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The one-dimensional spin-1/2 model, in which the alternation of the exchange interactions between

neighboring spins is accompanied by the next-nearest neighbor (NNN) spin exchange (zig-zag spin ladder

with the alternation) is studied. Thermodynamic characteristics of the considered quantum spin chain are ob-

tained in the mean-field like approximation. Depending on the strength of the NNN interactions, the model

manifests either the spin-gapped behavior of low-lying excitations at low magnetic fields, or the fer-

rimagnetic ordering in the ground state with gapless low-lying excitations. The system undergoes second or-

der or first order quantum phase transitions, governed by the external magnetic field, NNN coupling

strength, and the degree of the alternation. Hence, NNN spin–spin interactions in a dimerized quantum spin

chain can produce a spontaneous magnetization. On the other hand, for quantum spin chains with a spontane-

ous magnetization, caused by NNN spin–spin couplings, the alternation of nearest-neighbor (NN) exchange

interactions can be the reason for destroying of that magnetization and the onset of a spin gap for low-lying

excitations. Alternating NN interactions produce a spin gap between two branches of low-energy excita-

tions, and the NNN interactions yield asymmetry of dispersion laws of those excitations, with possible min-

ima, corresponding to incommensurate structures in the spin chain.

PACS: 75.10.Pq Spin chain models;
75.40.Cx Static properties.

Keywords: spin chain, spin frustration, zig-zag spin ladders.

1. Introduction

Last decade the interest in quasi-one-dimensional

quantum spin systems has grown considerably. In these

systems spin–spin interactions along one space direction

are much stronger than couplings along other directions.

The interest of physicists to low-dimensional quantum

spin systems is motivated, first of all, by the progress in

the preparation of substances with well defined one-di-

mensional subsystems. Another reason for studying qua-

si-one-dimensional quantum spin systems is the possibil-

ity to compare experimental data with exact solutions for

one-dimensional models [1]. In one-dimensional systems

quantum fluctuations are strongly enhanced due to pecu-

liarit ies in densities of states. According to the

Mermin–Wagner theorem [2], low-dimensional spin sys-

tems cannot have magnetic ordering at any nonzero tem-

perature, due to mentioned quantum fluctuations. On the

other hand, such systems often manifest quantum phase

transitions, which take place in the ground state, and

which are governed by other than the temperature param-

eters, like an external magnetic field, external or internal

(caused by chemical substitutions) pressure, etc.

During last years more attention was paid to theoreti-

cal studies of one-dimensional quantum spin models with

not only nearest-neighbor (NN) spin–spin interactions,
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but also with next-nearest neighbor (NNN) ones. Those

models are closer to real quasi-one-dimensional magnets

comparing to standard ones with only nearest-neighbor

couplings [3]. Such interactions are often present in

oxides of transition metals, where the direct exchange

between magnetic ions is complimented by the super-

exchange between magnetic ions via nonmagnetic ones.

Some transition metal-oxide compounds exhibiting prop-

erties of quasi-one-dimensional spin systems and spin-

frustrated systems have been the topic of recent studies

because of their large variety of very interesting low tem-

perature properties. The low-energy physics of these sys-

tems is mostly determined by a strong exchange inter-

actions between spin-1/2 double chains, formed by

edge-sharing CuO 6 or VO 6 octahedra, in which neigh-

boring and next-neighboring ions of Cu 2� or V 4� with

spins 1/2 are surrounded by oxygen ions. Such a configu-

ration of those oxides produces a very special tempera-

ture and magnetic behavior of many low energy cha-

racteristics of those compounds. For the consistent

explanation of several experiments [1] by means of in-

elastic neutron scattering, optical conductivity and nu-

clear magnetic resonance one needs to account for rela-

tively large values of NNN spin–spin interactions.

Classical counterparts of these models with anti-

ferromagnetic NNN interactions manifest the spin frus-

tration. The classical lowest energy state is highly degen-

erate [5]. For such models the standard quasi-classical

theoretical description based on the quantization of small

deviations of classical vectors of magnetization of mag-

netic sublattices often cannot be applied. This is why,

quantum spin models with NNN spin–spin interactions

are of principal importance. Also, one-dimensional quan-

tum spin models with NN and NNN spin–spin couplings

often manifest quantum phase transitions: several one-di-

mensional quantum models, belonging to that class, see,

e.g., Refs. 6–12, can be solved exactly, using Bethe an-

satz. However, exact solutions were obtained for models

with additional, perhaps non-realistic spin-spin cou-

plings. Many transition metal compounds, like copper

oxides, are believed to reveal features, characteristic for

quantum phase transitions. On the other hand, it turns out

that some quasi-one dimensional spin systems manifest

features, which are characteristic for doubling of mag-

netic elementary in-chain cells, e.g., the alternation of

effective g-factors and/or dimerization of the nearest-

neighbor exchange constants.

In this paper we study a one-dimensional model of

quantum spins with NN and NNN interactions (or, in

other words, the spin zig-zag ladder) and dimerization of

the NN coupling. The main goal of our work is to con-

struct a theory of a realistic model of a quantum spin

chain, which permits to analytically describe quantum

phase transitions caused by spin-spin interactions and

the external magnetic field. That model, on the one hand,

has to contain spin-frustrating NNN spin exchange inter-

actions, which usually produce incommensurate mag-

netic structures [10]. On the other hand, the model has to

have alternating NN exchange interactions, which can

be the reason for the formation of a spin gap for low-ly-

ing excitations there [1]. Notice, that antiferromagnetic

NN and NNN interactions themselves also can produce a

gap [13]. In recent experiments on quasi-one-dimen-

sional quantum magnets [14] it was pointed out that for

some range of parameters it is possible that incommen-

surate magnetic structures co-exist with the doubling of

elementary cells for one-dimensional spin subsystems,

see also Ref. 15. The Hamiltonian of our model contains

both of mentioned factors. As it will be clear from our re-

sults, taking into account these two factors (NNN inter-

actions and dimerization), our theory really reveals

quantum phase transitions (governed also by the mag-

netic field) between magnetic commensurate and/or in-

commensurate phases, with spin-gapped and gapless ex-

citations.

