Магнитоэлектрические состояния TbMnO₃ в магнитных полях различных направлений

И.Е. Чупис

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина E-mail: chupis@ilt.kharkov.ua

Статья поступила в редакцию 29 ноября 2007 г.

Проведен феноменологический анализ магнитоэлектрических диаграмм сегнетоантиферромагнетика TbMnO₃ в области температур, где редкоземельная подсистема парамагнитная. Показано, что объяснение поведения электрической поляризации в магнитных полях разных направлений невозможно только в рамках *A*-конфигурации спинов марганца, и следует учитывать более слабые *G*- и *C*-состояния. Магнитоэлектрические диаграммы свидетельствуют о более сложной структуре спинов типа «косой крест». Доказано, что так называемый «поляризационный флоп» в магнитном поле в TbMnO₃ не является переходом, подобным спин–флопу в магнетиках.

Проведено феноменологічний аналіз магнітоелектричних діаграм сегнетоантиферомагнетика TbMnO₃ в області температур, де рідкоземельна підсистема є парамагнітною. Показано, що пояснення поведінки електричної поляризації у магнітних полях різних напрямків неможливо тільки в рамках *A*-конфігурації спінів марганцю, і треба враховувати слабкі *G*- і *C*-стани. Магнітоелектричні діаграми свідчать о більш складній структурі спінів типу «косий хрест». Доведено, що так званий «поляризаційний флоп» у магнітному полі у TbMnO₃ не є переходом, який схожий з спін-флопом у магнетиках.

РАСS: 75.80.+q Магнитомеханические и магнитоэлектрические эффекты, магнитострикция.

Ключевые слова: магнитоэлектрические диаграммы, сегнетоантиферромагнетик TbMnO₃, конфигурации спинов Mn.

В орторомбическом антиферромагнетике TbMnO₃ недавно открыт колоссальный магнитоэлектрический (МЭ) эффект: изменение диэлектрической постоянной на 10% и переориентация электрической поляризации в магнитном поле порядка нескольких тесла [1]. Манганит тербия имеет при температурах ниже $T_N \approx 42~{\rm K}$ синусоидально модулированную вдоль оси Yантиферромагнитную (АФ) структуру A_v с вектором модуляции k_v ≈ 0,295b* [2]. Ниже температуры $T_1 \approx 28$ К появляется еще одна компонента вектора антиферромагнетизма вдоль оси Z и электрическая поляризация вдоль той же оси [1,3]. В магнитном поле порядка нескольких тесла, направленном вдоль оси У, электрическая поляризация P_z исчезает и появляется статическая поляризация P_x вдоль оси X («magnetic– field-induced electric polarization flop» [1]). Впоследствии было экспериментально изучено поведение в этом

соединении всех компонент электрической поляризации в магнитных полях различных направлений (вдоль осей *a*, *b*, *c*, т.е. *X*, *Y*, *Z*) [4]. Так, не было обнаружено сколько-нибудь заметной спонтанной или индуцированной магнитными полями электрической поляризации вдоль оси *Y* (рис. 1,*г*-*е*). Электрическая поляризация вдоль оси Х возникала лишь в магнитном поле вдоль оси У, большем нескольких тесла (рис. 1,а-в). Магнитные поля такой величины вдоль осей Y и Z «отключали» (уничтожали) электрическую поляризацию вдоль оси Z (рис. 1,3,и). Если последние из упомянутых эффектов (исчезновение электрической поляризации Р₇ в достаточно сильных магнитных полях H_v , H_z) можно объяснить спин-флоп переходом [5], то остальные МЭ диаграммы на рис. 1 нуждаются в объяснении. Их анализ является целью настоящего сообщения.

Puc. 1. Температурные зависимости электрической поляризации в различных магнитных полях (до 9 Тл) вдоль осей *a*, *в* и *с* в TbMnO₃ [4].

