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than the corresponding energy gaps for any set of the crystal parameters.
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1. Introduction

The study of the quasione-dimensional semiconduc-

tors with the cylindrical symmetry became an urgent

problem as soon as investigations of semiconducting

nanotubes had been launched. One of the most important

trends of research in this field is the study of optical spec-

tra of such systems, which should include the exciton

contributions [1–9]. Evidently, the quasione-dimensional

large-radius exciton problem can be reduced to the 1D

system of two quasi-particles with the potential having

Coulomb attraction tail. Due to the parity of the interac-

tion potential the exciton states should split into the odd

and even series. In [10] we show that for the bare and

screened Coulomb interaction potentials the binding en-

ergy of even excitons in the ground state well exceeds the

energy gap (in the same work we also discuss the factors,

which prevent the collapse of single-electron states in iso-

lated semiconducting single-walled carbon nanotubes

(SWCNTs). But the electron-hole (e-h) interaction poten-

tial and so the corresponding exciton binding energies

may noticeably depend on the electron and hole charge

distributions. So it is worth to ascertain whether the effect

of seeming instability of single-electron states near the

gap is inherent to the all quasione-dimensional semicon-

ductors in vacuum or it maybe takes place only in

SWCNTs for the specific localization of electrons (holes)

at their surface and weak screening by the bound elec-

trons. That is why we consider here the simplest model of

the quasione-dimensional semiconductor with the cylin-

drical symmetry, namely the linear crystal with two atoms

in the unit cell. The electrons (holes) in this crystal are

simply localized at its axis.

The aim of this work is only a qualitative analysis of

the mentioned effect. For study of electron structure of

concerned 1D crystal we apply here the zero-range poten-

tials (ZRPs) method [11,12] (see Sec. 2). The matter is

that results on the band structure and single-electron

states, obtained by this method for SWCNTs in [13,14],

appeared to be in good accordance with the experimental

data and results of ab initio calculations related to the

band states. For certainty we use the linear crystal param-

eters (the electron bare mass, lattice parameters) taken

from works on nanotubes [13,14]. In Sec. 3 we obtain the

e-h bare interaction potential and that screened by the

crystal band electrons, and then the large-radius exciton

spectrum for the linear crystal in vacuum. All these data

are used in Sec. 4, where we present results of calcula-

tions for the crystal with different lattice periods (it also

means different band structures). As it turns out, the bind-

ing energy of even excitons in the ground state well ex-

ceeds ( � �2 5 times) the energy gap for the linear crystal

in vacuum and the screening by the crystal band electrons

is negligible. Note, that this result was obtained within

the framework of exactly solvable ZRPs model with fea-

sible parameters. Therefore, the mentioned instability ef-
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fect may take place not only for the considered simplest

case, but, most likely, also for other quasione-dimen-

sional isolated semiconductors in vacuum.

2. Single-electron band structure and eigenfunctions

of band electrons

We have obtained the single-electron states in the lin-

ear crystal using the ZRPs method [11,12]. The main

point of this method is that the interaction of an electron

with atoms or ions of a lattice is described instead of some

periodic potentialV ( )r by the sum of Fermi pseudo-poten-

tials [11]
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The electron wave functions satisfy at that the Schr�ding-

er equation for a free particle for r r� l . Therefore we seek

them for the linear crystal in the form:
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where indices A and B denote two monatomic sublattices

of the diatomic lattice,

�n
A

n
A� �| |r r and �n

B
n
B� �| |r r ,

n numbers all the sublattices points, � � 2m Eb | | / �,

E � 0 is the electron energy and mb is the bare mass. For

certainty, following [13,14] we take from now on

m mb e� 0 415. and the ZRP parameter � � 2m Eb | | /ion �,

where E ion is the ionization energy of an isolated carbon

atom. By [13,14], with these � and mb ZRPs method re-

produces single-electron spectra of such quasione-dimen-

sional structures as SWCNTs within an accuracy of exist-

ing experiments. One can take infinite limits for the series

in (1) even for the finite crystal, because terms of these se-

ries decrease exponentially with increasing of n.