2. The model

The Hamiltonian of the quantum spin model with alter-

nating NN couplings and NNN exchange interactions has

the form:
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where S
n
x y z
, ,
, ,
1 2

are the operators of the spin-1/2 projections

of the spin in the nth cell, which belongs to the sublattice

1 or 2, �1 2 0, � are effective magnetons of the sublattices,

H is the external magnetic field, directed along z axis, J 1 2,

are the alternating exchange coupling constants between

NN spins in the cell and between cells, J Jz
1 2 1 2, ,� is the
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uniaxial magnetic anisotropy of the NN interaction, J NN

is the interaction constant between NNN spins in a chain,

and J JNN
z

NN� is the uniaxial magnetic anisotropy of the

NNN interaction. For the illustration, see Fig. 1.

It is known that the sign of J 1 and J 2 usually does not

play a role [1]. While for J Jz z
1 2 0, � the situation is inves-

tigated in detail, e.g., in theoretical and experimental

studies devoted to the quasi-one-dimensional spin-1/2

compound CuGeO 3, see Ref. 16, the opposite case of

positive exchange constants, or with different signs of

them is less known, however it is realized in some real

quasi-one-dimensional compounds [3,5].

After the Jordan–Wigner transformation, see, e.g., Ref. 1
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where a
n, ,
†

1 2
and an, ,1 2 are creation and destruction opera-

tors, which satisfy fermionic anticommutation relations,

the Hamiltonian (1) obtains the form
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The Hamiltonian (3) consists of the sum of the quadratic

form of Fermi operators, the part, which contains the

products of four Fermi operators, which correspond to

the pair interactions between fermions, and the part,

which does not depend on operators.

3. Mean-field like approximation

In wha t fo l lows we use the mean- f i e ld l ike

(Hartry–Fock like) approximation. Let us introduce the

notations
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where brackets denote the thermodynamic average, ei-

ther with the ground state wave function for zero tempe-

rature, T � 0, or with the density matrix for nonzero

temperatures. Using the Wick’s theorem and the mean

field-like approximation we can re-write the Hamil-

tonian (3) as
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n, 1 n + 1, 1 n + 2, 1

n – 1, 2 n, 2 n + 1, 2 n + 2, 2

(J , J )2 2
z (J , J )1 1

z

(J , J )NN NN
z

(J , J )NN NN
z

Fig. 1. Illustration of the zig-zag spin ladder. Solid zig-zag

lines denote nearest neighbor couplings. Bold line denotes the

bonds with the exchange constants J1 and J z
1 , the thick one de-

notes the bonds with coupling constants J2 and J z
2. Dashed

lines denote next-nearest neighbor interactions with coupling

constants JNN and JNN
z .
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where the last term is the part, which does not contain operators. Naturally, the mean field-like approximation does not

take into account correctly interactions between excitations (for example, it does not take into account bound states), but

it qualitatively describes the possibility of quantum phase transitions in the studied model. After the Fourier transform
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, where N is the number of unit cells, and a unitary transformation this Hamiltonian can be

diagonalized
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The value of the (possible) gap between two bands is determined by
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1
2

2
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It is then the easy task to obtain thermodynamic characteristics of the model. For example, the free energy (for T � 0) of

the quantum alternating spin chain per unit cell is equal to
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The z-projection of the average magnetization of the system per cell is
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We can also calculate the magnetic susceptibility per cell
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the staggered magnetic susceptibility
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and the specific heat
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per unit cell. One can see from the last equation that the temperature dependence of the specific heat can manifest two max-

ima, related to two kinds of excitations in the system.

The self-consistency conditions for the mean field parameters (1) at nonzero temperature can be written as
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From these equations one can see, in particular, that 1 is different from  2, if J J1 2� , or if J NN � 0.

3.1. High temperature limit

For high temperatures | |, ,� k T1 2 �� Eqs. (15) can be

transformed to the form

8 4 21 2 1 1 1T J J JNN
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The solution of Eqs. (16) in the main in 1/ T approxi-

mation is m H Tz
1 2 1 2, , /� � , 1 2 1 2 8, , /� �J T , and  NN1 2, �

� �2 1
22, HJ / TNN . Using this solution it is easy to show

that m z
1 2, go to zero with H for nonzero temperatures, in ac-

cordance with the Mermin–Wagner theorem. Also, non-

zero values of 1 2, are determined in the first order in T �1

by the NN exchange interaction J 1 2, , while the necessary

condition for  NN1 2 0, � is the nonzero value of J NN , as ex-

pected. It is interesting to notice that  NN1 2 0, � is con-

nected with the nonzero value of the external magnetic

field for high temperatures. It turns out that  NN1 2, become

nonzero in higher order in 1/ T , comparing to m z
1 2, and 1 2, .

It is also important to notice that in the main approximation

at high temperatures  NN NN1 2� , if � �1 2� .

3.2. The ground state

The most important properties of the one-dimensional

spin system can be, of course, seen in the ground state. The

ground state of any fermion system is organized as the total

filling of the Fermi–Dirac sea(s), i.e. all fermionic states
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with negative energies are occupied, while all fermionic

states with positive energies are empty.