Проведен феноменологический анализ поведения вектора электрической поляризации манганита тербия в магнитных полях различных направлений в области температур, где редкоземельная подсистема парамагнитна. Показано, что для объяснения экспериментальных данных необходимо кроме основной A-конфигурации учитывать присутствие более слабых G- и C-конфигураций, и наблюдение электрической поляризации вдоль оси X свидетельствует о более сложной, чем A, магнитной структуре типа «косой крест». Показано, что наблюдаемый «magnetic-fieldinduced electric polarization flop» в TbMnO₃ не является ориентационным переходом, как в магнетиках.

Так как МЭ эффекты (рис. 1) появляются в области температур, где тербиева подсистема парамагнитна (температура упорядочения спинов тербия $T' \sim 7$ К), то в дальнейшем будем считать ответственными за магнитные свойства ионы марганца, которые подмагничивают подсистему тербия. В элементарной ячейке орторомбического TbMnO₃ (пространственная группа *Pbnm*) содержится четыре иона Mn³⁺ в следующих позициях [2]:

 Mn^{3+} : 1(1/2, 0, 0), 2(1/2, 0, 1/2), 3(0, 1/2, 1/2), 4(0, 1/2, 0).

Магнитные состояния обозначаются символами A , G , C и M , где

$$\mathbf{A} = \mathbf{M}_{1} - \mathbf{M}_{2} - \mathbf{M}_{3} + \mathbf{M}_{4},$$

$$\mathbf{G} = \mathbf{M}_{1} - \mathbf{M}_{2} + \mathbf{M}_{3} - \mathbf{M}_{4},$$
 (1)

$$\mathbf{C} = \mathbf{M}_{1} + \mathbf{M}_{2} - \mathbf{M}_{3} - \mathbf{M}_{4},$$

$$\mathbf{M} = \sum_{i}^{4} \mathbf{M}_{n}.$$

Преобразования магнитных векторов (1), электрической поляризации **Р** и тензора деформации u_{ik} под действием элементов симметрии центросимметричной группы *Pbnm* представлены в табл. 1, где строчные символы магнитных векторов относятся к тербиевой подсистеме.

Таблица 1. Неприводимые представления группы P_{bnm}

Γ_i	Ι	2 _{1x}	2 _{1<i>y</i>}	Компоненты
Г1	+1	+1	+1	$A_{\chi}, G_{\gamma}, C_{Z}, c_{Z}, u_{\chi\chi}, u_{\chi\gamma}, u_{ZZ}$
Г2	+1	+1	-1	$M_x, C_y, G_z, m_x, c_y, u_{yz}$
Г3	+1	-1	+1	$A_z, C_x, M_y, m_y, c_x, u_{XZ}$
Г4	+1	-1	-1	$A_y, G_x, M_z, m_z, u_{xy}$
Γ_5	-1	+1	+1	a_x, g_y
Г6	-1	-1	-1	a_y, g_x, P_z
Γ7	-1	-1	+1	a_z, P_y
Γ_8	-1	+1	-1	g_Z, P_X

Нейтронографические исследования свидетельствуют об *А*-типе модулированной магнитной структуры в манганите тербия [2]. Для существования сегнетоэлектрического (СЭ) упорядочения необходимо наличие в термодинамическом потенциале инвариантов с первой степенью электрической поляризации. Поскольку группа симметрии кристалла центросимметрична, а подсистема тербия неупорядочена, то, как следует из таблицы неприводимых представлений, при модуляции вектора **А** вдоль оси *Y* возможны такие инварианты с первой степенью поляризации, квадратичные по компонентам **А**:

$$P_{x} \frac{\partial A_{y}}{\partial y} A_{x}, P_{x} \frac{\partial A_{x}}{\partial y} A_{y}, P_{y} \frac{\partial A^{2}}{\partial y}, P_{z} \frac{\partial A_{y}}{\partial y} A_{z}, P_{z} \frac{\partial A_{z}}{\partial y} A_{y}.$$
(2)