According to the ZRPs method the wave functions (1)

should satisfy the following boundary conditions at the

all sublattices points:
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here i A B� { , } according to each sublattice.

Further we suppose that the linear crystal lies along the

z-axis, thus r en
A

znd� and r en
B

znd a� �( ) , where e z is

the z-axis unit vector, a is the distance between atoms in

the unit cell of the crystal and d a� 2 is the distance be-

tween the neighbour atoms in each sublattice. Note, that

d a� 2 corresponds to the metallic monatomic crystal and

for the case d a� 2 the smallest distance between atoms in

the crystal is d a a� � .

Substituting (1) to (2) and applying the Bloch theorem

(A A iqdnn � exp ( ), B B iqdnn � exp ( ), q is the electron

quasi-momentum) we get two equations for amplitudes

A B, :
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for each real j � 2.

From (3) we get two equations, which define the band

structure of the crystal:

Q q Q q1 1 2 1 0( , ) | ( , )|� �� � , (7)

Q q Q q1 2 2 2 0( , ) | ( , )|� �� � . (8)

Equation (7) defines the conduction band and equation

(8) defines the valence band (see Sec. 4, Fig. 1). So the

electron and hole effective masses can be simply obtained

from (7) and (8), respectively.

Further, using the Hilbert identity for Green's function

of the 3D Helmholtz equation, we obtain the normalized

wave functions (1):
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where L is the crystal length and A q( , )� is the normaliza-

tion factor:
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3. Exciton spectrum and eigenfunctions. Bare and

screened e–h interaction

Using the same arguments as in the 3D case one can

show (see, for example [10]), that the wave equation for

the Fourier transform # of envelope function in the wave

packet from products of the electron and hole Bloch func-

tions, which represents a two-particle state of large-ra-

dius rest exciton in a (quasi)one-dimensional semicon-

ductor with period d, is reduced to the following 1D

Schr�dinger equation:

� # � # � # � � �� � � �
�

2
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where $ is the e–h reduced effective mass and V z( ) is the

e–h interaction potential:
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Here u c v q, ; , ( )� r are the Bloch amplitudes of the Bloch

wave functions 	 � �c v q c v qiqz u, ; , , ; ,( ) exp ( ) ( )r r� of the

conduction and valence band electrons of the linear crys-

tal, respectively. Using the actual localization of the

Bloch amplitudes at the crystal axis, after several Fourier

transformations and simplifications we adduce the e-h in-

teraction potential to the following form:
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where J is the Bessel function of the first kind and r1 (r2)

is the radius of the electron (hole) wave functions trans-

verse localization
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where r2D is the transverse component of the radius-vec-

tor, q d� ! / and � �� � !� 1 2, / d correspond to the conduc-

tion and valence bands edges at the energy gap (according

to (7) and (8), respectively). Equation (10) with the poten-

tial given by (11) defines the spectrum of large-radius

exciton in the linear, diatomic crystal if the screening ef-

fect by the crystal electrons is ignored. Actually, the

screening of the potential (11) by the band electrons is in-

significant.

Indeed, following the Lindhard method (so-called

RPA), to obtain the e–h interaction potential ,( )r ,

screened by the electrons of linear lattice, let us consider

the Poisson equation:

� -, ! � �( ) ( ( ) ( ))r r r� �4 ext ind (12)

where r is the radius-vector, �ext ( )r is the density of extra-

neous charge and � ind ( )r is the charge density induced by

the extraneous charge.

By (12) the screened e–h interaction potential may be

written as:
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where G( , ' ) / ( | ' | )r r r r� �1 4! is Green's function of the

3D Poisson equation.