The ground state filling of two fermionic bands Eqs.

(8) depends on the relative values of the parameters of the

considered model. Let us consider how different terms in

Eqs. (8) act. First, one can see from Eqs. (8) and (9) that

both bands are symmetric with respect to k. Also, it turns

out that the term in A1, which does not depend on k, shifts

the positions of both of two bands with respect to zero of

the energy axis, i.e. regulates the ground state filling of

bands. The term in A, which does not depend on k, shifts

two bands with respect to each other, in particular, its ab-

solute value governs the magnitude of the gap between

two bands. Hence, in particular, the external magnetic

field, on the one hand, governs the filling of bands, and,

on the other hand, the staggered component of the action

of the field, caused by the difference � �1 2� , changes the

value of the gap between bands. Also, the gap is de-

termined by the absolute value of the difference between

B1 and B2, | | NN NN1 2� , and | |m mz z
1 2� . In particular, for

A � 0, B B1 2� , the gap between two bands becomes zero.

One can see that the gap is zero if J J1 2� , J Jz z
1 2� , even

for � �1 2� for J JNN
z

NN� � 0. However, nonzero NNN

interactions can also produce a gap even if J J1 2� ,

J Jz z
1 2� . On the other hand, the terms in A1 and A, which

are proportional to cos( )k , i.e. those, which are caused

by nonzero NNN couplings, are responsible for the asym-

metry of the bands with respect to each other. Without

those terms the bands are symmetric, see, the illu-

s t r a t i o n i n F i g . 2 . F o r m mz z
1 2� a n d  NN NN1 2� ,

if ( )m m Jz z
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zJ1 2� , the lower band

has only one minimum at k � 0, while the upper band can

have one minimum at k � 0 and two maxima, situated

symmetrically with respect to k � 0, cf. Fig. 3 (see the dis-

cussion below). On the other hand, for m mz z
1 2� and

 NN NN1 2� , if ( ) ( )m m J Jz z
NN NN NN NN

z
1 2 1 2� ! �  , the

upper band has only one maximum at k � 0, while the

lower band can have one maximum at k � 0 and two min-

ima, situated symmetrically with respect to k � 0 point, cf.

Fig. 4. Nonzero values of m mz z
1 2� and  NN NN1 2� , on

the other hand, can produce (being also the gap-yielding

reason) several extremal points of both bands (together

with k � �0, ").

In the thermodynamic limit N # $ the self-consis-

tency conditions can be written for the simple case of two

Dirac seas, each connected with the upper or lower band,

respectively, of Eq. (8), in the ground state as
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Fig. 2. Symmetric dispersion laws �k , ,1 2 of the studied model

(e.g., at J JNN
z

NN� � 0 with the nonzero spin gap, caused by

J J1 2� ).
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Fig. 3. Asymmetric dispersion laws �k , ,1 2 of the studied model

with one minimum of the lower band and two maxima of the

upper band. The asymmetry is caused by NNN interactions.
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Fig. 4. Asymmetric dispersion laws �k , ,1 2 of the studied model

with one maximum of the upper band and two minima of the

lower band.
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where 0 1& &k c " is the solut ion of the equat ion

� k ck, ( )1 1 0� , and 0 2& &k c " is determined from the con-

dition � k ck, ( )2 2 0� . This situation happens if both � k , ,1 2

have extremal values as a function of k only for k � �0, ".

It turns out that 1 2, are nonzero only when the difference

between the populations of the Fermi–Dirac seas, con-

nected with upper and lower bands, exists.

3.3. Analysis of the spectral features

Equations (8) imply several different possibilities of

the ground state behavior of the studied model. We know

that the mean-field approximation often does not provide

correct values of critical constants (critical values of ex-

change integrals or magnetic field, at which quantum

phase transitions take place), this is why, we limit our-

selves in what follows mostly with the qualitative mean

field analysis of the situation in the considered model in

the ground state. In what follows we shall consider the

properties of the bands Eqs. (8), (9). In such analysis, as

usually for one-dimensional systems, the edges of the

bands produce van Hove singularities, which manifest

themselves in quantum phase transitions. They are gov-

erned, e.g., by the magnetic field, which regulates the

filling of the bands.

The case without dimerization, i.e. with � �1 2� and

J J1 2� , J Jz z
1 2� , at H � 0 was considered, e.g., in

Refs. 17,18. This case in the magnetic field was studied in

Refs. 19. The isotropic dimerized case at H � 0 for

J JNN NN
z� � 0 was studied in the antiferromagnetic case

in Refs. 20,21. On the other hand, in the absence of the

magnetic field, H � 0, the magnetically isotropic case per-

mits the exact solution for the ground state [22,23] for

special choices of exchange constants J 1, J 2 and J NN .

If � � �1 2� � and J JNN NN
z� � 0 (i.e. in the absence

of the NNN interactions), one has A � 0, and, therefore,

m m k kz z
c c1 2 1 21 2 2, ( / ) ( ) /� � � � ", a n d  NN NN1 2, � �

� �( / )[sin ( ) sin ( )]1 2 1 2" k kc c . In this case the upper band

has one maximum at k � 0 and two minima at k � �",

while the lower band has one minimum at k � 0 and two

maxima at k � �". The gap between bands is caused by

the difference between J 1 and J 2. Both bands are totally

filled in the ground state (i.e. k c1 2, � ", hence 1 2, �,

� � � � NN
zm /0 1 2, ) for

H H J J J J /s
z z� � � � � �1 1 2 1 21 2( / ) [ | | ( ) ].�

In this spin-saturated phase all excitations are gapped. The

low-temperature magnetic susceptibility and specific heat

are exponentially small for a gapped phase. Both bands are

empty in the ground state (i.e. k c1 2 0, � , thus 1 2, �
� � NN 0, m z �1 2/ ) f o r H H s! �2 ( / )1 � [| |J J1 2� �
� �( ) / ]J Jz z

1 2 2 . In this spin-saturated phase all excitations

are also gapped.