Вид инвариантов говорит о том, что сегнетоэлектрическое состояние существует только в модулированной магнитной фазе. Механизмы появления спонтанной поляризации P_z ниже T₁ при переходе в неколлинеарное АФ модулированное состояние [3] и ее поведения в магнитных полях H_v и H_z [5] обусловлены неоднородной МЭ энергией (последние два слагаемых в (2)). Однако в рамках А-состояния (ферромагнитное упорядочение спинов в плоскости (X,Y) и АФ между плоскостями) нельзя понять появление $P_{\chi} \neq 0$ после спин-флопа в поле H_y , когда $A_y = 0.$ (рис. 1,6). Следовательно, магнитная структура TbMnO3 более сложная, и следует учитывать возможную примесь G-и С-конфигураций. Нейтронография последних лет свидетельствует об одновременном появлении при $T < T_N$ кроме значительных A_v -пиков более слабых G_v- [1,6] и еще более слабых C_x- либо C_z-пиков [6] с тем же вектором модуляции $k_v = k$. Проведем последовательное феноменологическое рассмотрение МЭ диаграмм на рис. 1.

Магнитную часть функционала Гинзбурга–Ландау с учетом разных спиновых конфигураций запишем в виде

$$F_{m} = V^{-1} \int \left\{ \frac{1}{2} (a_{1}\mathbf{A}^{2} + a_{2}\mathbf{G}^{2} + a_{3}\mathbf{C}^{2}) + \frac{1}{4} u(\mathbf{A}^{4} + \mathbf{G}^{4} + \mathbf{C}^{4}) + \frac{1}{2} \gamma [(\partial_{y}\mathbf{A})^{2} + (\partial_{y}\mathbf{G})^{2} + (\partial_{y}\mathbf{C})^{2}] + \frac{1}{4} u(\mathbf{A}^{4} + \mathbf{G}^{4} + \mathbf{C}^{4}) + \frac{1}{2} \gamma [(\partial_{y}\mathbf{A})^{2} + (\partial_{y}\mathbf{G})^{2} + (\partial_{y}\mathbf{C})^{2}] + \frac{1}{4} u(\mathbf{A}^{4} + \mathbf{G}^{4} + \mathbf{C}^{4}) + \frac{1}{2} \gamma [(\partial_{y}\mathbf{A})^{2} + (\partial_{y}\mathbf{G})^{2} + (\partial_{y}\mathbf{C})^{2}] + \frac{1}{4} u(\mathbf{A}^{4} + \mathbf{G}^{4} + \mathbf{C}^{4}) + \frac{1}{2} \gamma [(\partial_{y}\mathbf{A})^{2} + (\partial_{y}\mathbf{G})^{2} + (\partial_{y}\mathbf{C})^{2}] + \frac{1}{4} u(\mathbf{A}^{4} + \mathbf{G}^{4} + \mathbf{C}^{4}) + \frac{1}{2} \gamma [(\partial_{y}\mathbf{A})^{2} + (\partial_{y}\mathbf{G})^{2} + (\partial_{y}\mathbf{C})^{2}] + \frac{1}{2} (w_{1}A_{z}^{2} + w_{2}G_{x}^{2} + w_{3}C_{y}^{2}) + d_{1}A_{y}M_{z} + d_{2}A_{z}M_{y} + d_{3}G_{z}M_{x} + \frac{1}{2} u(\mathbf{A}^{2}\mathbf{A}_{z}^{2}\mathbf{C}_{x} + v_{2}G_{y}\mathbf{C}_{z} + v_{3}A_{x}G_{y} - \mathbf{M}\mathbf{H} + \frac{1}{2} (B_{1}M_{x}^{2} + B_{2}M_{y}^{2} + B_{3}M_{z}^{2}) + \frac{1}{2} \lambda_{1}(\mathbf{A}\mathbf{M})^{2} + \frac{1}{2} \lambda_{2}(\mathbf{G}\mathbf{M})^{2} + \frac{1}{2} \lambda_{3}(\mathbf{C}\mathbf{M})^{2} + \frac{1}{2} (\lambda_{1}'\mathbf{A}^{2} + \lambda_{2}'\mathbf{G}^{2} + \lambda_{3}'\mathbf{C}^{2})\mathbf{M}^{2} \right\} dV.$$

