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We discuss the existence of spatially localized nonlinear modes in carbon nanotubes with different

chiralities, and demonstrate that in nanotubes with the chirality index ( , )m 0 three types of localized modes

can exist, namely longitudinal, radial, and twisting nonlinear localized modes. We demonstrate that only the

nonlinear modes associated with the twisting oscillations are nonradiating modes, and they exist in the fre-

quency gaps of the linear spectrum. Geometry of carbon nanotubes with the index ( , )m m allows only the ex-

istence of broad radial breathers in a narrow spectral range.

PACS: 61.48.–c Structure of fullerenes and related hollow molecular clusters;
71.20.Tx Fullerenes and related materials; intercalation compounds;
71.45.Lr Charge-density-wave systems.
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1. Introduction

Spatially localized modes in perfect nonlinear chains

have been first discussed by A.M. Kosevich and A.S.

Kovalev [1]; in the framework of the asymptotic method

they found spatially localized in space and periodic in

time solutions of the nonlinear equations describing os-

cillations of a linear chain of particles placed in an exter-

nal potential. The similar physical objects have been in-

troduced much later by A.J. Sievers and S. Takeno in the

form of the so-called «intrinsic localized modes» [2], as

solutions of the dynamic equations for nonlinearly cou-

pled particles in a chain. Both types of spatially localized

periodic modes appear in strongly nonlinear systems, and

their spatial size may become comparable with the lattice

spacing. Such nonlinear localized modes are also called

discrete breathers or discrete solitons in other fields, and

they are responsible for energy localization in the dyna-

mics of discrete nonlinear lattices [3,4]. The manipula-

tion of the discrete breathers has been achieved in sys-

tems as diverse as annular arrays of coupled Josephson

junctions [5], optical waveguide arrays [6], and anti-

ferromagnetic spin lattices [7]. The theoretical study and

direct experimental observation of highly localized, stable,

nonlinear excitations at the atomic level in complex non-

linear chains such as carbon nanotubes will underscore

their importance in physical phenomena at all scales.

In this paper, we extend substantially the concept in-

troduced long time ago by A.M. Kosevich and A.S. Ko-

valev, and study the energy localization in complex non-

linear discrete systems. In particular, we demonstrate that

the standard model of carbon nanotubes with the index

( , )m 0 may support at least three types of different nonlin-

ear localized modes, whereas nanotubes with the index

( , )m m support only one type of discrete breather.

Carbon nanotubes [8] have attracted a considerable at-

tention in recent years after their discovery by Iijima [9].

They can be thought of as complex multi-atom structures

in the form of a cylinder of carbon atoms arranged in he-

xagonal grids similar to other types of fullerene-related

structures. The growing interest to the study of carbon

nanotubes can be explained by their unique physical

properties and their potential for a wide range of possible

applications. In particular, the carbon nanotubes are

known for their superior mechanical strength [10] and
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good heat conductance [11]. In addition, it is well estab-

lished that C60 fullerenes can support large-amplitude os-

cillations [12] which can be excited and controlled by

temporally shaped laser pulses [13].

In the continuum approximation, nonlinear dynamics

of carbon nanotubes has been analyzed by several groups

and, in particular, supersonic longitudinal compression

solitons described by the effective Korteweg-de Vries

equation have been predicted to exist in such structures,

similar to other simpler discrete lattices [14]. However,

the recent numerical modeling of more complete discrete

model of carbon nanotubes has demonstrated [15] that

acoustic solitons do not exist in such curved structures,

and their supersonic motion is always accompanied by

strong radiation of phonons.

Here we focus on the study of large-amplitude oscil-

lating modes of carbon nanotubes that have the additional

features of being nonlinear as well as discrete. We reveal

that both nonlinearity and discreteness induce localiza-

tion of anharmonic oscillations and, as a result, the com-

bination of both leads to the generation of specific spa-

tially localized modes of the type of discrete breathers

[2,16]. These modes act like stable effective impurity

modes that are dynamically generated and may alter dra-

matically many properties of carbon nanotubes.

The paper is organized as follows. First, in Sec. 2 we

introduce our model and discuss its several simplifying

reductions. Then, we find different types of localized

modes in a planar structure of unfolded nanotubes

(Sec. 3). Sec. 4 discusses the discrete modes in curved ge-

ometry, Sec. 5 we considered thermalized dynamics and

Sec. 6 concludes the paper.

