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1. Introduction

Transmission experiments are very powerful tools for

probing various excitations of solid state systems. In

linear ordered systems they enable one to restore the band

structure of elementary excitations (electrons, phonons,

magnons ets.). In the disordered systems they allow to

study Anderson localization of these excitations. One of

the simplest ways to incorporate the disorder is to int-

roduce into the system some kind of short-range

(point-like) defects. If the wavelength of the bare excita-

tion is mach larger than the average distance between de-

fects, the disorder can be treated in the continuous limit.

Here the dynamics of the system can be described by

means of some kind of macroscopic approach. In the op-

posite limiting case the excitations behave themselves

mostly as the bare ones between collisions with the

defects. The defects manifest themselves as the point

scattering centers only.

The situation with the nonlinear system is rather simi-

lar. The crucial difference is that here the bare elementary

excitations of its linear prototype may form bound states

(envelope solitons). Now in the disordered case we deal

with the soliton transmission through a disordered seg-

ment or a piece of a layer. In practical applications one

mostly deals with the case, where an excited soliton pulse

is transmitting through a medium with random point de-

fects [1–6]. However, here the characteristic length of the

bare excitation is not the wavelength but the soliton spa-

tial size. Therefore two solvable limits mentioned in the

previous paragraph, take plase (i) when the spatial size of

the soliton is much larger than average distance between

defects [3] (large density of the defects), or (ii) when the

size of soliton is much smaller then this distance.

This paper is devoted to the second case (small density

of the defects). Here the soliton scattering on a single de-

fect leads to the modification of soliton parameters (this

problem was partly solved in [2]). But the shifts of the

soliton parameters cannot be observed experimentally.

The quantities which can be observed are the total change

of soliton energy and the shift of its position (or the shift
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of the corresponding propagation time) after transmission

of the soliton through the macroscopic region of the dis-

ordered medium. The study of these quantities is very top-

ical for information transmission through the optical fi-

bers [7]. Because of the random distribution of defects all

these quantities are random. Therefore the subjects of in-

terest are their probabilistic characteristics (mean values,

various moments, probability densities and so on).

In this paper we study the shift of the soliton transmis-

sion time in the framework of the one-dimensional non-

linear Schrodinger equation (NLSE). In homogeneous

(ordered) systems, this equation is completely integrable

and possesses the stable robust soliton solutions [8,9].

The NLSE describes many problems of solid state phys-

ics: nonlinear magnetization dynamics in ferro-magnets

with the easy-axis type anisotropy [10], the soliton mo-

tion along the quasi-one dimensional molecular chain, the

dynamics of the envelope of phonon excitations produced

by an intensive pulse pumping of a crystal [11] etc. Here

we obtain, in the second order of weak scattering inten-

sity, the mean value and the variance of the transmission

time shift through a disordered segment.

The structure of the paper is following. In the next

Sec. 2 we describe the model discussed and introduce all

needed notations. Sec. 3 is devoted to the soliton scatter-

ing on a single defect. The two first moments of the trans-

mission time shift are calculated in Sec. 4. In Conclusion

we summarize the results obtained.

2. The model

The model under consideration is described by the

nonuniform NLSE
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Here u x t( , ) is the field variable which may have a number

of physical meanings (e.g. the density of the spin waves)

and the subscripts denote the partial derivatives with re-

spect to the corresponding variables (time t and coordi-

natex). The right hand side describes the influence of the

point defects with the intensity �, placed at the points
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interested in the case of weak scatterers, so � is thought to

be small (this condition will be clarified later).

In what follows, we assume that the defects are inde-

pendently and uniformly distributed within the segment

[ , ]0 L with mean distance l between the adjacent defects.