$$(3)$$

В функционал (3) включены лишь основные необходимые для дальнейшего анализа члены, относящиеся лишь к марганцевой подсистеме, так как рассмотрены температуры, при которых тербиева подсистема парамагнитна и подмагничивается только спинами марганца. Так, например, возможна модуляция g_x за счет инварианта $g_x \partial G_z / \partial y$ и т.п. Обменно-модулированная АФ структура в манганите тербия возникает при $T < T_N$ с вектором модуляции $k_y = k$, $k^2 = -\gamma/2\alpha$, где $\gamma < 0, \alpha > 0$. Так как векторы АФ А и G направлены вдоль оси Y, то постоянные анизотропии w_1, w_2 положительны. Поскольку модулированные конфигурации $A_y, G_y, C_{x(z)}$ возникают одновременно [6], то можно положить $(a_i - a_c) = \xi_i (T - T_N), \ \xi_i > 0, \ i = 1, 2, 3, a_c = \alpha k^4.$

Полный функционал энергии кроме магнитного (3) содержит электродипольную энергию $F_e = \chi P^2/2$ и энергию МЭ взаимодействия, в которой мы будем ограничиваться лишь линейными по электрической поляризации членами. Конкретный вид МЭ энергии будет приводиться ниже при анализе поведения различных компонент **Р** в магнитных полях разной ориентации.

Сразу отметим, что поскольку электрическая поляризация P_y вдоль оси Y может возникать лишь за счет МЭ инвариантов вида $P_y \partial_y S_i R_k$, где S_i, R_k — компоненты АФ векторов, преобразующихся по одному не-

приводимому представлению (см. таблицу), то P_y модулирована и ее среднее значение равно нулю. Этот вывод находится в согласии с экспериментом (рис. 1,*г*-*е*).

Электрическая поляризация *P_x* вдоль оси *X*

В отсутствие магнитного поля электрическая поляризация P_x вдоль оси X согласно диаграммам рис. 1 во всем интервале температур $T' < T < T_N$ близка к нулю. Нейтронография выявила АФ компоненты A_y , G_y , A_z $(T < T_1)$, C_x (или C_z). Малую компоненту A_x индуцирует G_y вследствие наличия инварианта $v_3A_xG_y$ в (3). Согласно данным табл. 1, МЭ инварианты с первой степенью P_x в этом случае следующие:

$$P_{x}A_{y}\frac{\partial G_{y}}{\partial y}, P_{x}G_{y}\frac{\partial A_{y}}{\partial y}, P_{x}C_{z}\frac{\partial A_{y}}{\partial y}, P_{x}A_{y}\frac{\partial C_{z}}{\partial y},$$

$$P_{x}A_{x}\frac{\partial A_{y}}{\partial y}, P_{x}A_{y}\frac{\partial A_{x}}{\partial y}.$$
(4)

Наибольшую величину имеют первые два инварианта. В модулированном состоянии

$$A_{y} = A_{1} \cos ky, \ G_{y} = G_{1} \sin ky,$$
 (5)

эти МЭ инварианты индуцируют результирующую поляризацию $P_x \sim kA_1G_1$, которая из-за малости G значительно меньше спонтанной поляризации вдоль оси Z, что соответствует эксперименту. Амплитуды модуляций A_1 , G_1 и значение k находим подстановкой выражений (5) в (3) и последующей минимизацией функционала (3) по амплитудам и волновому вектору модуляции [7]. Рассмотрим разные направления магнитного поля.

1. H||X. Так как основной вклад в энергию дает *А*-конфигурация, приближенное выражение для намагниченности следующее:

$$M_x \cong \frac{H_x}{B_1 + \lambda_1' A^2} \,. \tag{6}$$

В дальнейшем мы предполагаем величину магнитного поля не близкой к полю перехода в парамагнитное состояние, которое больше, чем 14 Тл [4], т.е. считаем $B_1 >> \lambda'_1 A^2$, $M_x \approx H_x B_1^{-1} = h_x$.