2. Effective model

The structure of a carbon nanotube is shown schemati-

cally in Fig. 1. In static, the nanotube is characterized by

its radius R and two step parameters h1 and h2. In each

layer, the nanotube has m atoms separated by the angular

distance �� � 2�/m, so that h1 and h2 define alternating

longitudinal distances between the transverse layers. We

consider such dynamics of the nanotube that all atoms in

one transverse layer have identical displacements. In this

case, the carbon nanotube can be modeled by an effective

one-dimensional diatomic chain, where the coordinates

of atoms ( cos, ,� �n l n l , � �n l n l nz, ,sin , ) are defined by the

equations

�n l nR r t, ( )� � ; � n l nl t, ( ) ( )� � � � �� 1 ,

z k h h u tn l n, ( )( ) ( )� � � �2 2 1 2 for n k� �4 1;

� n l nl / t, ( ) ( )� � � � � � �� �1 2 ,

z k h h h u tn l n, ( )( ) ( )� � � � �2 2 1 2 1 for n k� 4 ;

� n l nl / t, ( ) ( )� � � � � � �� �1 2 ,

z k h h u tn l n, ( )( ) ( )� � � �2 1 1 2 for n k� �4 1; and

� n l nl t, ( ) ( )� � � � �� 1 ,

z k h h h u tn l n, ( )( ) ( )� � � � �2 1 1 2 1 for n k� �4 2,

where the index n k i� �4 , ( , , , ..., , , , )k i� 	 	 � �0 1 2 1 0 1 2

stands for the number of the transverse atomic layer, the

index l m�1, ..., marks an atom in the transverse layer,

r tn ( ) is a relative change of the radius of the n-th trans-

verse layer, �n is the angle of rotation of the atoms in the

layer, and u n is a relative longitudinal displacement of the

atoms from their equilibrium position. In the static case,

rn 
 0, � 
n 0, and u n 
 0.

In this case, complex three-dimensional dynamics of a

nanotube can be reduced to the analysis of an effective

one-dimensional three-component chain model with two

atoms per its unit cell, and Hamiltonian of this model can

be written in the form,

H E E Zn

n

n n n n n� � �� � � � �[ ( ; ; ; )],2 2 1 2 2 2 1 2 2 1y y y y

(1)

where E M r R r u /n n n n n� � � � �[� ( ) �

� ]2 2 2 2 2 is the kinetic en-

ergy , M is the mass of a carbon atom (the total energy of

the nanotube is mH), and the vector y n n n nr u� �( , , ). The

interatomic potential can be written in the form,

Z V V V( , , , ) ( , ) ( , ) ( , )y y y y x x x x x x1 2 3 4 1 2 2 3 2 4� � � �

� � � �U U U( , , ) ( , , ) ( , , )x x x x x x x x x2 3 5 6 3 2 6 3 5

� � � �U U U( , , ) ( , , ) ( , , )x x x x x x x x x1 2 3 1 2 4 3 2 4

� � � �W W W( , , , ) ( , , , ) ( , , , )x x x x x x x x x x x x6 3 2 5 6 3 5 2 2 3 6 5

� � �W W W( , , , ) ( , , , ) ( , , , ),x x x x x x x x x x x x1 2 4 3 1 2 3 4 3 2 1 4

where the coordinate vectors x i i i ix y z� ( , , ), i �1 2 6, , ...,

are defined as:
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Fig. 1. Schematic of a carbon nanotube with the index ( , )m 0 .

Below: an effective one-dimensional diatomic chain.



x R r6 1 1� � � � �( ) cos ( )� , y R r6 1 1� � � � �( ) sin ( )� ,

z h u6 2 1� � � , x R r1 2 2� � �( ) cos ( ),

y R r1 2 2� � �( ) sin ( ), z u1 2� , x R r3 2 2� � � � �( ) cos ( )� ,

y R r3 2 2� � � � �( ) sin ( )� , z u3 2� ,

x R r /2 3 32� � � � �( ) cos ( )� ,

y R r /2 3 32� � � � �( ) sin ( )� , z h u2 1 3� � ,

x R r /5 3 33 2� � � � �( ) cos ( )� ,

y R r /5 3 33 2� � � � �( ) sin ( )� , z h u5 1 3� � ,

x R r /4 4 42� � � � �( ) cos ( )� ,

y R r /4 4 42� � � � �( ) sin ( )� , z h h u4 1 2 4� � � .