This means that the number n of defects inside the seg-

ment [ , ]0 L is random, inside and the probability pn to find

exactly n defects within the segment, is
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where � � L l/ is the average number of defects on the

segment. The conditional probability density to find these

n defects at the points { }x k is

	 
 � �n k

k

n

k

k

n

z n z z( ) ! ( ) ( )� � �
� �
� �1

1 1

� � ��
�
�n x x x L xn k k

k

n

! ( ) ( ) ( )� � �1 1

2

,

where (3)

z L x xk k k� ��
�

1
1( ) , 2 � �k n ,

are the scaled distances between adjacent defects and

z L x1
1

11� � � . The probability density (3) corresponds to

canonical ensemble (a fixed number of the scatterers on

the segment). The probability density

 ( ,{ }) ({ })n z p zn n� (4)

with pn from (2) and n z({ }) from (3) corresponds to a

grand canonical ensemble. In this case we have an infinite

line with the scatterers distributed independently along

the line with density l and then we cut off a segment with

length L from this line. The number of scatterers on the

segment fluctuates and its mean number is �.

In what follows the symbols � �f n and � �f will be used

for canonical (with probability density (3)) and grand ca-

nonical (with probability density (4)) averaging of the

function f correspondently:
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The variances of the averaging functions are intro-

duced in a usual way:

�f f z f zn n n� � � � � �2 2 1({ }) / ({ })

for canonical ensemble and

�f f z f z� � � � � �2 2 1({ }) / ({ })

for grand canonical ensemble.

In infinite system ( )�� � � �x without any perturba-

tions ( )� � 0 , the NLSE possesses the well known funda-

mental four-parametric soliton solution (see e.g. [9])
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The parameter �determines the soliton amplitude As � 2�

and its width � ��1, while � determines the velocity of its
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envelope Vs � �4�. The choice of � and � as the main

soliton parameters is related to the fact that the complex

value � � �s i� � for soliton is the eigen-value of the li-

near problem associated with NLSE [9]. The parameters

� and � are related to two integrals of motion, the number

of quasi-particles bound in the soliton � �N u dxs � �

��

�

�4
2� ,

and the soliton momentum

P i u u dx V Ns x s s� � � �

��

�

�8 2�� * / .

We suppose that parameter � is positive and soliton trans-

mits from the right to the left with the velocity Vs � 0.

The soliton energy can be expressed via parameters �
and �or via the integrals of motion
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The first term in each of these expressions is the kinetic en-

ergy while the second one represents the potential energy

of attraction of quasi-particles bound in soliton. The num-

ber of these quasi-particles N s plays a role of the soliton

mass. With the help of new parameter & � � �N Vs s/

� '� �/ 0 we distinguish two limiting cases. The first one,

& �� 1, is the case of «light» soliton, which kinetic energy

essentially exceeds the binding energy of quasi-particles

forming the soliton. In the opposite case, & '' 1, potential

energy is much larger then kinetic one. This is the case of

«heavy» soliton.

Two other parameters — the phases � �0 1, — are not

so important in homogeneous (ordered) system but in the

inhomogeneous case they must be taken into account.

Scenario (which will be justified in the next Section)

of soliton transmission through the disordered segment is

the following. Consider an unperturbed at t ( �� soliton

(5) characterized by its energy Es , number of quasi-parti-

cles N s and its velocity V E V Ns s s s� � �4 32/ / , and in-

cident from the right of the segment [ , ]0 L . Passing through

the first (from the right) scatterer placed at the point x1,

the soliton changes its parameters and reaches the seg-

ment [ , ]0 2x with another energy Es
) , number of quasi-parti-

cles N s
) and velocity V E N Ns s s s

) ) ) )� � �4 3
2

/ / . Passing

through the second scatterer, the soliton changes its pa-

rameters once again and so on. Because of change of the

soliton velocity on each step, its total transmitting time

through the entire segment differs from that in the ideal

system without scatterers. The value of this shift depends

on a realization of our random system, i.e. on the number

of scatterers n, their positions 	 
x i and their intensity �.

So, our first step is to study the soliton transmission

through a single defect and to find the corresponding

transformation ( , , ) ( , , )N E V N E Vs s s s s s( ) ) ) of solitonic

parameters.

Here we must pay attention to the fact that in homoge-

neous system the NLSE has infinite number of integrals

of motion, the first three are N P, and E. In the inhomo-

geneous system with defects the values N and E remain to

be the integrals of motion, but P does not. That is why we

choose the integrals N and E as the parameters of soliton.