If the lower band is totally filled and the upper band is

empty in the ground state (i.e. k c1 0� , k c2 � ", hence

m z � 0,  NN � 0) excitations are also gapped (except of

the case, when H H B Bc� � �( / )| |1 1 2� ). In all other

cases either upper band, or lower one, is partly filled in

the ground state, with gapless excitations (holes in the

Fermi–Dirac sea, related to the corresponding partly

filled band). Gapless excitations imply finite low-tem-

perature magnetic susceptibility, for m z � 0, or divergent

low-T magnetic susceptibility for m z � 0, and the

low-temperature specific heat proportional to T . If

( )J Jz z
1 2 0� ! and m z � 0 (or ( )J Jz z

1 2 0� � and m z & 0),

then the energies of states in the upper band are always

positive (i.e. k c1 0� ), and, hence, the upper band is

empty in the ground state. The lower band, depending on

H, can be totally filled (i.e. k c2 � ", therefore, m z � 0,

 NN � 0) , empty ( i .e . k c2 0� , therefore , m z �1 2/ ,

 NN � 0, 1 2 0, � ), and partly filled in the ground state.

The lower band is totally filled for H H c� at T � 0. In

this phase all excitations are gapped, with exponentially

small low-temperature magnetic susceptibility and spe-

cific heat.

The lower band is empty at T � 0 for H H s! �
� � �( / )[| | ( ) ]1 21 2 1 2� J J J J /z z

� , where the upper sign cor-

responds to the case with m z ! 0, and the lower one is re-

lated to the situation with m z � 0. Obviously, this phase ex-

ists if | | ( ) /J J J Jz z
1 2 1 2 2� ! � � . In this spin-saturated

phase all excitations are gapped, too. For H H Hc s� �
low-energy excitations (holes in the Dirac sea, related to

the lower band) are gapless, and the low-temperature spe-

cific heat is proportional to T , while the low-T magnetic

susceptibility is finite for m z � 0 and divergent for m z � 0.

At H c and H s second order quantum phase transitions take

place. If ( )J Jz z
1 2 0� & and m z � 0 (or ( )J Jz z

1 2 0� � and

m z & 0), then energies of states in the upper band can be

negative (i.e. k c1 0� ). In this case up to four second order

quantum phase transitions can take place. For H H s� 1 the

system is in the spin-polarized phase with m z � �1 2/ . For

H H Hs c1 1& & � ( / )1 � [ ( ) | |]� � � �m J J B Bz z z
1 2 1 2 (for

� � ! �m J J B Bz z z( ) | |1 2 1 2 ) a n d f o r H c2 1� �( / )�
� � � � � & &[ ( ) | | ]m J J B B H Hz z z

s1 2 1 2 2 the system is in the

gapless phases. For H H Hc c1 2& & the system is in the

gapped phase with empty upper band and totally filled

lower band, where m z � 0. Finally, for H H s! 2 the model

is in the spin-polarized phase with m z �1 2/ .
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The general situation with J NN � 0, J NN
z � 0, is more

complicated, and, therefore, more interesting.

(i) This case takes place when both upper and lower

bands Eq. (8) empty in the ground state, i.e. k kc c1 2 0� � .

This case corresponds to the spin-saturated (ferromag-

netic) phase, with m mz z
1 2 1 2� � / ,  1 2 1 2 0, ,� �NN . It

happens even in the absence of the external magnetic field

for the case J J J J J Jz z
NN
z

NN1 2 1 22 2� � � ! �| |, for which

values of the exchange constants the spontaneous ferro-

magnetic order takes place in the ground state of the

model. For that situation, obviously, the line H � 0 is the

line of the first order quantum phase transition (the mag-

netic field removes the two-fold degeneracy of the ferro-

magnetic ground state). If the above mentioned condition

for exchange constants is not fulfilled, i.e. there is no

spontaneous ferromagnetism in the model, the case with

totally empty Fermi–Dirac seas can exist for large enough

values of the external magnetic field. Here, for H � 0, the

spin-saturated ground state situation is related to H H s! ,

the critical field of the second order quantum phase tran-

sition to the spin-saturated phase, which is determined by

one of the values of

H J J J Js
z z

NN
z

NN1 2
1 2

1 2 1 2
1

4
2 2, | ( ) ( )� � � � � � �

� �
� �

� � � � � �[( ) ( )� �1 2
2

1 2
22 2J J J Jz z

NN
z

NN

� �4 1 2 1 2
2 1 2� � ( ) ] | ./J J (18)

For H H s! excitations, related to both bands, are gap-

ped, which reveals itself, e.g., in exponentially small

values of the low-temperature magnetic susceptibility

and specific heat.

(ii) The low-energy band can be totally filled, and the

upper in energy band can be empty at T � 0, i.e. k c1 0� ,

k c2 � ", like in Figs. 2 and 4. Then it is seen from

Eqs. (17) that one has  NN NN1 2� � . One can also see

that the z-projection of the total spin of the model is zero

in this phase, m mz z
1 2 0� � (but not the z-projection of the

total magnetization, which can be nonzero in the general

case � �1 2� ). This situation is characterized by the gap

for the excitations, related to the upper band, and also can

be characterized by the gap for the lower-band excitations

(holes in the Dirac sea), which exists for � k ,2 0� for all k.