T h e p o t e n t i a l V D( , ) {exp ( [ ]) }x x1 2 0
21� � � �� � � ,

� � �| | ,x x2 1 describes a change of the deformation energy

due to interaction between two atoms with the coordinates

x1 and x 2. Potential U v( , , ) (cos / )x x x1 2 3
21 2� � � ,

w h e r e cos ( , ) (| | | | )� � �v v v v1 2 1 2/ , a n d v x x1 2 1� � ,

v x x2 3 2� � , describes the deformation energy of the

angle between the links x x1 2 and x x2 3. Finally, the

potential W t( , , , ) ( cos )x x x x1 2 3 4 1� � �� , where cos � �
� �( , ) (| | | | )u u u u1 2 1 2/ a n d u x x x x1 2 1 3 2� � � �( ) ( ),

u x x x x2 3 2 4 3� � � �( ) ( ), describes the deformation en-

ergy associated with a change of the effective angle between

the planes x x x1 2 3 and x x x2 3 4 . We take the mass of carbon

atom as M m p�12 , where m p if the proton mass, the length

�0 � 1.418 �, and energy D � 4.9632 eV. Other model pa-

rameters such as �,  v , and  t can be determined from the

phonon frequency spectrum of a plane of carbon atoms.

3. Breathers in a planar system

A flat plane of the carbon atoms (graphene) is a special

case of carbon nanotubes in the limit R, when h /1 0 2� �
and h2 0� � . For such a plane the motion equation splits

into the equations for longitudinal and transverse motion.

The corresponding Hamiltonian takes a simpler form,

H M u u V Vn n n n

n

� � � ��

��
�

��
� �� 1

2
2 1
2

2
2

1 2 2 2 1( � � ) ( ) ( )� � ,

(2)

where �n n nu u� �� 1 , the potentials

V w D w1
21( ) [exp ( ) ]� � �� ,

V w D a w2
1 2

0
22 1( ) {exp ( [ ( ) ]) }/� � � � ��� �

� � �� �2 1 2 2 v a w /a w /[ ( ) ( ) ]

� � ��4 2 1 20
2 �v w / / a w /[( ) ( ) ] ,

and function a w w / /	 � � 	( ) ( )� �0
2

0
22 3 4.

The stiffness parameters of the potentials are

K V D1 1
20 2� �� �( ) � a n d K V D /v2 2

2
0
20 27 2� �� � �( ) �  � .

After linearizing the equation of motion following from

the Hamiltonian (2), we obtain the dispersion relation for lon-

gitudinal phonons, �	 � � 	 � �( ) {( [( )q K K K K1 2 1 2
2

� �2 1 21 2
1 2 1 2K K q /M( cos )] ) }/ / , which are depicted in

Fig. 2. The frequency spectrum consists of the acoustic

[ ( ), ( )]� � �� �0 2/ a n d o p t i c a l [ ( ), ( )]� � �� �/2 0 b a n d s

w h e r e �� �( )0 0, �� ( ) ( )0 2 1 2� �K K /M , � �� �( )/2

� 2 2K /M , and � �� ( )/ K /M2 2 1� .

The edge frequencies of the optical band can be esti-

mated from the experimental data: � �� �( )/2 1200 cm–1

and �� ( )0 1600� cm–1 [17]. These values allow us to de-

termine the stiffness parameters, K 1 � 508.98 N/m and

K 2 � 395.87 N/m, and find the maximum frequency of

acoustic phonons, � �� �( )/2 1058.3 cm–1. Knowing the

values of K 1 and K 2, we then find other parameters, � �
= 1.7889 �

–1 and  v � 1.3143 eV. The value of the torsion

potential  t can be evaluated from the maximum fre-

quency of the transverse oscillations of a plane carbon lat-

tice. For  t � 0.2 eV, we find the value 570 cm–1. In order

to find the parameters R, h1, and h2, we should solve the

minimum problem Z , , , R h h( ) min{ , , }0 0 0 0 � 1 2 . The re-

sulting value of energy is then used as the minimum value.