В коллинеарной фазе ($T_1 < T < T_N$) значения амплитуд таковы [5] (в приводимых далее формулах для амплитуд не учитываются слабоферромагнитные слагаемые в (3) с коэффициентами d_i):

$$A_1^2 = \frac{4}{3u} (L_0 - \lambda'_1 h_x^2), \ L_0 = a_c - a_1 > 0,$$

$$G_1^2 = \frac{4}{3u} (G_0 - \lambda'_2 h_x^2), \ G_0 = a_c - a_2 > 0.$$
(7)

В неколлинеарной фазе $(T' < T < T_l)$, где кроме A_y отлична от нуля компонента $A_z = A_2 \sin ky$, амплитуда A_1 имеет другую величину [5]:

$$A_1^2 = (2u)^{-1}(L_1 - 2\lambda'_1 h_x^2), \ L_1 = -2(a_1 - a_c) + w_1 > 0.$$
(8)

Величина $P_x \sim A_1G_1$ с увеличением магнитного поля убывает при $\lambda'_1 > 0$, $\lambda'_2 > 0$, возрастает при отрицательных λ'_1 , λ'_2 и может вести себя немонотонно, если знаки λ'_1 , λ'_2 разные. Дальнейший анализ (см. ниже) поведения электрической поляризации P_z в поле H_x показывает, что $\lambda'_1 > 0$. На рис. 1,*a* заметно слабое возрастание P_x в магнитном поле, меньшем 9 Тл. Это возможно при разных знаках λ'_1 , λ'_2 , следовательно, $\lambda'_2 < 0$. Возрастание величины P_x в неколлинеарной фазе будет иметь место в поле

$$h_x < \overline{h} = [(2\lambda'_1G_0 + \lambda'_2L_1) / 4\lambda'_1\lambda'_2]^{1/2}$$

при условии $(2\lambda'_1G_0 + \lambda'_2L_1) < 0$. Поскольку $G_0 << L_1$, то при $\lambda'_1 \sim |\lambda'_2|$ значение $\overline{h} \approx (L_1 / 4\lambda'_1)^{1/2}$ находится вблизи поля перехода в парамагнитную фазу $h' = (L_1 / 2\lambda'_1)^{1/2}$. Наличие компоненты $A_x \neq 0$ означает возможность спин-флопа в поле H_x .

При спин-флоп переходе в поле H_x поляризация меняется вследствие наличия в (4) линейной по A_x МЭ энергии, но по-прежнему ее величина $P_x \sim A_1G_1$. Измерения в более сильных полях (H > 10 Тл, рис. 5,d [4]) показывают возрастание P_x , которое, по-видимому, становится заметным вследствие малости $G_0 << L_1$ в полях $|\lambda'_2|h_x^2 \ge G_0$. Именно присутствие слабых искажений A-структуры обусловливает проявление P_x в эксперименте. Наблюдение поляризации означает, что после спин-флопа модуляция магнитной структуры сохраняется.

2. **Н** ||*Y*. В неколлинеарной фазе, предшествующей спин-флопу,

$$A_{1}^{2} = (2u)^{-1} [L_{1} - (3\lambda_{1} + 2\lambda'_{1})h_{y}^{2}] ,$$

$$G_{1}^{2} = \frac{4}{3u} [G_{0} - (\lambda_{2} + \lambda'_{2})h_{y}^{2}],$$
(9)

постоянная λ_1 положительна, так как параллельная восприимчивость при переходе в АФ состояние уменьшается (рис. 1,*b* [1]). Поэтому величина A_1 уменьшается с увеличением магнитного поля. При любом знаке величины ($\lambda_2 + \lambda'_2$) во всем рассматриваемом температурном интервале изменение P_x в полях $H_y < 5$ Тл незначительно (рис. 1,*б*). В поле порядка нескольких тесла в неколлинеарной фазе происходит спин-флоп. Если считать, что в результате этого перехода АФ вектора A_y и G_y переориентируются к оси Z, то к МЭ инвариантам (4) добавятся такие:

$$P_x A_z \frac{\partial G_z}{\partial y}, P_x G_z \frac{\partial A_z}{\partial y}, P_x C_x \frac{\partial G_z}{\partial y}, P_x G_z \frac{\partial C_x}{\partial y}, (10)$$