This lower-band gap can be closed for some values of pa-

rameters of the Hamiltonian. For example, it can be re-

lated to the critical value of the field, H H c� , at which the

second order quantum phase transition to the phase with

lower-band gapless excitations takes place. For H H c!
the excitations, related to the lower band, become

gapless, and, therefore, the low-temperature magnetic

susceptibility is finite, and the low-temperature specific

heat becomes linear in T . On the other hand, the lower

band can be totally filled at T � 0, but excitations, related

to this band (holes in the Dirac sea) can be gapless (in this

case H c � 0). Here the low-temperature magnetic suscep-

tibility of the model is finite, and the low-temperature

specific heat is proportional to T . Further growth of H in

the ground state can produce the second order quantum

phase transition to the spin-saturated phase for H H s� ,

which corresponds to the situation, at which the lower

band becomes totally empty, and excitations, related to it,

become gapped. In this case for � � �1 2� � , we have

A H1 2� � . In the case of small NNN interactions, we get

A � 0, m z
NN1 2 1 2 0, , ,� � . The parameters 1 2, are obtained

as the solution of equations

 '
"

'1 2
1

2
1� � � �( ) ( ) ,E x

 '
"

'1 2
1

2
1� � � �( ) ( )K x , (19)

where ' � B /B2 1,

x �
�

4

1 2

'

'( )
, (20)

and K x( ) and E x( ) are the complete elliptic integrals of

the first and second kinds, respectively. 2�H c is deter-

mined by the value of the gap between bands. The gap, in

turn, is determined by the value

| | |( ) ( ) ( )| .B B J J J J Jz z
NN1 2 1 2 1 1 2 2 1 22 4� � � � � � �   

(21)

The solution for the case with gapped excitations corre-

sponds to  1 2� , existing even for J J1 2� , J Jz z
1 2� . For

small values of J NN one has

'











�

�

�
�

�
�

�

�J J

J J
J

J J J J

z

z NN z z

2 1 2

1 1 1

1

2 2 2

2

1 1 1

2

2
1 4

2 2�
�
�

�

�
 
 

�

�

�
�

�

�

�
�

.

(22)

(iii) The lower band can be partly filled, while the upper

band is empty in the ground state, i.e. k c1 0� , like in Fig. 3.

This case is characterized by the nonzero value of the

z-projection of the total spin of the model per cell (differ-

ent, generally speaking, from the nominal value, 1/2),

m m kz z
c1 2 21� � � / ", which can be spontaneous, i.e. it can

exist even for H � 0. Low-energy excitations (holes in the

lower band) are gapless, and, therefore, the low-T specific

heat is proportional to the temperature. For nonzero spon-

taneous spin moment the low-temperature magnetic sus-

ceptibility is divergent, while if the moment is caused by

the nonzero value of the field H, the low-T susceptibility is

finite. At H � 0 in the ground state for the case with non-

zero spontaneous magnetization the first order quantum

phase transition takes place, because the magnetic field re-

moves the degeneracy of the ground state. The growth of

the magnetic field yields a second order quantum phase

Elementary excitations and thermodynamics of zig-zag spin ladders with alternating nearest neighbor exchange interactions

Fizika Nizkikh Temperatur, 2009, v. 35, No. 6 585



transition at H H s� to the spin-polarized state with the

nominal value of M z with only gapped excitations. In the

case of small k c2 one has the solution of self-consistency

equations A � 0, m kz
c1 2 21 2 2, ( / ) ( / )� � " (equal to the

ground state spontaneous magnetization),  NN , ,1 2 �
� k c2 2/ ", and  "1 2 2 4, ( )� � k /c . Here the critical value of

k c2 is determined at H � 0 by

k J J J J J J

J J J J

c
z z

NN
z

NN

z z
NN
z

N

2 1 2 1 2

1 2
2

2 2

3 8 4"
�

� � � � �

� � �( ) N

, (23)

or

k J J J J J J

J J J J

c
z z

NN
z

NN

z z
NN
z

NN

2 1 2 1 2

1 2
2

2 2

8 12"
�

� � � � �

� � �
, (24)

for ( )J J1 2� , being negative or positive, respectively.

Such solutions must exist only for small values of k c2.

(iv) At T � 0 the lower band can be totally filled, i.e.

k c1 � ", while the upper band is partly filled. In this case

one has also, as in the previous case, possibility of the

nonzero value of the z-projection of the total spin of the

model, spontaneous (generally speaking different from

1/2), or caused by the external magnetic field. Depending

on that fact (i.e., whether the moment is spontaneous, or

not), the low-temperature magnetic susceptibility is di-

vergent, or finite. Again, lowest in energy excitations

(holes in the Fermi–Dirac sea, connected with the upper

band) are gapless, and the low-temperature specific heat

is proportional to T . Also, at H H s! the model appears in

the spin-polarized ground state, as in the previous case. In

the situation with nonzero spontaneous magnetization in

the ground state, the first order phase transition takes

place, because the field removes the degeneracy of the

ground state. However, this situation is different from the

previous one, because, if the bottom of the upper band is

lower than the top of the lower band, at H H Hc c s1 2, �
two quantum second order phase transitions take place,

with the square root feature in the behavior of the mag-

netic susceptibility. It turns out that these phase transi-

tions are between phases with gapless excitations. On the

other hand, if the bottom of the upper band is higher than

the top of the lower band, one has two second order quan-

tum phase transitions, and, hence, two critical values of

the magnetic field H c1 and H c2 with the values smaller

than H s . Between those field values there are no magnetic

eigenstates of the Hamiltonian, and, therefore, the field

dependence of the magnetization has to manifest a

magnetic plateau for H H Hc c1 2� � .