Let E q0( ) and 	 � �, ,( ) exp ( ) ( )q qiqz u0 0
r r� be the band

energies and corresponding Bloch wave functions of the

crystal electrons and E q( ), 	 �, ( )q r be those in the pres-

ence of the extraneous charge. Then
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where f is the Fermi–Dirac function. Using the trans-

verse localization of the Bloch wave functions near the

crystal axis, we get in the linear in , approximation:
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where E E q E qg q q c v; , ' ( ) ( ' )� � . Here and further ,( )z is

the e–h interaction potential averaged in E2 over the re-

gion of the Bloch wave functions transverse localization

and over the lattice period d along the crystal axis.
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Due to the periodicity of the Bloch amplitudes � ind

may be written as:
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and N is the number of unit cells in the crystal.

Further, after several transformations we obtain from

(13) and (16) the one-dimensional Fourier transform of

the potential ,:
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where , 0 is the Fourier transform of the averaged electro-

static potential induced by �ext and
~

( )K k0 is the modified

Bessel function of the second kind averaged over r2D and

r' 2D in the region of the Bloch wave functions transverse

localization in E2, namely
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In the long-wave limit we get:
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Using of the Schr�dinger equation for the orthogonal

Bloch wave functions 	 �, ( )q r yields
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Hence, in the long-wave limit the screened quasione-

dimensional electrostatic potential induced by a charge

e0, distributed with the density:
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According to equation (9) the dimensionless screening

parameter gd may be also written as:
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Note, that �1 and �2 are the implicit functions of q defined

by (7) and (8), respectively.

It appears, that gd calculated according to (22) for d

varying in the interval [ . , ]21 3a a are about 10 6� .

4. Discussion. Stabilization of single-electron states

Using Eqs. (7) and (8) we obtained the band structure

(see Fig. 1) and the electrons and holes effective masses

for the linear crystal of dimers for different values of the

ratio j d a� / of its period d and the distance a between at-

oms in dimers. Besides, using wave equation (10) and po-

tentials (11) and (20) we found the large-radius exciton

energy spectrum in the crystal for the bare e–h interaction

and e–h interaction screened by the bound electrons of the

crystal. We present here results for the crystal with

j 456789:;. Contrary to the single-band metallic crystal

with j � 2, the crystals with j � 2 are semiconductors with

band gaps varying from zero to the difference between the

electron levels in an isolated dimer. Particularly, the crys-
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tals with j � 2 001. and realistic values of a and � (as in

nanotubes and some 1D polymer chains) are narrow-gap

semiconductors, in which excitons may possess binding

energies about �10 meV, but the crystals with j � 2 1. are

already wide-gap ( �1eV) semiconductors with strongly

bound e–h pairs, and the crystals with j � 3 are almost flat

band semiconductors, but their electrons and holes at the

energy gaps (q d� ! / ) still have the finite effective

masses (these electrons and holes form the excitons in the

crystals). For certainty, the distance a we have chosen

equal to the graphite in-plane parameter 0 142. nm. The

ZRP interaction parameter � � �11 01 1. nm corresponds

to the ionization energy of an isolated carbon atom

( .E ion eV�11 255 ).

As one can see from table 1 the obtained from (22)

dimensionless screening parameter gd �� 1 for the all

considered values of j. So, it turns out that the screening

of the e–h interaction potential by the band electrons in

the linear, diatomic crystal may be ignored. This result

could be expected since the considered model of linear

crystal is close to that of the electron gas confined to a cy-

lindrical well. In the latter case, for which the separation

of the angular variables takes place, the states with differ-

ent quantum numbers m of the angular momentum play

the role of electron bands. Accordingly, the matrix ele-

ment | | / | |< � � =	 	c vz from (21) for the direct transitions

between bands with different m appears to be identically

equal to zero. This is why only the binding energies of

excitons with unscreened interaction potential are listed

in table 1.