We do not take into account another integrals of motion

and that means that we suppose that under the process of

soliton scattering another moving solitons and solitons

bounded with the defects do not appear.

3. Soliton scattering on a single defect

3.1. Emission of quasi-particles

The scattering of a soliton on a single point-like defect

with small intensity �, placed at origin of infinite system,

can be considered within the framework of perturbation

theory with respect to defect intensity. It was shown [2]

that soliton passes through the defect only when the con-

dition 4 2� ��' is fulfilled. But in linear approximation

(in the first order in �) soliton demonstrates only small

� � and physically inessential phase shifts of � 0 and

�1while the soliton velocity Vs and its amplitude As do

not change at all. Their changes (or changes of N s and Es)

appear only in the second order of perturbation theory

� � 2 where the emission of elementary (linear) excita-

tions is taken into account. In the case of «rather fast»

soliton �� ��� 2or & � ��� / the velocity change due to in-

teraction with a defect is small, and the problem can be

solved analytically.

NLSE is exactly integrable by the inverse scattering

technique [9]. It is naturally to study the problem in terms

of perturbation theory based on this technique [12].

Within this approach, one deals with the linear problem

associated with NLSE. However considering the soliton

scattering on the defect, we should take into account the

continuous spectrum as well. It consists of real values

� � �k / 2 simply related to the wave number k of linear

waves with dispersion relation * � k 2.

In the presence of linear quasi-particles and solitons

the integrals of motion are modified

N N n k dks� �

��

�

� ( ) ,

E E k n k dks� �

��

�

� 2 ( ) .

(7)

In our case when at t � �� we have the pure soliton (5),

n k( ) corresponds to the density of radiated quasi-particles
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at t ��. For the fast solitons, this value was calculated

in [2]
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During the interaction the soliton emits N n kf �

��
� ( )

0

quasi-particles in the forward (left) direction and

N n kb �
�

� ( )

0

quasi-particles are reflected from the defect

and go backward (right) — we remind that our soliton

moves to the left. The total number N e of quasi-particles

emitted by the soliton passing through the defect from

right ( )x ' 0 to left ( )x � 0 is

N N N n k dke f b� � �

��

�

� ( ) . (9)

Correspondingly, the total energy lost by the soliton is

E E E k n k dke f b� � �

��

�

� 2 ( ) . (10)

3.2. Change of the soliton velocity and amplitude

Substituting expressions (9), (10) into conservation

laws N N Ns s e� �) and E E Es s e� �) we obtain
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From these equations, with the help of relation Vs �

� � �4 32E N Ns s s/ / valid for the fundamental soliton

(5), we find the change of the soliton velocity
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The number N s and energy Ee of emitted quasi-particles

have the order of magnitude � 2 and are much smaller then

N s and Es . Therefore the latter equation with � 2 accuracy

reads

V V F N E N Vs s e e s s
) � , � ( , , , ) , (13)

where

F N E N V
N V
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Equations (11),(13),(14) generally solve the problem

posed. More detailed and explicit results can be obtained in

the limiting cases of light and heavy solitons. In both these

cases we suppose that the condition of the «rather fast

soliton» & � ��� / is valid. For the light solitons it means

that & �� 1 and � �& ��� V / . In this limit the soliton is simi-

lar to wave packet with V � � and we in some cases may

use the analogy with the interaction of a single quasi-par-

ticle with the �-function defect. For the heavy soliton the

double inequality must be fulfilled � �1�� ��& �V / .

We start from the case of light soliton. Here the density

n k( ) of emitted quasi-particles (8) is strong enough and

has two well pronounced peaks with widths �k � � cen-

tered near the points k , - 2�. The amplitude of the right

peak at k , 2� is of order � �2 2/ and essentially exceeds

that of the left peak at k , �2� which is & 4 times smaller.