(v) Then, both, lower and upper bands can be partly

filled in the ground state. The properties of this situation

are similar to the ones of the previous case with two criti-

cal values of the field, H c and H s . The transition at H c is

between phases with gapless excitations. At H � 0 one has

to observe a first order phase transition, because the field

removes the degeneracy of the ground state. Cases (iv)

and (v) are related to large values of the NNN interac-

tions.

(vi) Finally, the case with both upper and lower band

filled (i.e. k kc c1 2� � ") at T � 0 formally corresponds to

the solution of self-consistency equations with m z
1 �

� � �m z
2 1 2/ ,  1 2 1 2 0, ,� �NN .

The situation becomes more complicated for the case,

where � k , ,1 2 as functions of k have additional, with respect

to k � �0, ", extremum values. Such situation corresponds

to more than one Fermi–Dirac sea per band, which are sit-

uated symmetrically with respect to k � 0. Obviously, it

exists only for nonzero J NN and J NN
z . It implies that in

Eqs. (17) one has to replace integration from �k c1 2, to

k c1 2, to the integration over the intervals, where � k , ,1 2 0� .

Here the system can be in incommensurate structures in

the ground state (it is in the incommensurate phase if the

lowest value of the energy corresponds to some k � �0, ").

For the cases (i) and (vi) there are no incommensurate

structures, obviously. For (ii) additional extremum values

of only lower branch matter, see Fig. 4. In the gapped case

(or in the gapless one, if H c � 0), additional field-gov-

erned second order phase transition between commensu-

rate and possible incommensurate gapless phases takes

place for T � 0, cf. Fig. 4. For (iii), as in the previous case,

additional extremum values of only lower branch matter.

Again, additional field-governed second order quantum

phase transition between commensurate and possible in-

commensurate gapless phases takes place, see Fig. 5. In

the cases (iv) and (v) additional extremum values of both,

upper and lower bands matter, see Fig. 6. In the case (iv),

with a magnetic plateau, in addition to H c1 2, two more

quantum phase transitions can take place. Both of those

second order quantum phase transitions are between com-

mensurate and possible incommensurate phases with

gapless excitations. For (iv) with the bottom of the upper
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Fig. 5. Dispersion laws �k , ,1 2 of the studied model with empty

upper band and partly filled lower band.



band being higher than the top of the lower band, as well

as for (v), again, two additional ground state phase transi-

tions can take place, also between commensurate and pos-

sible incommensurate phases with gapless excitations.

Notice that low-energy excitations correspond to the

states with positive energies, i.e. the dispersion laws for

those excitations are related to � k , ,1 2 for branches Eqs.

(8) with positive energies and to | |, ,� k 1 2 for holes for the

branches with negative energies.

It is interesting to observe that proposed recently ex-

actly solvable model of a spin-1/2 chain with alternating

NN interactions and multiple spin exchange [24] mani-

fest properties, similar to the ones of the present model.

4. Exact diagonalization: thermodynamics

Now let us check the features of the behavior of the

spin-1/2 chain with alternating NN and (homogeneous)

NNN interactions, obtained with our mean field analysis

with the results of exact diagonalization of small clusters

(short chains). Most of our calculations were performed for

the chains containing 14 spins (even numbers). The number

of spins in the chain was limited by the exponential growth

of the computation time, however the accuracy of our calcu-

lations was sufficient to reproduce the features of the

magnetization, magnetic susceptibility and specific heat of

the considered model down to temperatures of order of 0.01

of the smallest absolute value of the NN exchange coupling.

In our calculations we used arbitrary units with Boltzmann’s

constant, Bohr’s magneton and g-factor being equal to unity

(we studied the case of � � �1 2� � ). Figs. 7–15 present

results of those calculations for S M Hz z	 ( ) / � at

T J� 0 1 1. | |, � z T( ) and c T( ) for H � 0 for the model with

magnet ica l ly iso tropic NN ( ), ,J J z
1 2 1 2� and NNN

(J JNN NN
z� ) interactions for J 1 1� � , J 2 1 2� � . , J NN �

� � � �0 1 0 3 0 8. , . , . (except of the trivial case with all ex-

change constants being ferromagnetic).

One can see that for the cases with antiferromagnetic

NN interactions for any sign of NNN interactions, and for

alternating in signs NN interactions with antiferro-

magnetic NNN interactions low-lying excitations are

gapped, and, therefore, the magnetization is small for

small values of the field (cf. Figs. 7, 10, and 13), and the

magnetic susceptibility (cf. Figs. 8, 11, and 14) and spe-

cific heat (cf. Figs. 9, 12, and 15) are exponentially small

at low temperatures. The same is true for larger values of

NNN exchange constants for the case with ferromagnetic

NN and antiferromagnetic NNN interactions, and for al-

ternating in signs NN interactions with ferromagnetic

NNN couplings. It implies that the mean field like ap-

proximation correctly (at least in these cases) reproduces
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Fig. 6. Dispersion laws �k , ,1 2 of the studied model with partly

filled upper band with two minima and totally filled lower

band with two minima.
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Fig. 7. The magnetization per site of the considered model for

J JNN � �01 1. | | as a function of H at T J� 01 1. | |. Notations here

and in Figs. 7–14 are as follows. J1 1� , J2 12� . , J JNN � 01 1. | |

(1); J1 1� , J2 12� . , J JNN � �01 1. | | (2); J1 1� , J2 12� � . ,

J JNN � � 01 1. | | (3); J1 1� , J2 12� � . , J JNN � 01 1. | | (4); J1 1� � ,

J2 12� . , J JNN � 01 1. | | (5).
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Fig. 8. The magnetic susceptibility per site of the considered

model for J JNN � �01 1. | | as a function of T at H � 0.



such a behavior, cf. (ii), like in Fig. 2, or (ii) with possible

additional Fermi–Dirac seas of the lower band, see Fig. 4.