где $A_z = A_2 \sin ky$, $G_z = G_2 \cos ky$, $C_x = C_1 \sin ky$,

$$A_{2}^{2} = 4(3u)^{-1}(L_{2} - \lambda'_{1}h_{y}^{2}), \quad L_{2} = a_{c} - a_{1} - w_{1},$$

$$G_{2}^{2} = 4(3u)^{-1}(G_{0} - \lambda'_{2}h_{y}^{2}), \quad C_{1}^{2} = 4(3u)^{-1}(C_{0} - \lambda'_{3}h_{y}^{2}),$$

$$C_{0} = a_{c} - a_{3} > 0. \quad (11)$$

Поскольку после спин-флопа $P_x \neq 0$, т.е. АФ структура остается модулированной, то определяющий вклад в P_x дают первые два члена в (10), т.е. A-G конфигурация, хотя в сильных полях вклад от G-C конфигураций тоже может быть значительным. Так как $\lambda'_2 < 0$, то после спин-флопа величина $P_x \sim A_2G_2$ возрастает в полях $h_y^2 < L/2\lambda'_1\lambda'_2$ при $\lambda'_1G_0 + \lambda'_2L_2 = L < 0$.

Примесь других более слабых модулированных G-C конфигураций (последние два слагаемых в (9)) дает вклад в $P_x \sim G_2 C_1$ и возрастает с ростом магнитного поля при $\lambda'_3 < 0$ и $0 < \lambda'_3 < -\lambda'_2 C_0 / G_0$. Эксперимент (рис. 1, δ) свидетельствует о возрастании после спин-флопа первоначально очень малой величины поляризации с увеличением магнитного поля (рис. 3,d [1]).

Заметное возрастание $P_x(H_y)$, как и $P_x(H_x)$ после спин-флопа происходит вследствие присутствия слабой «примеси» G-, C-состояний, на которые магнитное поле действует сильнее, чем на А-состояние. До спин-флопа поляризация Р_х отлична от нуля, хотя и мала. Магнитное поле постепенно увеличивает ее величину, которая становится заметной в полях, больших поля спин-флопа. При этом поле спин-флопа H_v как бы «отключает» злектрическую поляризацию вдоль оси Z, после чего наблюдается поляризация вдоль оси Х значительно меньшей величины. Этот процесс не является поворотом вектора электрической поляризации от оси Z к оси X, т.е. именуемый в литературе «magnetic-field-induced electric polarization flop» — это не ориентационный переход, как в магнетиках. Наблюдение отличной от нуля электрической поляризации означает, что модуляционная структура после спин-флопа сохраняется.

При понижении температуры величина электрической поляризации возрастает (рис. 1,6). Легко убедиться, что такая зависимость следует из формул (11), где $L_2 = \xi_1(T'_N - T), T'_N = T_N - w_1/\xi_1, \qquad G_0 = \xi_2(T_N - T),$ $C_0 = \xi_3(T_N - T).$ Величина P_x растет с уменьшением температуры независимо от того, A - G или G - C конфигурации ее порождают.

3. **Н** ||*Z*. В этом случае по-прежнему главный вклад в P_x дают первые слагаемые в (4), $P_x \sim A_1G_1$. В неколлинеарной фазе значения амплитуд следующие:

$$A_{1}^{2} = (2u)^{-1}(L_{1} + \overline{\lambda}h_{z}^{2}), \ G_{1}^{2} = 4(3u)^{-1}(G_{0} - \lambda_{2}'h_{z}^{2}),$$
$$h_{z} = H_{z} / B_{3}, \ \overline{\lambda} = \lambda_{1} - 2\lambda_{1}'.$$
(12)

Эксперимент свидетельствует об уменьшении P_x после спин-флопа (рис. 1,e). После спин-флопа в поле H > 6 Тл магнитная структура перестраивается. Если $A_z \rightarrow A_y$ с сохранением модулированной структуры, то величина электрической поляризации по-прежнему определяется амплитудами (11). При переходе же в немодулированное состояние $P_x = 0$. Сохранение модулированной структуры после спин-флопа представляется маловероятным, поскольку, как следует из формул (12), уменьшение поляризации в магнитном поле требует выполнения условия $\overline{\lambda}G_0 - \lambda'_2 L_1 < 0$, $a\lambda'_2 < 0$, $L_1 >> G_0$.