As a result, the main part of the particles is reflected from

the defect N Nb
l

f
l'' and number of emitting quasi-par-

ticles is of order N l
e � � & �2 / . More detailed calculations

lead to the following results for the number of emitted

quasi-particles and the total emitting energy

N
N

V

l s
l

s
le , �

� &
�

�2 2

24 ( )
, (15)

E Ns
l

s
l, �4 2 2� &� � . (16)

Corresponding results for soliton amplitude A Ns
l

s
l� / 2

and velocity V E N Ns
l

s
l

s
l

s
l� � �4 32/ ( ) / with the same

accuracy read

A A Vs
l

s
l

s
l)

, �( / ( ) )1 2 2� , (17)

V V Vs
l

s
l

s
l)

, �( / ( ) )1 3 22 2� . (18)

The l imits of appl icabi l i ty of these resul ts are

� � � �	 
V As s'' max ,� . We emphasize (i) that velocity trans-

formation law for fast light soliton does not include

soliton amplitude and (ii) that soliton delays passing

(from the right to the left) through the defect | | | |V Vs
l

s
l)

� .

In the opposite limiting case of heavy soliton with

& '' 1 the density of emitted quasi-particles is expo-

nentially small � exp ( / )�+& 2 . It is almost symmetric

with the width of order � & � A Vs
h

s
h| |. The numbers of

quasi-particles emitted backward exceeds only slightly

0
8

2
2 3

� � , � ��N N Nb
h

f
h h� &

�
+&exp ( / ) e , (19)
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where the total number of emitted particles is equal to

N h
e , �

� + &

�
+�

2 9 2

6

2

2
2

/

exp ( / ) . (20)

In the same approximation the total energy of the emitted

quasi-particles is positive and equal to

E h
e , �

� +�&
+�

2 11 2

4
2

/

exp ( / ) . (21)

For heavy soliton, transformation laws of its ampli-

tude and velocity have more complicated form:

A A Vs
h

s
h h

s
h)

, �( / ( ) )1 2 2� � , (22)

V V A V Vs
h

s
h h
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where � + +h
s
h

s
h

s
h

s
h

s
h

s
hA V A V A V( , ) ( /| | ) exp ( / )/, ��7 2 1 .

Analogously to the light soliton, the heavy soliton also

slows when passing the defect. However its velocity trans-

formation strongly depends on soliton amplitude.

4. Soliton passing over random medium

4.1. Amplitude and velocity

Passing through the disordered segment, soliton chan-

ges its amplitude and velocity. Under some assumptions,

these changes can be easily calculated. Suppose that the

density of the defects is small so that the average distance

between the defects is much larger then the soliton size.

This enables us to use the results (17)–(23) obtained in the

previous Sec. 3 for infinite system. Then considering each

act of scattering we neglect the quasi-particles emitted dur-

ing the previous acts, and exclude the possibility of the ad-

ditional solitons excitation. Finally, assuming that the total

number of scatterers is not enormously large n �� �� 2, we

can perform all calculations with the � 2 accuracy. In

this case the total changes of soli ton amplitude

�A A As s x s x L� �� �| |0 and velocity �V V Vs s x s x L� �� �| |0

are additive and do not depend on the spatial realization of

the defects. For example, after passing k �th scatterer

the light soliton loses the velocity (18) �V V Vs
k

s
k

s
k� � ,�1

, �3 22� / Vs
k . I n t h e r i g h t - h a n d s i d e V Vs

k
s
k, ��1

� �3 22 1� / Vs
k , but we must not take into account the second

term as it gives the correction to �Vs
k of order � � 4 . After

k steps of this procedure we obtain �Vs
k , � �3 22 1� / Vs

� �3 22� / Vs
input .

For the light soliton, the total shifts of the soliton am-

plitude and velocity are

�A nA Vs
l

s
l

s
l, �� 2 2/ ( ) , �V n Vs

l
s
l, �3 22� / . (24)

Corresponding shifts for the heavy soliton have the form:

�V nA Vs
h

s
h h

s
h, �� �2 2/ ( ) ,

�V n A Vs
h

s
h h

s
h, �2 2 2 3� �( ) / ( ) .

(25)

All quantities entering the right hand sides of (24,25) are

taken at x L� and correspond to their input values.

4.2. Transmission time

From the physical point of view, much more important

quantity is the shift of the soliton transmission time. Let

v1 0' be the absolute value of the input velocity of the

soliton incident from the right on the segment [ , ]0 L .