To obtain estimates of the main linear crystal charac-

teristics we considered several limiting cases. In the case

of d a�� (or j �� 1) and a � const equations (7) and (8) can

be reduced to � � �� � �1 2 1 2 0, ,exp [ ] /� a a , thus bands be-

come flat (�1 2, do not depend on q) and the band gap tends

to the finite value ( / )( )�
2

2
2

1
22mb � �� (for a � = 0.142 nm

it is about 6.3 eV), hence the reduced effective mass and

exciton binding energy tend to infinity, while the exciton

r a d i u s r eexc � �
2 2/ $ t e n d s t o z e r o . T h e r e f o r e ,

the large-radius exciton theory is actually appropriate

( )r aexc �� for excitons in the linear, diatomic crystal only

when its period d runs the interval ( , . )2 2 4a a (e.g., rexc is

� 9a for j � 21. and � 2a for j � 2 4. ). If d � const, but

a 
 0, the conduction band moves to the region of posi-

tive energies and at some critical value of a disappears,

while the valence band shifts correspondingly to the re-

gion of deep negative energies.

Table 1 shows that the ground-state exciton binding

energies for the linear, diatomic crystals with any value of

the ratio j are greater than the corresponding energy gaps.

Note, that according to the same calculations, but with the

bare mass m mb e� , the ground-state exciton binding en-

ergy for the linear crystal in vacuum appears significantly

greater than the energy gap. We should note also, that the

ground-state binding energies of excitons in the linear

crystal with different periods d in vacuum, calculated us-

ing the 1D analogue of the Ohno potential [15] instead

of potential (11), remain greater than the corresponding

energy gaps. Particularly, for d a� 2 3. calculations with

the 1D unscreened Ohno potential with the energy

parameter U taken from [16] (U �11 3. eV) and [17]

(U �16 eV) give the ground-state exciton binding ener-

gies �0;even � 5 90. eV and �0 763; .even eV� , respectively,

while Eg � 3 31. eV (see table 1). Thus, all calculations
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Table 1. Band gaps Eg and reduced effective masses $ according to (7), (8); radii of the electrons and holes transverse localization r1 and r2,

respectively; screening parameter gd according to (22) and the exciton binding energies � of the even and odd series for the linear, diatomic

crystal according to equation (10) with potential (11) for different values of the ratio j d a� / .

j Eg , eV $ ( )me r
1

, nm r
2

, nm gd ( )10 6�
�0; ,even eV �1; ,odd eV �0;even /Eg

2.1 1.4422 0.041 0.070 0.0611 0.7235 –6.90 –0.5939 4.7845

2.3 3.3146 0.125 0.080 0.0569 2.4716 –8.9992 –2.0631 2.715

2.5 4.403 0.2199 0.088 0.0549 2.7036 –9.5352 –3.4812 2.1656

3 5.6281 0.5665 0.0994 0.0551 1.1206 –9.6588 –5.8421 1.7162
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–12

–14

–16
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q

E
,
eV

Fig. 1. The band structure of the linear crystal with parame-

ters: j � 2 1. (dashed line), j � 2 5. (dot-dashed line) and j � 3

(solid line); q in units of ! / d. The upper and lower bands cor-

respond to equation (7) and (8), respectively.



made on the base of solvable zero-range potentials model

indicate the instability of the single-electron states in the

vicinity of the energy gap with respect to the formation of

excitons. This might be a shortage of this model, but it is

worth mentioning that results obtained on one-particle

states in real 1D systems, like SWCNTs [13,14], within its

framework agree with existing experimental data in limits

of accuracy of the latter.