Электрическая поляризация P_z вдоль оси Z

Электрическая поляризация P_z возникает в неколлинеарном магнитном состоянии за счет двух последних МЭ инвариантов в (2) [3]:

$$P_z \sim A_y \partial_y A_z - A_z \partial_y A_y . \tag{13}$$

Величина этой спонтанной электрической поляризации значительно больше значения P_x в магнитных полях $H_x < 10$ Тл.

1. Н || X. Величина поляризаци
и $P_z \sim A_1 A_2$, где A_1 дано формулой (8),

$$A_{2}^{2} = (2u)^{-1} (A_{0} - 2\lambda'_{1} h_{x}^{2}),$$

$$A_{0} = 2(a_{c} - a_{1}) - 3w_{1} = 2\xi_{1}(T_{l} - T),$$

$$T_{l} = T_{N} - 3w_{1} / 2\xi_{1},$$
(14)

Из (13) и (14) следует, что спонтанная поляризация вдоль оси Z вблизи перехода из неколлинеарной в коллинеарную магнитную фазу $P_0 \sim \sqrt{T_l - T}$. Такая зависимость видна на рис. 1,ж–и. Магнитное поле понижает температуру перехода в неколлинеарную фазу, $T_l \rightarrow T_l - \lambda'_1 h_x^2 \xi_1^{-1}$, этот сдвиг незначителен. Рисунок 1,ж свидетельствует о постепенном уменьшении значения поляризации с увеличением магнитного поля. Это значит (см. (8) и (14)), что постоянная $\lambda'_1 > 0$.

2. **Н** ||*Y*. В неколлинеарной фазе, предшествующей спин-флопу, имеем

$$A_{1}^{2} = (2u)^{-1} [L_{1} - (3\lambda_{1} + 2\lambda_{1}')h_{y}^{2}],$$

$$A_{2}^{2} = (2u)^{-1} (A_{0} + \overline{\lambda}h_{y}^{2}).$$
(15)

При $\overline{\lambda} < 0 P_z$ с увеличением поля может только убывать, что и наблюдается на рис. 1,3 в области, предшествующей резкому уменьшению электрической поляризации при спин-флопе. Значение поля спин-флоп перехода растет с повышением температуры [1,5]. После опрокидывания подрешеток $A_y = 0$ и в рассматриваемой модели $P_z = 0$. Поскольку модуляционная структура после спин-флопа остается, то отличное от нуля значение P_z возможно, например, за счет инвариантов $P_z A_z \partial_y G_x$, $P_z A_x \partial_y G_z$.

3. **H**||*Z*.В этом поле амплитуды до спин–флоп перехода таковы:

$$A_1^2 = (2u)^{-1} (L_1 + \overline{\lambda} h_z^2),$$

$$A_2^2 = (2u)^{-1} [A_0 - (3\lambda_1 + 2\lambda_1') h_z^2].$$
(16)

Магнитное поле такого направления понижает температуру перехода в неколлинеарную фазу заметнее, чем для других направлений поля (рис. 1,*u*). Из (16) имеем $T_l(H) = T_l - (3\lambda_1 + 2\lambda'_1)h_z^2 / 2\xi_1$.

Температурная зависимость поляризации в некоторых полях немонотонна. На рис. 1, *и* электрическая поляризация в поле 7 Тл при температуре ~17 К имеет максимум. Легко убедиться, что у величины $P_z \sim A_1 A_2$ — максимум при температуре

$$T_m = T_0 - (\lambda_1 + 2\lambda_1')h_z^2 / 2\xi_1, \ T_0 = T_N - w_1(2\xi_1)^{-1} > T_I \ .$$
(17)

Наблюдение максимума в неколлинеарной фазе возможно в полях

$$h^2 > h_m^2 = 2w_1(\lambda_1 + 2\lambda_1')^{-1},$$
 (18)

если h_m меньше поля спин-флопа. Это условие выполняется в поле H_z и, видимо, не выполняется в поле H_y , где величина поля спин-флопа меньше и максимума не наблюдается.