A simple form of the Hamiltonian (1) allows to obtain

analytical results for the nonlinear dynamics similar to

the case of diatomic lattices. These results allow to pre-

dict the existence of discrete breathers with the frequen-

cies below the lowest optical frequency of the longitudi-

nal phonons (see Fig. 2,c)]. The form of this breather is
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Fig. 2. Spectral density of thermal oscillations of a carbon

nanotube ( , )10 0 for the temperature T, K: 300 (a) and 30 (b).

Dispersion curves of the phonons: acoustic (1) and optical (2)

longitudinal phonons, acoustic (3) and optical (4) rotation

phonons, and acoustic (5) and optical (6) radial phonons. For

comparison, dashed lines show the dispersion curves of longi-

tudinal oscillations of a plane of carbon. Light areas mark the

frequency spectrum of breathers (c) .



shown in Fig. 3. The breather is characterized by the fre-

quency �, energy E, width of the localization region, L,

and the chain extension A. The breather frequency is inside

the band (1162, 1200) cm–1 near the lowest edge of the lon-

gitudinal optical oscillations. For decreasing �, both E and

A grow monotonically, and the breather width decreases.

Hamiltonian (1) defines the motion equations of the

system. We have studied these equations numerically and

revealed that they support the existence of three types of

strongly localized nonlinear modes — discrete breathers.

The first type, longitudinal breathers, also exists in pla-

nar carbon structures, such breathers exist in the fre-

quency range [1162, 1200] cm–1. The second type, radial

breathers, describes transverse localized nonlinear

modes with the frequency band [562, 580] cm–1. The

third type, twisting breathers, characterizes localization

of the torsion oscillations of the nanotube with the fre-

quencies [1310, 1477] cm–1. The frequency spectra of the

breathers are shown in Fig.2.

4. Breathers in the curved geometry

For a flat plane of carbon atoms, the longitudinal

breathers are nonlinear modes (see Figs. 3,a,c), and they

are exact solutions of the nonlinear motion equations.

However, in the case of a curved geometry, the longitudi-

nal breathers become coupled to transverse linear modes,

and they always emit some radiation. This radiation is de-

fined by the curvature of the nanotube and its index m.

Therefore, the longitudinal breathers are not genuine non-

linear modes of carbon nanotubes, and they possess a fi-

nite lifetime which however may exceed a few hundred of

picoseconds.

The second type of discrete breathers we found is asso-

ciated with the localization of transverse radial oscilla-

tions of a nanotube. Example of this radial breather in the

nanotube (10,0) is shown in Figs. 3,b,d. Localized

out-phase transverse oscillations of the neighboring

atoms lead to localized contraction and extension of the

nanotube. Such transverse oscillations become coupled to

the longitudinal oscillations and, therefore, the radial

breathers radiate longitudinal phonons. As a result, the ra-

dial breathers are also not genuine nonlinear localized

modes of the carbon nanotubes, and they decay slow by

emitting small-amplitude phonons. The lifetime of these

breathers can be of the order of several nanoseconds.

The third type of localized mode is a twisting breather,

or twiston, associated with the torsion oscillations of the

nanotube. In a sharp contrast to other two breathing

modes, the twisting breather is an exact solution of the

motion equations of the nanotube, and it does not radiate

phonons. An example of this genuine discrete breather is

shown in Fig. 4. In the localized region of this mode, the

nanotube is expanded transversally being contracted longi-

tudinally. The twiston has a broad frequency spectrum, and

its energy, amplitude of the transverse extension (see Fig.

5), and the amplitude of torsion oscillations all grow with

the frequency. The breather width changes monotonically,

and for the frequencies � � 1450 cm–1 it becomes compara-

ble with the lattice spacing, so that the breather becomes a

highly localized mode.

5. Thermalized dynamics

Next, we analyze thermal oscillations of a carbon

nanotube by employing the Langevin equations. We find

that for low temperatures (T � 30 K) the oscillations are

mostly linear and the frequency density does not differ

much from the density of linear modes, as demonstrated

in Fig. 2,b. However, for higher temperatures (T � 300 K)

the spectral density acquires specific features associated

with the generation of nonlinear modes, as can be seen in

Fig. 2,a where we observe thermal oscillations with the

frequencies inside the linear spectral gaps which can be

associated with discrete breathers. Indeed, the larger con-

tribution of these nonlinear modes is for the torsion oscil-

lations of the twisting breathers, which are stable and

have the largest frequency spectrum.