The large region of an exponentially small magnetization

implies a large value of the spin gap.

On the other hand, for the case with alternating in

signs NN interaction for J JNN � 0 1 1. | |, and for ferromag-

netic NN interactions for J J JNN � � �0 1 0 31 1. | | , . | | we see

the divergency of the low-temperature magnetic suscepti-

bility, see Figs. 8 and 11 (which manifests the spontane-

ous magnetization in the ground state), additional

low-temperature narrow maxima for the specific heat, see

Figs. 9 and 12, and a metamagnetic-like transition at

small values of the field of the low-temperature magneti-

zation, see Figs. 7, 10, and 13. This situation is, probably,

related to the cases (i) or (iii), cf. Fig. 3, with one

Fermi–Dirac sea, or with possible additional Fermi–Dirac

seas of the lower band in the mean field like analysis. No-

tice that in those cases the bandwidth of the lower band is

narrow, which produces the metamagnetic-like transition

to the spin-polarized phase. Our exact diagonalization re-

sults imply that at least for the calculated cases the situa-

tions like in (iv), (v) and (vi) are not realized in the

studied spin chain (zig-zag ladder).

In order to get more information about quantum phase

transitions with respect to external field, we calculated

the lowest energy levels of finite chain fragments formed

up to 16 spins for each value of total spin of clusters for

the isotropic case | |, ,J Jz
1 2 1 2� , | |J JNN

z
NN� . For this pur-

pose we used branching diagram technique and the

Davidson’s method (the modification of the Lanczos

scheme for the determination of lowest eigenvalues of

large matrices). We found the jumps of the ground state

total spin S due to change of coupling parameter J NN in

rather narrow region. This gives us the idea to find simple

approximate estimate for critical value of this parameter,

which corresponds to the beginning of the destruction of

ferromagnetic ground state of the chain, by means of

study the stability of ferromagnetic state with respect to

the inversion of a single site spin. It is easily shown, that

the energy spectrum of the states with one inverted spin is

defined by formula
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Fig. 9. The specific heat per site of the considered model for

J JNN � �01 1. | | as a function of T at H � 0.
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Fig. 10. The same as in Fig. 7, but for J JNN � �0 3 1. | |.
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Fig. 11. The same as in Fig. 8, but for J JNN � �0 3 1. | |.

1 2 3 4 5
0

T/|J |1

0.50

0.40

0.30

0.20

0.10

1

2

3

4

5

c

Fig. 12. The same as in Fig. 9, but for J JNN � �0 3 1. | |.



( 	 � � � � � � �E k E J J J kf NN( ) [ cos ( )](
1

2
2 11 2

� � �J J J J k1
2

2
2

1 22 cos( )) , (25)

where E f is the energy of the ferromagnetic (totally

spin-polarized) state, and E k( ) is the energy of the single

inverted spin with respect to the spin-polarized state. Let

J 1 2 0, � and J NN ! 0. In this case for the infinite chain it

can be shown that the ferromagnetic state is unstable

(non-positive values of (), if the coupling J NN takes

values from the interval

J J

J J
J

J J

J J
NN

1 2

1 2

1 2

1 22 2| | | |�
� �

�
. (26)

In other words, the expression

J
J J

J J
NN �

�
1 2

1 22| |
(27)

may be a good estimate the for critical value of J NN . Our

numerical calculations for linear chain fragments support

this conclusion. Our calculations, compare with the re-

sults of Ref. 22, for chain fragments with periodic bound-

ary conditions (Fig. 16) demonstrate that this estimate

corresponds to the exact degeneracy of the ferromagnetic

and the lowest singlet states regardless on the size of frag-

ment.

Simultaneously, all the lowest states from other

subspaces with the given total spin have larger energy in

the vicinity of this point. It means that Eq. (27) deter-

mines the critical surface in the space of three coupling

parameters, that corresponds to the first order transition

between the ferromagnetic and the singlet states.

On the other hand, we see that for antiferromagnetic

NN interactions additional field-induced ground state

phase transitions can take place. For example, Figs. 7, 10,

and 13 manifest features of the behavior at the values of
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Fig. 13. The same as in Fig. 7, but for J JNN � �0 8 1. | |.
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Fig. 14. The same as in Fig. 8, but for J JNN � �0 8 1. | |.
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Fig. 15. The same as in Fig. 9, but for J JNN � �0 8 1. | |.
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Fig. 16. Lowest energies with the specified value of the total spin

S of spin-1/2 chain fragments consisting of N � �12 16 spins with

J1 1� � for the cases: J2 1� � , JNN � 0 25. , N �12 (1), N �14 (2),

N �16 (3); J2 12� � . , JNN � 3 11/ , N �12 (4), N �14 (5), N �16

(6); J2 15� � . , JNN � 0 3. , N �12 (7), N �14 (8), N �16 (9).



the magnetization per spin equal to approximately 0.08,

0.16, 0.25, and/or 0.34. We performed calculations for

J JNN � �2 5 1. | | (not shown here), and they also reveal ad-

ditional features, clearly demonstrating magnetic pla-

teaux at approximately 0.16 of the magnetization per

spin. Those features in the behavior of the magnetization

are followed, naturally, by the features in the magnetic

field behavior of the magnetic susceptibility and specific

heat at low temperatures at the same values of the mag-

netic field, at which features of the magnetization take

place. It is not clear, however, whether all those addi-

tional field-induced features are related to real quantum

phase transitions, or they are connected with the fi-

nite-size effects. At least, most of such a features are re-

produced in all performed calculations (up to 18 spins).