После спин-флопа $A_z = 0$ и $P_z = 0$ в A-конфигурации. Отличное от нуля малое значение P_z теперь возможно в A-C-состоянии, например, за счет инварианта $P_z A_y \partial_y C_x$, который приводил бы к некоторому возрастанию P_z в сильных полях. Однако поляризация в таких полях практически отсутствует (рис. 4,f [4]). Это свидетельствует о том, что после спин-флопа магнитная структура является немодулированной. Манганит тербия после спин-флопа в поле H_z переходит в параэлектрическое и слабоферромагнитное состояние (A_y, M_z) .

Выводы

Феноменологическое рассмотрение с учетом симметрийных свойств TbMnO₃ позволило дать качественное объяснение экспериментально наблюдаемым полевой и температурной зависимостям вектора электрической поляризации в магнитных полях различных направлений. Показано, что для такого объяснения необходимо учитывать искажения *A*-конфигурации спинов марганца в результате «примеси» более слабых *G*- и *C*-конфигураций. Наблюдение компоненты электрической поляризации P_x свидетельствует о более сложной магнитной структуре ($A_y + A_z + G_y + C_{x(z)}$) типа «косой крест». Таким образом, МЭ измерения могут быть индикаторами реальной спиновой структуры. Наблюдаемый в поле H_y так называемый «поляризационный флоп» («отключение» P_z и появление P_x [1]) не является ориентационным переходом, подобным спин-флопу в магнетиках. Электрическая поляризация P_x изначально отлична от нуля и постепенно растет в магнитном поле, становясь заметной в полях порядка поля спин-флопа вследствие присутствия слабых *G*- и *C*-состояний. Такое поведение поляризации естественно, поскольку, в отличие от спинов, в анизотропном кристалле повороты электрической поляризации затруднены, и легче изменить ее величину. Результаты анализа МЭ диаграмм находятся в качественном согласии с экспериментом при определенных условиях, накладываемых на параметры: $\lambda'_1 > 0$, $\lambda_1 < 2\lambda'_1, \lambda'_2 < 0$.

- 1. T. Kimura, T. Goto, H. Shintal, K. Ishizaka, T. Arima, and Y. Tokura, *Nature (London)* **426**, 55 (2003).
- 2. S. Quezel, F. Tcheou, J. Rossat-Mignod, G. Quezel, and E. Roudaut, *Physica (Amsterdam)* **B86-88**, 916 (1977).
- M. Kenzelmann, A.B. Harris, S. Jonas, C. Broholm, J. Schefer, S.B. Kim, C.L. Zhang, S.-W. Cheong, O.P. Vajk, and J.W. Lynn, *Phys. Rev. Lett.* 95, 087206 (2005).
- T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A.P. Ramirez, *Phys. Rev.* B71, 224425 (2005).
- 5. И.Е. Чупис, Известия РАН, сер. физ. 71, 1098 (2007).
- 6. R. Kajimoto, H. Yoshizawa, H. Shintani, T. Kimura, and Y. Tokura, *Phys. Rev.* **B70**, 012401 (2004).
- Ю.А. Изюмов, Дифракция нейтронов на длиннопериодических структурах, Энергоатомиздат, Москва (1987).

Magnetoelectric states of TbMnO₃ in magnetic fields of different directions

I.E. Chupis

A phenomenological analysis of the magnetoelectric ME diagrams of the ferroelectric-antiferromagnetic TbMnO₃ in a temperature region where the rare-earth subsystem is paramagnetic has been made. It is shown that the behavior of electric polarization in magnetic fields of different directions can not be explained within the limits of A-configuration of spins without any consideration of weaker G- and C-states. The ME diagrams suggest a more complex spin structure of an «oblique cross» type. It is proved that the so-called «magnetic-field-induced-polarization flop» in TbMnO₃ is not similar to the spin-flop transition in magnets.

PACS: **75.80.+q** Magnetomechanical and magnetoelectric effects, magnetostriction.

Keywords: magnetoelectric diagrams, ferroelectric-antiferromagnetic TbMnO₃, configurations of spins Mn.