We have carried out the similar nonlinear analysis for

the nanotubes with the index ( , )m m and revealed that in

this nanotube can support only one type of breathers, a ra-

dial breather with a very narrow frequency spectrum

[430.5, 436] cm–1 near the upper edge of the frequency
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Fig. 3. Example of a localized nonlinear mode of the longitudinal

oscillations described by the Hamiltonian (2) (a), (b) (frequency

� � 1164 cm
–1

, energy E � 5.71 eV, width L � 16.3, the chain ex-

tension A � 0.45 �) and example of a radial breather (c), (d) de-

scribing localized transverse oscillations of a nanotube (10,0) with

the frequency � � 579.6 cm
–1

, energy E � 0.99853 eV, and width

L � 32.7. Shown are (a) and (c) the averaged (in time) energy

distribution En in the chain, (b) the atom displacements un, and

(d) transverse displacements rn. In Sec. (b) and (d) black lines

show the values averaged over the period, light lines — maxi-

mal displacements. Radiation of longitudinal waves by a radial

breather is clearly visible in Sec. (d).



band of radial phonons. However, this radial breather is

not an exact solution of the nonlinear motion equations,

and radiation of small-amplitude linear waves leads to a

decay of the breather. As a result, the existence of nonlin-

ear localized modes depends crucially on chirality of the

carbon nanotube, so that genuine discrete breathers are

expected to exist in the nanotube with the index ( , )m 0 .

Existence of twisting breathers is due to the anharmonic

interaction potential, and the large spectral gap in the fre-

quency spectrum of torsion phonons. However, the radial

long-lived nonlinear modes can appear in the nanotubes

with any type of chirality.

We have also extended our analysis on the complete

three-dimensional model described by not reduced but

complete set of equations. This analysis confirmed that

the main conclusions of our analysis remain valid, how-

ever, the thermalized dynamics of the complete systems

demonstrated much richer behavior. Figures 6,a–d de-

monstrate several different scenarios of the evolution of

the twisting breather. When the coupling to thermostat is

absent, (T � 0), the twisting breather exists as a stable

nonlinear mode even in the complete model (see Fig. 6,a).

To analyze the interaction of this breather with thermal

oscillations, we solve the motion equation with the exter-

nal random forces and damping (in the form of the

Langevin equations for end atoms 1 0� �n N and

N N n N� � �0 ), and trace the longitudinal distribution

of the local temperature

T
M

mk
n

B l

m

n l n l� � ��6
( �

�

, � ) ., ,x x

Figures 6,b–d show that for T � 0 the breather energy

slowly distributed along the nanotube, and this defines

the lifetime of the excited breather (a few picoseconds, or

several hundreds of oscillations).
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Vertical line show the edge of the linear spectrum of optical tor-

sion oscillations in the (10,0) nanotube.
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Fig. 6. Thermalized dynamics of the twisting discrete bretaher

described by a complete three-dimensional model of the car-

bon nanotube with the chirality index ( , )m 0 (for m �10)

( ,N �100 N0 30� ) for temperature T, K: 0 (a), 3 (b), 30 (c) and

300 (d) (breather frequency � �1341 cm
–1

). Shown is the tem-

poral evolution of the current magnitudes Tn of local tempera-

ture (kinetic energy of nanotube segments ( , , )
,

,n l k
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6. Conclusions

We have studied the nonlinear localized modes in com-

plex atomic structures associated with the geometry of

carbon nanotubes. We have revealed that such structures

can support spatially localized large-amplitude stable

nonlinear modes, and we have analyzed the existence and

stability of three types of breathers. A novel type of such

highly localized discrete modes — twisting breathers —

is associated with the energy self-trapping of torsion os-

cillations of the carbon nanotubes. We have demonstrated

that such type of nonlinear localized modes can be also

found in the complete three-dimensional model, beyond

the approximation adopted in our analysis. Our numerical

results confirm that the curved geometries of carbon

nanotubes with the chirality ( , )m 0 supports the existence

of strongly localized nonlinear twisting modes with the

lifetime of the order of several picoseconds.
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