The stability of single-electron states of 1D semicon-

ductors with respect to the exciton formation in vacuum

can be explained by bringing multi-particle contributions

into the picture. With the advent of some number of

excitons in the quasione-dimensional crystal the addi-

tional screening appears, which is caused by a rather great

polarizability of excitons in the longitudinal electric

field. This collective contribution of born excitons into

the crystal permittivity returns the lowest exciton binding

energy �0;even into the energy gap and so blocks further

spontaneous transitions to the exciton states. To show this

let us consider the model of linear crystal immersed into

the gas of excitons with dielectric constant .exc confined

to the region of linear crystal carriers transverse localiza-

tion, namely: cylinder with radius r1 and axis coinciding

with that of linear crystal (from now on, for estimates, we

assume that electron and hole have the same transverse

localization radius). In this case it is easy to show that the

e–h interaction potential is given by:

,
! .

( )
sin ( / ) cos ( / )

z
e r

d

kd r kz r

k
� %

% �

�

 
16 2

1
2

2
1

2

2
1 1

4

0 exc

K k I k

k K k I k K k I k
dk1 1

0 1 1 0

( ) ( )

( ( ) ( ) ( ) ( ))
,

.exc �
�

�
��

�

�
�� (23)

where I i and K i are the modified Bessel functions of the

order i of the first and second kind, respectively. Further,

like in [18], we use the known elementary relation be-

tween the permittivity of exciton gas and its polarizability

� in the direction of linear crystal

. !� �exc � � �
< =

��1 4 2 2 0
2

0

,
| | | |

,e n k

kk

> >r

� �

where n is the bulk concentration of excitons, >0 and �0

are the exciton eigenfunction and binding energy, which

correspond to the ground state, and >k and �k are those,

which correspond to the all excited states of exciton.

Thus, the upper and lower limits for � are:

2 2

2

2

0 1
0 1

2
2

0 1
0

2e n e n

k

k
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e n2
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where >1 and �1 correspond to the lowest excited exciton

state. Hence, one can obtain the upper and lower limits for n:

.
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33
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, (24)

where each # is the component of Fourier transform of the

corresponding exciton envelope function, it depends only

on the distance z between the electron and hole. At that,

#0 is the even solution of (10) with potential (23), which

corresponds to the exciton ground state and satisfies the

boundary condition # �' ( )0 0, and #1 is the odd solution of

the same equation, which corresponds to the lowest ex-

cited exciton state and satisfies the boundary condition

# �( )0 0.

Varying .exc in (23) substituted into the wave equation

(10) one can match �0;even to the forbidden band width.

Further, �1;odd can be obtained from the same equation

with the fixed .exc and with the corresponding boundary

condition. All these magnitudes allow to calculate from

(24) the rough upper and lower limits for the critical con-

centration of born excitons nc , which is sufficient to re-

turn �0;even into the energy gap. Further, knowing nc we

can calculate the shift of the forbidden band edges, which

move apart due to the transformation of some single-elec-

tron states into excitons. This results in the enhancement

of energy gap

�
!

$
E

n
g

c
�

( ~ )�
2

2
(25)

like in [19] and [20]. Here ~n n rc c� ! 1
2 is the linear critical

concentration of excitons, and r1 is the radius of electron

wave functions transverse localization at the linear crys-

tal axis.

In accordance with (24) the described model yields
~nc � �180 1$m ( � 3% of the atoms number in the crystal)

and � �400 1$m ( � 7%) for the linear crystal with j � 2 1.

and j � 2 3. , respectively, while by (25) the corresponding

�Eg are � 300 meV and � 500 meV in the same order.

Here, however, we should mention that for SWCNTs both

the measured in [19,20] and estimated in the same manner

[18] values of �E Eg g/ appeared to be two–four times

less.

Note, finally, that the instability of the single-electron

states weakens or disappears for linear crystals immersed

into dielectric media. As it was shown in [9] by the exam-

ple of the poly-para-phenylenevinylene 1D chain or in

[16,17,21] by the example of SWCNTs the environmental

effect may substantially decrease the excitons binding en-

ergies. Indeed, for the linear crystal in media even with
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permittivity about . � 2–3 (e.g., like in [16] or [17]) the

ground-state exciton binding energy becomes smaller

than the energy gap.
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