose we add the dissipation term /u t

and a driving force f 0 to the right-hand side of Eq. (6)

u u u u u ftt t xx xxtt� � � � �/ � sin 0. (31)

The term f 0 in the right-hand side corresponds, for exam-

ple, to the bias current in a long Josephson junction. The

result of a numerical modeling are presented in Fig. 7 for

4�-complex profiles and in Fig. 8 for their step-like ve-

locity dependences on the driving force strength (one can

compare this result with the velocity-force dependence

for a single 2�-kink in the discrete SG model [39]). Pa-

rameters are chosen as follows: / = 0.1 and six sequential

values of f 0 from –0.1 to –0.35. It turns out that the driv-

ing force under conditions of dissipation permits stabili-

zation not only of the soliton complex but also of its «ex-

cited» states with internal structures. For waves of

stationary profile, the derivatives u t and u xare propor-

tional to each other, and both have the form of closely

spaced double peaks. These derivatives are directly re-

lated to experimentally measurable quantities, in particu-

lar, the voltage U u t0 and magnetic field H u x0 in the

case of a long Josephson junction, and in a crystal with

dislocations the derivative u xdetermines the elastic de-

formation of the medium. In conclusion we note that the

possibility of observing multisoliton excitations in long
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Fig. 6. Two moving breather profiles divided of a half-period

in time at � � 0.9.



Josephson junctions was demonstrated quite some time

ago [40].

7. Summary

Thus we have studied the nonstationary dynamics and

interactions of topological solitons (kinks) in one-dimen-

sional systems with a strong dispersion. Analytical ap-

proach has been proposed for investigation of dynamical

features of a single kink motion which accompanied by

emitting radiation and small-amplitude breathers. Collec-

tive coordinate ansatz has been also proposed to study

processes of soliton complex formation in relation to the

strength of the dispersion, soliton velocity, and distance

between solitons. The breather solution has been con-

structed in a small amplitude-limit and its internal oscilla-

tion and propagation in the dispersive medium have been

investigated in detail. It has been shown that theoretical

results are in good relation with numerical simulations

and quantitatively explain them. It is demonstrated that

stable bound soliton states with complex internal

structure can propagate in a dissipative medium owing to

their stabilization by external forces.

The results obtained can be used for explanation and de-

scription of new effects in the dynamics of topological

solitons in highly dispersive media — in particular, disloca-

tions in nonideal lattices, fluxons in Josephson junction sys-

tems, and magnetic domain walls in anisotropic magnets.
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