Then, let vk ' 0, 1 1� � �k n be the absolute value of the

soliton velocity between (k �1) 1-th and k-th scatterers,

and vn�1 — the output velocity of the soliton which

passed through the last n-th scatterer. The total transmis-

sion time in homogeneous case equals T L v0
1� / while

the transmission time through disordered segment con-

taining n scatterers

T
L x

v

x x

v

x x

v

x

v
n

n n

n

n

n

�
�

�
�

� �
�

��
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1

1

1 2

2

1

1

� (26)

is bigger then T 0 because of soliton delay after each act of

scattering v v v vn n1 2 1' ' ' ' �� . The transmission time

shift �T T Tn� � '0 0 is very important characteristic of

the various delay lines. But this shift is not additive one

and strongly depends on the realization of the defects.

The calculation of its statistical characteristics is more

complicated problem. Let start with the light soliton. In

this case according to (18) we have a recurrency relation

for the soliton velocities within two neighboring intervals

between adjacent defects

v v vk k k� � �1
23 2� / , 1� �k n . (27)

The solution of the latter equation in the main approxi-

mation (taking into account only terms of order of � 2)

has the form

v v kk � � �1 1. * ( ), (28)

where

. . �� � ��* /v / v1
2

1
23 2 1 (29)

is the basic small parameter of the theory. In terms of

dimensionless distances z k between adjacent scatterers

(see (4)), the total transmission time �Tn reads

�T T n n k zn k

k

n

� � � �
�
�. 0

1

1[ ( ) ] . (30)

Averaging the shift �Tn and its square with the proba-

bility density (3) (for canonical ensemble with fixed num-

ber n) we obtain the mean transmission time shift � ��Tn

and its variance �Tn
l for light soliton
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The variance smallness is provided by large number of

scatterers n '' 1, while transmission time shift is small if

n. �� 1. After the next averaging over the number of scat-

terers we obtain for the grand canonical ensemble

� � � ��
�

T T
L

lv

l

2

3

4

0
2 2

1
3

.
�

, �T T
l

L

l l� � ��
4

3
. (32)

These results qualitatively are the same as those for a

fixed number of defects. The difference is that here an av-

erage number of scatterers � � L l/ stands instead of n and

variance numerical coefficient is changed.

For the first sight, it seems that the same problem for

heavy soliton is much more complicated because in this

case we should deal with double recurrency for both

soliton velocity and amplitude. However in the main ap-

proximation / � 2 the only change is appearance in recur-

rence (23) for velocity additional multiplier 0

v v kk � � �1 10.( ) , 0 +
+
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/

exp . (33)

Corresponding changes should be introduced into the fi-

nal results for both fixed number of scatterers
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and for those corresponding to the grand canonical en-

semble
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(35)

In this paper, we neglected the phase shifts � 01. (5).

However they also lead to transmission time shift which

is of order

�T
n

v
n
� �

�

1
3

. (36)

Therefore results (31) for the fixed number of scatterers

are valid for sufficiently long segment L '' 1/ �, the valid-

ity of the results (32) for grand canonical ensemble needs

the following inequality to hold: L nl'' ( / ) /� 1 2. Corre-

sponding conditions for heavy soliton due to the presence

of additional small parameter 0 in (34), (35) look much

stronger: L '' �( )�0 1 (fixed number of scatterers) and

L nl'' ( / ) /�0 1 2 (grand canonical ensemble). If ine-

qualities mentioned above are not fulfilled, transmission

time shift is described by (36) and is related to the main

contribution to the shifts of phases.

5. Conclusion

In the framework of one-dimensional NLSE the propa-

gation of envelope soliton through disordered system

with �-function defects is investigated in the case when

the spatial size of soliton is much smaller then the average

distance between the defects. In limiting cases of light

and heavy solitons the shifts of soliton amplitude, veloc-

ity and transmission time after propagation through the fi-

nite segment of disordered media with fixed number of

disordered impurities (canonical ensemble) and fixed av-

erage distance between disordered defects (grand canoni-

cal ensemble) are calculated.
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