Obviously, additional plateaux in the magnetization be-

havior imply additional bands of low lying excitations of

the considered chain, and, therefore, our mean field like

analysis, based on two bands for magnetic excitations, is,

probably, limited to relatively small values of NNN inter-

actions.

We also performed calculations of the ground state

magnetization of chains, containing 14, 16, and 18 spins

using the Davidson’s method. The results of calculations

with periodic boundary conditions for the cases with

J NN � 0 3. with J 1 1� , J 2 1 2� . , and J 1 1� � , J 2 1 2� � . , are

given in Figs. 17 and 18, respectively. One can see the

qualitative agreement between these calculations and the

ones, using the exact diagonalization scheme.
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Fig. 17. The magnetization of the chain consisting of 14 (1),

16 (2), and 18 spins 1/2 (3) with antiferromagnetic alternating

NN interactions and antiferromagnetic NNN couplings as a

function of the magnetic field at T � 0 calculated using

Davidson’s method.
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Fig. 18. The same as in Fig. 17, but for the chain with ferromag-

netic alternating NN and antiferromagnetic NNN interactions.
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Fig. 19. The magnetization of the spin-1/2 chain with anti-

ferromagnetic alternating NN (J1 1� , J2 12� . ) interactions and

antiferromagnetic NNN couplings as a function of the mag-

netic field at low temperatures for the isotropic case, and for

the weak easy-axis and easy-plane magnetic anisotropy. The

notations are as follows. For JNN � 0 3. the isotropic case (1);

the easy-axis case (2); the easy-plane case (3). For JNN � 0 8.

the isotropic case (4); easy-axis case (5); the easy-plane case

(6).
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Fig. 20. The same as in Fig. 19 (with the same notations), but

for the spin chain with ferromagnetic alternating NN interac-

tions (J1 1� � , J2 12� � . ).



5. Magnetic anisotropy

Figures 19 and 20 show the behavior of the low-tem-

perature (T J� 0 1 1. | |) magnetization as a function of H

for the model with J 1 1� , J 2 1 2� . and J 1 1� � , J 2 1 2� � . ,

respectively, for J NN � 0 3 0 8. , . , for the case of a weak

uniaxial magnetic anisotropy, the axis of which is di-

rected along the magnetic field (the data are presented

for the isotropic case, and for the easy-axis and

easy-plane cases, ( ) / ., , , , , ,J J JNN
z

NN NN1 2 1 2 1 2 0 1� � � . One

can see that the weak magnetic anisotropy of any sign

(easy-axis or easy-plane) does not produce drastic dif-

ferences, comparing to the isotropic case.

6. Concluding remarks

In conclusion, motivated by recent experiments on

quasi-one-dimensional quantum spin systems, we have

studied the one-dimensional model, in which the alterna-

tion of the exchange interactions between neighboring

spins is accompanied by the next-nearest neighbor spin

exchange (zig-zag spin ladder with the alternation). The

model permitted to obtain thermodynamic characteristics

of the considered quantum spin chain in the mean-field

like approximation. The most important behavior of the

model is in the ground state. Depending on the strength of

the NNN interactions, the model manifests either the

spin-gapped behavior of low-lying excitations at low

magnetic fields, or the ground state ferrimagnetic order-

ing with gapless low-lying excitations, or the incommen-

surate magnetic phase. The system undergoes second or-

der or first order quantum phase transitions, governed by

the external magnetic field, NNN coupling strength (the

later can be caused by an external or internal pressure),

and the degree of the alternation. Hence, on the one hand,

NNN spin–spin interactions in a dimerized quantum spin

chain can produce a spontaneous magnetization. On the

other hand, for quantum spin chains with a spontaneous

magnetization, caused by NNN spin–spin couplings, the

alternation of NN exchange interactions can be the reason

for destroying of that magnetization and the onset of a

spin gap for low-lying excitations. The weak uniaxial

magnetic anisotropy does not affect the main features of

the thermodynamic characteristics of the spin chain

(zig-zag ladder). Alternating NN interactions produce a

spin gap between two branches of low-energy excitations,

and the NNN interactions yield asymmetry of dispersion

laws of those excitations, with possible minima, corre-

sponding to incommensurate structures in the chain. It is

interesting to notice that two branches of magnetic excita-

tions, with the lowest branch having minima at incom-

mensurate wave vectors, cf. Figs. 4 and 5, were recently

observed in inelastic neutron scattering experiments on a

quasi-one dimensional compound Li 2CuO 2 at tempera-

tures, higher than the N�el temperature [25]. In that com-

pound it is believed that intra-chain ferromagnetic NN

coupl ing between spins is accompanied by the

antiferromagnetic NNN coupling.

Our numerical exact diagonalization results have

shown that the mean field like approximation correctly

reproduces the features of the behavior of spin chains

with alternating nearest neighbor and next-nearest neigh-

bor interactions for the ferromagnetic NN couplings and

alternating in sign NN exchange constants, if the strength

of the NNN interaction is weak enough. On the other

hand, for large values of the NNN coupling, especially for

antiferromagnetic interactions in the chain, the mean field

apprioximation cannot reproduce the important features

of the behavior of such spin chains (zig-zag ladders) in

high magnetic fields, which produce additional bands of

excitations, and, as a consequence, additional quantum

phase transitions in the magnetic field.
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